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Durability Specifications

« Based on empirical observation

« Based largely 4 component systems)
which are rapidly becoming out dated

« Many times concrete Is falling apart

e Concrete Is not the dinosaur, our
specifications however ......

 AASHTO currently considering performance based
alternatives (PP-84) — | was asked to examine durabllity
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Concrete Mixture Design gty
s

to Reduce Corrosion

* Think Tony Saprano

* The pores in concrete
that are of the greatest
concern are large and
connected




Concrete Mixture Design
to Reduce Corrosion
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* Transport mainly in capillary pores

» Capillary pores - large and connected [
* Predictions exist (Here GEMS, PB)
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Tests should be: Example: Use Exposure, Set Performance

. easy to perform * Measure p Materia_l Limits and Use

« economical « Account for Properties, and Tests to Measure

* repeatable Pore Solution Models to to Insure That You

 Determine Estimate Received What
F- Factor Performance you Specified

Barde et al. 2007
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Specification (AASHTO PP84)

e Suppose we want 75 yr
before we repair damage
due to corrosion (INDQOT)




Example of a Performance
Specification (AASHTO PP84)

Time to Critical Chloride
Concentration For
Reinforcement Corrosion

Step 1:
Measure Electrical Resistivity

o}

¥

Step 2:
Resistivity to Formation Factor
__ P

Po

¥

Step 3:
Cr—C, xVF

= erjc
Cs — G, f [2 D,t

¥

Step 4:
For a given exposure, predict

the time to reach a limit state
of chloride content at the rebar

Reinforcing
Bar

Formation Factor (~)

Oregon State University
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Example of a Performance @ oconsucuiesiy
- grm - College of Engineering
Specification (AASHTO PP84)

« Suppose we want 75yr  * 75 year Fgppc = 3600
before we repair damage

due to corrosion (INDOT) o' soln p, 0.073 0 m

* Resistivity, p All Values
greater than 236 QO m §




It | had an hour o
solve a problem ond my

life depended on it
| would use the

tirst 55 minutes
determining the

proper questions to ask.
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Transverse cracking in
100,000+ bridges

62% of DOT’s consider
cracking as a problem
(28% did not know)

Cracks shorten service
life, Increase maintenance
cost, and accelerate
corrosion

Common Response —

http://www.aggregateresearch.com/caf/file/newdeckcracking.pdf

Here we see cracks spaced at 0.8 m

Use ngher Strength On the approaches to a bridge
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High Strength Concrete

Jut "?ﬁef“.qggfjcfon,MOm lFor a better start in life y
- 5tarfcouearher' |

* Higher Strength

» Higher Stiffness

* Low Permeability

* Low Shrinkage

 Low Creep

* Freeze-Thaw Resistance
» Abrasion Resistance

* Toughness

| How soon IS too soon?

: M B Not soon emough. Labaralary tests over the last few years
g " have peovea that babics who start drinking soda during thal
.W

N

carly formative period have a nvuch higher chance of gaining
o acceptance asd “fisting in” during thase awkward presteen
wy and teca years. So, do youarself a favor. Do your child a favor.
Start them on a strict regimen of sodas and other sugary
carbonated beverages right now, for a lifetime of guarantoced
happiness.

The Soda Pop Board of America

1515 W. Harl Avo. - Chécago | ILL.

http://thecitydesk.net
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* Higher Strength
» Higher Stiffness
* Low Permeability
* Low Shrinkage
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5| —@— 50% RH
» Low Creep —+— 40% RH
_ —&— 40% RH
 Freeze-Thaw Resistance 0 . . .
0 3 6 9 12

28 Day Comp. Strength (MPa)

* Abrasion Resistance .
Specimen Age at

* Toughness First Cracking (Days)

Weiss et al. 1999
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ki t
’ '—09 Ing at Drying Time
shrinkage of the >
components Aggregate

* Aggregate generally
don’t shrink

* Paste Is the portion
that shrinks

« Shrinkage Is a paste
property

Concrete

Measured Shrinkage

v Paste




Volume of Paste is One

Approach -V

Paste

« Dutron (1956) shares data

* L'Hermite (1960 no
Influence of the w/c)

(We can shown this
IS due to PSD)

* Pickett ('65) and
others work on egn

n
Econcrete — gPaste(l_VAgg)

 SRA, IC change this
approach doable)

Relative Shrinkage (%)

LD L.
8\ Oregon State University
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| I | I | I 1 ' I 1
w/c=0.42; No Air; 564 |b/yd* Cement
@ : -
120 — S, s —
80 — —
40 — —
1 5to 6% Shrinkage N
Per 1% Paste Change
O— -— - e __ " __ —
Assuming 2.3% Entrapp:ed Alr
'40 | | | | |
950 60 70 80

Aggregate Volume (%)
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Initial Specimen

-

Shrinkage Effect

Stress Based
On Hooke’s Law

Restraint Effect

de(t, &)= d"f;mem(é)

Creep/Cracking Effect »
Stress Relaxation

(00)

Stress
Relaxation

Stress In

Calculated Tensile Stress (MPa)

] Specimen
s e R bl I B e e

Age of Specimen (Days)
Final Stress State H
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Probability of Cracking ?:Zifié‘ié?ﬁ‘é‘gﬁéi‘ﬁng

'y
Stress

—————— Strength

Predicted Age of

Cracking

Stress or Strength (MPa)

Specimen Age (Days)
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Initial Specimen

-

Shrinkage Effect

Stress Based
On Hooke’s Law

Restraint Effect

(00)

de(t, &)= d"f;mem(é)

Calculated Tensile Stress (MPa)

4
Increase in
Stiffness is More 0 . . . , . ,
Likely to Crack 0 7 14 21 28

Age of Specimen (Days)
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in Shrinkage Crackmg

* Plotted the < . Deterministic -
percentage S 80— Age of Cracking -
_ o S0 D9 EednY__

of specimens cracked < 1 1 : i

by a specific age S %7 Perack i

 Results = 40 — | -
. . q) |

of 10,000 simulations £ ' | i

. . QD 20 — : B

Can quantlfy_rlsk or = ] 59 Probabiliy i
total probability 0 —X .

