Representative work by over 25 Engineers , technical staff, and graduate students at the Department of Civil & Materials Engineering University of Illinois at Chicago

Infrastructure Monitoring and Assessment: State of the Art and Future

Why Monitor Infrastructure?

Assure safety

- Warn of impending failures
- Rapid post-disaster assessment
- Save lives

Maintenance and Management

- Detect damage at early stages of formation
- Automate, simplify and provide real time access to data
- Reduce life-cycle costs

In-service Structural and Materials behavior

- Quantitative assessment of structural response
- Data for development of innovative materials and structural designs
- Determine Construction quality

Many sensors, and lead lines

Too much data

Why Optical Fiber Sensors

- Flexible and geometrically versatile for embedment or adhesion to structural elements.
- Serve the **dual purpose** as the sensor and pathway for the signal.
- **Distributed** measurements or **serial multiplexing**
- Extremely small and lightweight.
- Immune to electrical and electromagnetic interference.
- Resist corrosion and fatigue.
- **Safe** (incapable of initiating fire or explosions).
- Capable of making **high resolution** measurements

Localized and Distributed FOS Sensor Types

Fiber Bragg Gratings (FBG) –wavelength change

Discrete/strain/Temperature

BOTDA/BOTDR- Brillouin Frequency shift

• Distribute Strain/Temperature

Sensor Configurations

Distributed Monitoring Strategies

- Use a Single Sensor to monitor the entire infrastructure
- Develop simplified analysis techniques

Optical Fiber Sensors

30 years ago							
Applications in	Today						
Aeronautics	FBG sensors widely	Tomorrow					
Composite Materials	employed in many infrastructure applications	Distributed Sensors will practically replace FBG					
		sensors					

Example Applications for FBG Sensors

- Shear Force Based BWIM system
 - Specific application to monitor loads in real time in Bridges
- Monitoring of vault cracks in Brooklyn Bridge
 - Specific application to determine the cause for cracking and to assure safety

Shear Force Based Method for Bridge Weighin-Motion System

U.S. Department of Transportation Federal Highway Administration

Existing BWIM Systems

- The BWIM systems are primarily :
 - Based on Bending Capacity of Girders
 - Calibrated against the flexural response of the bridge
 - Instrumentation involves installation of sensors on sections of bridge girders with higher flexural strain responses

Simplified Approach

- Develop a simple and cost effective WIM system for widespread usage in highway bridges
- Overcome the existing limitations of BWIM systems in terms of installation rigors, Bridge span lengths, geometry, computational time, and monitoring costs

Shear Force Based BWIM system:

- Sensors are installed below bridge deck.
- Sensors are installed near abutments.

Rosette Theory

 Since the two strain gages that form the rosette sensor are in such close proximity

 Thermal variations are automatically cancelled by subtraction of one strain from the other:

$$\gamma_{xy} = \frac{\varepsilon_1 - \varepsilon_2}{2sin\theta cos\theta}$$

Shear Force

 $V = \frac{GIt\gamma}{Q}$

Bridge WIM Method Theory

• Consider a truck, with arbitrary number of axles, passing over a bridge system as shown below:

 As the truck passes over the bridge, each axle imposes a shear force to the bridge relative to its weight. The influence line for the shear force at any location can be constructed using analytical procedures.

Method

Shear strain recorded from Rosette is the sum of the products of axle loads and the shear influence line of the girder

ShearStrainatRosette
$$\gamma = \sum_{i=1}^{n} P_i f_{(x)}$$

$$\mathsf{GVW} = \sum_{i=1}^{n} P_i$$

 $f_{(x)}$ = Influence line for shear strain

(comes from Calibration Procedure)

Definition of Terms

- \mathbf{g}_A or \mathbf{g}_B : The Peak Shear Strain in a Rosette (set A or B)
- $P_1 \dots P_n$: Individual Axle Weights
- GVW : Gross Vehicle Weight
- $l_1 \dots l_n$: Individual Axle Spacing
- $f_{(x)}$: The Shear Strain Influence Line Function (from Calibration)
- $f'_{(x)}$: The Shear Force Influence Line Function (from Mechanics)
- V· Shear Force
- Velocity of the Vehicle V:
- Distance from the Beginning of Span (point O) to the location Χ: of the axle.
 - Distance from the Beginning of Span to Rosette set A
- S_o: S₁: Distance between Rosette set A and Rosette set B

At $t = t_1$

$$\mathbf{g}_{B_{1}} = P_{1} * f_{(S_{0}+S_{1})} + P_{2} * f_{(S_{0}+S_{1}+l_{1})} + P_{3} * f_{(S_{0}+S_{1}+l_{1}+l_{2})} + P_{4} * f_{(S_{0}+S_{1}+l_{1}+l_{2}+l_{3})}$$

