

Asset Management Track

Asset Management and Resilience: Connecting the Concepts to Building and Rebuilding

Sue McNeil smcneil@udel.edu

Motivation

- Interest in resilience
- Awareness of climate change impacts
- Occurrence of extreme events
- Legislation
 - Focus in MAP-21 on performance based management and risk-based asset management plans
 - Inclusion of "resilience" in FAST

- Mandated for transportation
- Assessment and comparison
- Decision support

Resilience Concept

IVERSITY

Adapted from Bruneau et al. 2003, McDaniels et al. 2008, and McAllister 2015

Resilience Principles

- Resilience: capability to resume operations as preevent levels.
- Attributes of resilience
 - Robustness
 Loss of functionality
 - Rapidity
 Time to recovery
 - Resourcefulness
 Rate of recovery
 - Redundancy
 Network impact

Two perspectives for transportation resilience

- Users:
 - Disruption and inconvenience
- Owners:
 - Damage, repair, and recovery

Possible for transportation resilience

- User's perspective:
 - Travel time
 - Vehicle Mileage traveled (VMT)
 - Disruption duration
- Owner's perspective:
 - Condition, and location
 - Capacity
 - Accessibility

• Project level

• Network level

Case studies

JIVERSITYOF

- Project level
 - PrimehookRoad,Delaware
- Network level
 - 195, North Carolina

Case studies

- Project level
 - Primehook Road, Delaware

- Network level
 - 195, North Carolina
 - Interstate highway damaged by Hurricane Matthew

Two measures of resilience

- Bruneau et
$$R_{L} = \int_{t_0}^{t_1} (1 - Q(t)) dt$$

$$R = \frac{\int_{t_0}^{t_1} Q(t) dt}{t_1 - t_0}$$
- Bocchini an.

Project level case study

IVERSITYOF

Three scenarios

- I. Repair (Actual)
- II. Bridge built
- III. No closure due to proactive prevention but subbase saturated

Project level case study

NIVERSITY OF ELAWARE

F	Pro	Di	ec	t	le	Ve	el c	case	S	tu	d	V			
	Bocchini et al.														
$R_{\scriptscriptstyle L} = \int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle 1}} \bigl(1-Q(t)\bigr) dt$								$R=\frac{\int_{t_0}^{t_1}Q(t)dt}{t_1-t_0}$							
	Period								Period						
Scenario	1	2	3	4	5	6	Overall	Scenario	1	2	3	4	5	6	Average
Repair (actual)	254	49	1	37	2	16	361	Repair (actual)	49	61	0	58	0	84	56
Bridge built	168	51	0	48	1	45	313	Bridge built	66	60	59	57	56	55	63
Proactive								Proactive							
prevention	254	49	0	37	1	50	392	prevention	49	61	61	58	54	49	52
Resilience								Resilience							
300 250 200 150 100 50 0															
1	2		3	4	5	6	-	1		2	3	4	5	6	
	Repair (actual)	Bridge	built 🛛	Proactiv preventi	e ion		Repair (actual) Bridge built Proactive prevention							

UNIVERSITY OF ELAWARE

Network level case study

Situation:

- 1. Interstate closure: links flooded and damaged
- 2. Partially reopened
- 3. Fully reopened

Measures of resilience

• Additional total travel time

 $\circ R = \sum_{t=1}^{T} \sum_{i=1}^{n} (TT_{it}q_{it} - TT_{i0}q_{i0})$

Additional total Vehicle Miles Traveled (VMT)

 $\circ R = \sum_{t=1}^{T} \sum_{i=1}^{n} (L_i q_{it} - L_{i0} q_{i0})$

Notation: R = Resilience

- t = time index (in days), and T = duration of the event
- i = link index, and n = number of links
- TT_{it} = travel time on link i on day t (minutes),
- TT_{i0} = travel time on link i before the event (minutes),
- \mathbf{q}_{it} = flow on link i on day t (vehicles per day),
- q_{i0} = flow on link i before the event (vehicles per day)
- $L_i = \text{length of link i (km)}$

Results

NIVERSITYOF

- Measures reflect users' perspectives
- Recovery process is not reflected in VMT measure
- Cost is easier to interpret

Conclusions

- Retrospective analysis
 - Measurement is possible
 - Many measures available
 - User's and owner's perspectives differ
 - Measures difficult to interpret
- Prospective analysis
 - Challenging

Research Questions

- How do state, regional and local governments operationalize the concept of resilience?
- What measures do they use, how do they interpret the measures, and how do they use the measures of resilience?
- What does resilience mean for life cycle cost?
- Is resilience just another level of service, or performance measure?

- How does resilience recognize the number of users affected by a disruption?
- Is resilience an appropriate metric for an objective function or is resilience part of multi-attribute decision making?
- How does resilience relate to sustainability?
- Is resilience the complement of risk/ vulnerability?

Acknowledgements: Gordana Herning, Massachusetts Institute of Technology Ali Maher, Rutgers University Center for Advanced Infrastructure and Transportation (CAIT) At University of Delaware: Daniel Liu Rusty Lee Rachel Chiquoine