

Improving lives through research

Use of Published Margins of Error For Aggregating CTPP Tables and Sensitivity Analysis

Jianzhu Li Tom Krenzke

November 13, 2017

Disclaimer

The NCHRP Project 8-36C, Task 135 is conducted under contract to RAND and the final report is under review by the Transportation Research Board of the National Academy of Sciences.

Outline

Introduction

- Computing margins of error (MOEs) for aggregate estimates
- Creating replicated tables for the purpose of using MOEs to measure precision in analyses
- Summary and conclusion
- Demonstration of ToolKit

Introduction

- Key uses of ACS and CTPP data
 - The Census Transportation Planning Products (CTPP) comprise a set of special tabulations
 - Provide estimates and MOEs for small geographic units such as Traffic Analysis Zones (TAZs)
 - Provide an important source of information for calibrating travel demand models
 - Facilitate transportation planning applications
 - The most recent CTPP is based on 2006-2010 American Community Survey (ACS) data

Introduction

- Address the challenges in using CTPP MOEs
 - TAZs were made to be small so that transportation planners could piece them together in different ways for planning purposes
 - Task 1: Solve the issues related to the aggregation of table cells and the computation of MOEs for combined cells
 - Task 2: Provide a method to reflect the sampling error associated with CTPP estimates in travel demand modeling

- Traditional CTPP approach -- Naïve approach
 - Assume X_i 's are independent
 - $-X_{combined} = X_1 + X_2 + \dots + X_n$
 - $-MOE_{combined} = \sqrt{MOE_{X_1}^2 + MOE_{X_2}^2 + \dots + MOE_{X_n}^2}$
 - Ignore covariance terms
 - Asiala (2012): resulting MOE is an overestimate (when aggregating) and seriously breaks down when aggregating more than four estimates

- Generalized Variance Function (GVF)
 - A typical GVF is of the form... $V^2 = a + b/X$
 - X = estimated total
 - V² = relative variance (sample variance divided by X²)
 - Estimation:
 - Fitted GVF model using table estimates and MOEs sampled from all CTPP tables at TAZ and TAD level
 - Sampling was done within strata defined by types of tables and sizes of table estimates
 - X is between 0 and 100,000
 - Adjustment:

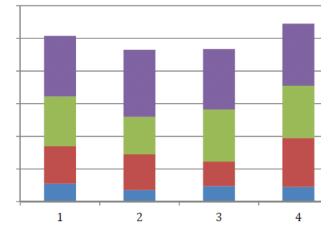
 $f_c = var_{gvf}(X_c)/var_{actual}(X_c), c = 1, ..., C$ (cells to combine)

$$f_{uw} = \frac{1}{c} \sum_{c=1}^{C} f_c, \qquad f_w = \frac{\sum_{c=1}^{C} f_c * X_c}{\sum_{c=1}^{C} X_c}$$

- Evaluation
 - Selected a nationally representative sample of 200 TADs and their associated TAZs
 - Residence Table: Age (7) by MOT (3) for workers 16+
 - Workplace Table: Presence of children (2) by MOT (3)
 - Flow Table: Minority status (2)
 - Assumed TAZ level tables are aggregated to generate TAD level tables
 - CTPP TAD level tables were used as gold standard
 - Computed ratios of MOEs using CTPP MOE as base
 - Compared distribution of MOE ratios by number of TAZs combined

Evaluation Results: Age (7) by MOT (3)