Generally

$$\mathbf{g}_{B_{1}} = P_{1} * f_{(S_{0}+S_{1})} + P_{2} * f_{(S_{0}+S_{1}+l_{1})} + \dots + P_{n} * f_{(S_{0}+S_{1}+l_{1}+\dots+l_{n-1})}$$

—Rosette A —Rosette B

At
$$t = t_1'$$

$$\mathbf{g}_{A_{1}} = P_{1} * f_{(S_{0})} + P_{2} * f_{(S_{0} + l_{1})} + P_{3} * f_{(S_{0} + l_{1} + l_{2})} + P_{4} * f_{(S_{0} + l_{1} + l_{2} + l_{3})}$$

Generally

$$\mathbf{g}_{A_1} = P_1 * f_{(So)} + P_2 * f_{(So + l_1)} + \dots + P_n * f_{(So + l_1 + \dots + l_{n-1})}$$

$$\Delta t_1 = t_1' - t_1 \qquad v = S_1 / \Delta t_1$$

0

A S0 , S1

[**P1**]

B

P2

п

P3

п

12

P4

Q,

At $t = t_2$

$$\mathbf{g}_{B_2} = P_2 * f_{(S_0 + S_1)} + P_3 * f_{(S_0 + S_1 + l_2)} + P_4 * f_{(S_0 + S_1 + l_2 + l_3)}$$

Generally

$$\mathbf{g}_{B_2} = P_2 * f_{(S_0 + S_1)} + \dots + P_n * f_{(S_0 + S_1 + l_2 + \dots + l_{n-1})}$$

At t = t_2'

$$\mathbf{g}_{A_2} = P_2 * f_{(So)} + P_3 * f_{(So + l_2)} + P_4 * f_{(So + l_2 + l_3)}$$

Generally $\mathbf{g}_{A_2} = P_2 * f_{(So)} + \dots + P_n * f_{(So + l_2 + \dots + l_{n-1})}$

$$\Delta t_{2} = t_{2}' - t_{2} \qquad v = S_{1} / \Delta t_{2}$$

$$I_{1} = v (t_{2} - t_{1}) \text{ or } I_{1} = v (t_{2}' - t_{1}')$$

At $t = t_3 \text{ or } t_{n-1}$

$$\mathbf{g}_{B_3} = P_3 * f_{(So+S1)} + P_4 * f_{(So+S1+l_3)}$$

Generally

$$\mathbf{g}_{B_3} = P_{n-1} * f_{(So+S_1)} + \dots + P_n * f_{(So+S_1+ln-1)}$$

System Control Enclosures

NEMA 4X rated outdoor enclosures for control system protection.

Rosette Sensors for Shear Strain Measurement

Rosette sensor installation with alignment guides to maintain proper 60° angle.

Calibration Vehicles

Axle Spacing (feet)

Axle Weights (lbs)

- 0

>

2

Date	Time	Lane	Class	Speed(mph)	Space 1	Space 2	Space 3	Space 4	Space 5	Group 1	Group 2	Group 3	Group 4	Group 5	GVW
6/19/2015	11:55:16 AM	4	6	57.4	21.0	4.8	0.0	0.0	0.0	11149	21548	0	0	0	32697
6/19/2015	11:54:59 AM	3	9	42.5	16. <mark>4</mark>	4.4	34.8	3.9	0.0	6991	29685	15068	0	0	51744

LockStreetMain2.vi

Brooklyn Bridge

- Location : NYC (Manhattan– Brooklyn)
- Design: Suspension/Cable-stay Hybrid
- Span Length: 486.3 m
- Total Length: 1825 m
- Width: 26 m
- Clearance below: 41 m at midspan
- AADT: 145,000

Impetus for Monitoring

- Approach structure a series of brick masonry vaults.
- Double-span vaults are seated on the walls of two three-story masonry buildings.
- Damage: crown cracks developed along the entire length of double spans
 - Is the structure safe?
 - How did these cracks develop?

BROOKLYN BRIDGE REMOTE MONITORING

MASONRY ARCH APPROACH SPANS

Crown Crack

ARCH CRACKING

Visual Inspection

Considerations for Monitoring Strategy – Optimal Sensor locations

- Bedrock is very near the ground surface in Manhattan area. The fact that the east wall was not cracked was attributed to confinement by the anchorage structure.
- The west wall was partially confined by the steel truss supports but likely to move by excessive loads or thermal gradients.