# of TAZs combined	# of TADs	MOE methods	5 th	25 th	Median	75 th	95 th	IQR
		Naive	0.91	0.99	1.04	1.12	2.97	0.13
		Trad. GVF	0.85	1.09	1.25	1.43	1.76	0.35
		U-adjusted GVF	0.76	0.90	0.99	1.08	1.24	0.17
<10	2,956	W-adjusted GVF	0.82	0.93	1.00	1.08	1.25	0.15
		Naive	0.94	1.04	1.15	1.31	1.95	0.28
		Trad. GVF	0.85	1.07	1.24	1.44	1.85	0.37
		U-adjusted GVF	0.76	0.89	0.98	1.08	1.28	0.20
10-49	2,480	W-adjusted GVF	0.82	0.92	1.00	1.10	1.29	0.17
		Naive	0.97	1.11	1.19	1.34	1.61	0.23
		Trad. GVF	0.87	1.01	1.16	1.32	1.65	0.32
		U-adjusted GVF	0.76	0.89	0.96	1.06	1.23	0.17
50-99	191	W-adjusted GVF	0.79	0.92	0.99	1.08	1.23	0.16
		Naive	1.00	1.18	1.29	1.48	1.83	0.31
		Trad. GVF	0.83	1.12	1.28	1.41	1.85	0.29
		U-adjusted GVF	0.70	0.87	0.95	1.07	1.22	0.20
>=100	87	W-adjusted GVF	0.73	0.90	0.98	1.09	1.28	0.20


Evaluation Results: Age (7) by MOT (3)

# of TAZs combined	# of TAD estimate S	MOE methods ¹	MOE Ratios ∈(0.8, 1.2)	$\begin{array}{l} MOE Ratios \\ \in (0.9, 1.1) \end{array}$
		Naive	0.82	0.67
		Trad. GVF	0.39	0.20
		U-adjusted GVF	0.84	0.55
<10	2,956	W-adjusted GVF	0.89	0.61
		Naive	0.59	0.38
		Trad. GVF	0.42	0.22
		U-adjusted GVF	0.81	0.50
10-49	2,480	W-adjusted GVF	0.86	0.56
		Naive	0.55	0.22
		Trad. GVF	0.55	0.31
		U-adjusted GVF	0.82	0.55
50-99	191	W-adjusted GVF	0.86	0.56
		Naive	0.30	0.15
		Trad. GVF	0.33	0.14
		U-adjusted GVF	0.80	0.47
>=100	87	W-adjusted GVF	0.78	0.52

Task 2 – Creating Replicated Tables to Use MOEs in Analyses

- It is difficult to incorporate the sampling error associated with CTPP estimates in travel demand modeling
- Replicated tables approach
 - Given a CTPP table, generate several plausible sets of estimates that reflect the MOEs
 - Use each plausible table (or a subset) for sensitivity analysis in planned travel demand analysis to reflect the variation in the analysis
 - Results for each replicated table can be shown graphically

Task 2 – Creating Replicated Tables to Use MOEs in Analyses

- Build models to take into account correlation among cell estimates
- Model assumptions for a given CTPP table with K cells
 - Assume a normal distribution model for overall weighted counts $X \sim N(\mu, \sigma^2)$
 - Assume a Dirichlet distribution model for cell proportions with parameters $(\alpha_1, \alpha_2, \dots, \alpha_k, \dots, \alpha_K)$

•
$$E(p_k) = \frac{\alpha_k}{\alpha_0}$$

• $Var(p_k) = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}$, where $\alpha_0 = \alpha_1 + \alpha_2 + \dots + \alpha_K$

Task 2 – Creating Replicated Tables to Use **MOEs in Analyses**

- Estimate model parameters
 - $-\mu$ and σ^2 can be estimated from observed total \hat{X} and its MOE
 - Estimate the parameters of the Dirichlet distribution from cell proportions
 - GVF method

$$p_{k} = \frac{\hat{X}_{k}}{\hat{X}}, \quad \hat{\alpha}_{k} = \left(\frac{\hat{X}}{\hat{b}} - 1\right) p_{k}$$
$$Var(p_{k}) = \frac{\hat{\alpha}_{k}(\hat{\alpha}_{0} - \hat{\alpha}_{k})}{\hat{\alpha}_{0}^{2}(\hat{\alpha}_{0} + 1)} = \frac{\hat{b}}{\hat{X}} p_{k}(1 - p_{k}),$$