Sensor Types and Locations

BROOKLYN BRIDGE REMOTE MONITORING

UIC

UNIVERSITY

SENSOR LAYOUT

Typical Fiber Optic Based Crack and Tiltmeter

Typical FBG crack sensor (vault crown

Typical FBG Tilt meter (wall supporting the two vaults

BROOKLYN BRIDGE REMOTE MONITORING SMART SENSORS AND NDT LABORATORY

BROOKLYN BRIDGE REMOTE MONITORING REMOTE MONITORING

UNIVERSITY

Year long crack sensors and temperature sensor data (west vault)

Distributed Monitoring – Capability for monitoring over 30 kilometers of infrastructure with a single fiber

Multiplexed Single Point Sensing

Distributed Sensing

Laboratory Evaluation

Load Tests – Room Temperature Test Results

the axial strain distribution along the beam

Load Testing of Salt Creek Bridge

Rt-83 Elmhurst, IL Composite Section Span Lengths (37ft, 47ft, 37 ft)

Field Tests – Distributed Sensor - Salt Creek Bridge

Load Case 1

Load case 2

Load case 3:

Load Testing of Sub-Navigational Channel Crossing of the Humen Bridge in China

Sub-navigation channel bridge (150m+270+150m)

注: 1.本图尺寸均以米为单位

注: 1.本图尺寸均以米为单位

KISHWAUKEE RIVER BRIDGE

ELEVATION AND CROSS-SECTION

SOUTHBOUND BRIDGE

BRIDGE INFORMATION

- Constructed in 1979
- 5 Span Continuous Post-Tensioned Concrete Box Girder Construction. Made from 7ft (2.1m) Precast segments.
- Span Lengths of 17oft, 25oft, 25oft, 25oft, 17oft for a 109oft (332m) Total Span Length.
- 42ft (12.8m) Wide Supporting 2 Lanes of Traffic.
- In 2008, Post Tensioning Cables were added within the box girder to increase the bridge stiffness.

SENSOR INSTALLATION

 A coated fiber optic sensor was installed along the upper surface of the bridge cell to monitor the strain profile of the entire bridge in a distributed manner. In essence this provides the strain profile along the entire length of the bridge at every single location.

BRIDGE LOADING

 Four trucks were used for testing the Bridge in October of 2016.

BRIDGE LOADING

- Each truck (as reported)
 - GVW = 46000 (184000 for four trucks)
 - First axle load ≈ 8000 lb (32000 total for 4 trucks)
 - Second axle load ≈ 20000 lb (80000 pounds for 4 trucks)
 - Third axle load ≈ 18000 lb (64000 for four trucks)

Distributed Strain and Detection of Cracks

Detected Microcracks

Crack location in 5th span overhead surface near the joint of two segments.

KISHWAUKEE RIVER BRIDGE

CRACK DEVELOPMENT AND FINITE ELEMENT ANALYSIS

LOCAL STRESSES AT CRACKED CROSS SECTION DUE TO WHEEL LOADS

Section Stresses right before wheels get to the section (psi)

LOCAL STRESSES AT CRACKED CROSS SECTION DUE TO WHEEL LOADS

LOCATIONS FOR FURTHER INVESTIGATION

Coincidence of observed peaks within vulnerable areas

Cable-stayed Bridges

Health Monitoring of Cables with localized sensors

Multitudes of discrete sensors require expensive, inefficient and rigorous installations

Health Monitoring of Cables with localized sensors

Multitudes of discrete sensors require expensive, inefficient and rigorous installations

Tension Loss in Cables by Distributed Monitoring of Deck Strains

Cost effective quantifying damage in the cables of cable-stayed bridges

Distributed sensor – Simple to install – Single line of data
High resolution – Cost Effective – Rapid extraction of data
Dedicated innovative method for structural analysis for detection of location and extent of cable tension losses

Model of Two-River Bridge in ChongQing

立面图

Two River Bridge and 1/68 Laboratory Model

Formulations

$$M_i = \sum_{j=1}^n P_j M_{ij}$$

 M_i is the bending moment at location i,

 M_{ij} is the bending moment at location *i* due to a unit vertical force at point *j*

n is the total number of cables and the interior supports.

$$M_i = \frac{\epsilon_i EI}{C}$$

Effect of Spatial Resolution in Strain Measurements

 Y_i is the vertical deflection of the deck at point *i*

and Δ_i is the pylon horizontal displacement at the connection of cable *i*

 Q_i is the horizontal component of cable force

 f_{ij}^{b} and f_{ij}^{p} is deflection of the deck and pylon at section *i* due to a unit force at section *j*, respectively.

Damage case I. 100% Tension Loss

UIC

Damage case II. 100% Tension Loss

UIC

Damage case III. 30% Tension Loss in Each Cable

UIC

Summary

- Structural monitoring shall begin by a well defined objective and for solving specific problems
- A number of examples pertaining to the application of Fiber Optic Sensors in monitoring of Bridges were provided
- Two types of sensors, discrete and distributed have been prevalent in Civil Structural health Monitoring, FBG, and Brillouin systems.
- FBG sensors have found widespread usage. Distributed sensors will be prevalent in near future