Distance Function Method

Minimize
$$\sum_{k} \left(\frac{\widehat{\alpha}_{k}(\widehat{\alpha}_{0} - \widehat{\alpha}_{k})}{\widehat{\alpha}_{0}^{2}(\widehat{\alpha}_{0} + 1)} - v_{k} \right)^{2}$$

 $v_k = var(p_k) = p_k^2 \left(\frac{var(\hat{X}_k)}{\hat{X}_k^2} - \frac{var(\hat{X})}{\hat{X}^2} \right)$ (see Wolter, 1985) where

Task 2 – Creating Replicated Tables to Use MOEs in Analyses

- Generate replicated tables in three steps
 - Randomly draw table total \hat{X} from the normal distribution, multiple times
 - Randomly draw cell proportions p_k 's from the Dirichlet distribution, multiple times
 - Derive cell counts $\hat{X}_k = \hat{X}p_k$ for each replicate

Task 2 – Creating Replicated Tables to Use MOEs in Analyses

- Census Bureau's "Variance Replicate Tables"
 - Published 80 variance replicate estimates for <u>select tables</u> from ACS 5-year
 - Can be used to calculate the MOEs of aggregated estimates
 - ACS uses a successive differences replication (SDR) variance estimation methodology

• variance =
$$\frac{4}{80} \sum_{i=1}^{80} (Var_Rep_i - ACS \text{ estimate})^2$$

- Limitations
 - Does not cover all CTPP tables; has no plan to add more tables for CTPP
 - Graphing variance replicate estimates directly does not reflect the sampling error correctly

Conclusions and Summary

- Adjusted GVF method performed well in deriving MOEs for aggregated CTPP tables
- Replicated tables approach allows sampling error and perturbation error to propagate through to subsequent analysis and allows one to visually display results

CTPP MOE ToolKit

- Excel worksheets and tutorial
- Functions
 - Estimate MOE for totals and proportions for combined subgroups ("CombineSubgroups" worksheet);
 - Compare proportions between two subgroups ("CompareSubgroups" worksheet); and
 - Replicate tables to reflect the published MOEs, for use in subsequent sensitivity travel demand analysis results
 - R macro

Combine Subgroups

Click to open tutorial

Tutorial

CTPP Margin of Error Toolkit

Estimating MOE for Combined Subgroups

We emphasize that the Toolkit's GVF-based approaches should be used only when the aggregated total (X) is between 0 and 100,000, which is within the range of the mo-

Ge	Generalized Variance Function parameters							
	а	-0.00023	GVF parameters					
	b	24.8988	-					

User Inputs

To estimate the proportion (p) for the combined estimate, enter the denominator Y value and its MOE: Outputs

Y	MOE	
20300	914	

Enter estimates to be aggregated

X	MOE	
895	220	•
610	158	Input
285	82	data
520	120	Gelee
405	115	
265	117	
415	154	
780	155	
470	122	

Aggregated						
estimate	MOE(x)					
X	Naïve	GVF	GVF- uw adj	GVF- w adj		
4645	429.0	547.3	398.6	403.9		

	MOE(<i>p</i>)					
р	Naïve	GVF	GVF- uw adj	GVF- w adj		
0.2288177	0.01845	0.02682	0.01672	0.01702		

18

Compare Subgroups

CTPP Margin of Error Toolkit

Comparing Two Proportions Between Subgroups

User Inputs

Subgroup 1 Proportion = 0.04752 MOE = 0.04132 Subgroup 2 Proportion = 0.03842 MOE = 0.00764 From t data: two subgroup proportions for comparison

Enter I for independent subgroups or D for dependent subgroups:

Assumption on independence of subgroups

 Outputs

 Difference =
 0.01

 MOE =
 0.026

 Significant?
 No

CTPP Replicated Tables Toolkit

	X		MOE.X
Total	2985		463
	Xk	Pk	MOE.Xk
Cells 1	320	10.72%	267
2	45	1.51%	66
3	475	15.91%	156
4	50	1.68%	45
5	20	0.67%	32
6	575	19.26%	243
7	95	3.18%	93
8	375	12.56%	204
9	25	0.84%	38
10	15	0.50%	24
11	140	4.69%	130
12	225	7.54%	137
13	15	0.50%	117
14	435	14.57%	183
15	100	3.35%	79
16	60	2.01%	56
17	15	0.50%	25

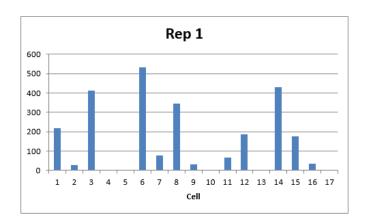
Number of Replicated Ta	ables
	5

Run

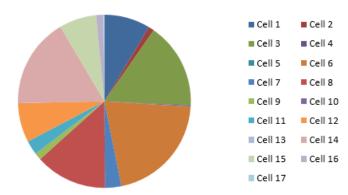
Input data

		Rep1	Rep2	Rep3	Rep4	Rep5	
	Total	0.9112	0.0319	0.4590	0.0171	0.9613	
,							
	Cells 1	0.4739	0.2026	0.5913	0.1116	0.0055	
	2	0.7115	0.3774	0.3263	0.3070	0.5701	
	3	0.1590	0.2297	0.6635	0.7213	0.7222	
	4	0.5229	0.2303	0.2129	0.1640	0.9157	
	5	0.7493	0.4935	0.3192	0.7168	0.8231	
	6	0.8032	0.0968	0.4240	0.6028	0.3245	
	7	0.3790	0.5453	0.7757	0.7494	0.0872	
	8	0.6268	0.1118	0.9095	0.5838	0.1862	
	9	0.3958	0.6138	0.3791	0.1950	0.1652	
	10	0.2391	0.6913	0.0453	0.2055	0.0876	
	11	0.1957	0.1458	0.7587	0.0791	0.6799	
	12	0.0538	0.4083	0.6697	0.4310	0.0119	
	13	0.7331	0.6807	0.2208	0.3948	0.1270	
	14	0.6218	0.8717	0.4034	0.6317	0.1362	
	15	0.1131	0.7114	0.2854	0.9735	0.9828	
	16	0.3545	0.6414	0.5373	0.4784	0.0077	
	17	0.9221	0.4414	0.5254	0.3105	0.6758	
	10						

Random Numbers


Replicated Tables - GVF Method

		Rep1	Rep2	Rep3	Rep4	Rep5
	Total	3364	2463	2956	2389	3482
	Cells 1	371	234	322	176	190
	2	68	27	24	19	59
	3	444	376	497	433	736
	4	53	22	21	15	142
¢	5	33	12	6	20	49
	6	817	409	527	486	709
	7	89	89	123	99	53
	8	483	252	494	315	397
	9	15	23	12	4	6
	10	2	16	0	1	0
	11	107	77	170	54	221
	12	144	192	243	166	124
	13	23	15	2	4	1
	14	557	533	389	376	446
	15	55	116	65	177	321
	16	48	63	54	41	8
	17	54	6	8	3	21



Graphs - GVF Method

Scaled Bar Chart 100% 90% 80% 70% Rep 5 60% Rep 4 50% 40% Rep 3 30% Rep 2 20% 10% Rep 1 0% 1 2 9 10 11 12 13 14 15 16 17 з 4 5 678 Cell

Rep 1

References

- Asiala, M. (2012). Topics on American Community Survey. Presented at the California Regional / Affiliate Data Center meeting, June 1, 2012.
- Wolter, K. (1985). Introduction to Variance Estimation. Springer-Verlag, New York, Inc.