I ' I ' I ' I '
0 14 28 42 56 70
Age of the Specimen (Days)

Radlinska al. 2006
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Shrinkage Specification |

» Shrinkage can be related to cracking potential and this
simple approach relates a simple test to performance
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Examine the Problem
from Fundamentals

* Shrinkage Occurs Due to Capillary Stress

* To reduce stress one can reduce the
surface tension of the fluid (reduce y) or increase the
radius of the meniscus (or emptying pore radius, r)

Oregon State University
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College of Engineering
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« INDOT, IL Tollway,
NYDOT Decks

e« 2010, 2013 INDOT
Decks — No/Minimal
Cracking

 To Date 100 decks
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of Concrete Joints

« Majority of concrete pavement performs
well; however joints are failing/need repalr

» A problem for an other-
wise healthy pavement

* The cost Iis approximately
$1 million dollar per mile

Taylor 2013

Taylor 2013

e,

Welss 2005

EE P A

Weiss 2008
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Our research began to
look at this differently

Zones of
Chemical Attack

Zones of High
Fluid Saturation

e Geometry  ‘New’ Salts
e Fluid Sits | e ‘New’ Reactions
 Fluid is not Water * ‘New’ Problem




Classic CaCl, - H,0
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Phase Diagram
80 L | L | L | L | L | L
* We likely are not spendinga o4 I I
lot of time thinking about the ;] ) I
CaCl, phase diagram S ool ewater g I
+ However this diagramis = 5 ol I
: o - Y
being used by many SHA as g,
|_

they prepare for deicing and
anti-icing operations 0.
* Many prefer CaCl, duetoits .

lower melting temperature 65 10 15 20 2530
CaCl, content (% w.t.)
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Phase Isopleth |

80 ' ' | | |
« Unfortunately however when - t i
we are working with 10- i i

Calcium Oxychloride
Liquidus Line

cementitous systems we
need to also consider the
calcium hydroxide

« CaOxy Is traced out and
exhibits a 303% vol change

3Ca(OH), + CaCl, +12H,0 > 4| . &&= °
CaCI2-3Ca(OH)Z-12Hzo 0 S 10 15 20 25 30

CaCl, content (% w.t.)

lce-Water
Liquidus Line

Temperature (°C)
o
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caoxy (LTDSC) B College of Engineering

— Low Temperature — -
Differential Scanning 0.00 NI [ @
Calorimeter (LT-DSC) R ' [ '

— Temperature Is decreased s R I
from 50 °C to -80 °C, the 2 | “
sample is then re-heated & %7 mo [

cement paste (w/cm=0.42, 0% FA) + |

— Uses powder 20% CaCl,
with CaCI2 0067 ::|-E|UteCtiC )

— Notice heat flow 0.08 | I III.I: ((:Iiealcliumloxychlcl)ridelz
peaks at various 80 60 40 20 0 20 40 60

hase fOrmatiOnS Temperature (°C)  (Villani et al., 2014)
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o Effect of Dilution
(Less CH)

o Effect of Reaction
(Less CH)

 Limiting Factor

0 20 40 60
% Fly Ash (by volume)

e Mixture Desiﬁn Monical et al. 2016

Heat absorbed due to OxyChloride Formation [(Jigpaste)/{J/gexyel)
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Our research began to
look at this differently

Zones of
Chemical Attack

Zones of High
Fluid Saturation

e Geometry  ‘New’ Salts
 Fluid Sits | e ‘New’ Reactions
 Fluid is not Water e ‘New’ Problem
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Freeze Thaw Damage Occurs

* Simple sorption based
model is shown

* Important to recognize
that we are not predicting _ R
FT damage; rather we are Square Root of Time
predicting a limit state ' ‘

 Great framework

 Lets discuss the model inputs
(tests that we will measure)

Critical Sat. ~ 0.85

) Secondary Sorption Rate

Snick Air Void Filling

Degree of Saturation

Gel and Capillary Pores Fill

Li et al. 2010

Time to Critical Saturation (Years)

(@] 2 4 6 8 10 12
Volume of Air (%)

Weiss et al. 2014
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What About Variability Qg“g
100 1 l l 1 l 1
Design Mixture — -.Determ,n.st.c . ]
—0.42 wic S a0 o 3% raiure N S
= O 50% Failure 2= .xs8
— 6% Air S 1 o 65% Failure “ = 6‘56 &
E 60 — A 90% Failure “ s .o’ _
— 564 |b cement = S TS e
: n N 0O o o® ot
— FIne Aggregate S 40— - n:@fa RS =
* Lets Assume S - R :.“sz"..o” 5
Variations @ 207 NECOR -
~wic5% (0.38t00.46) "~ 1. .egfiet
— Air 15% (4.2 to 7.8) 0 2 4 6 8 o 12

Volume of Air (%)
Calculated from the ARA PRS Project



What About Variability

* Design Mixture
—0.42 wic
— 6% Alr
— 564 |b cement
— Fine Aggregate

* Assume Variation
—w/c 5% (0.38 to 0.46)
—Air5% (5.4 to 6.6)
— Air 15% (4.2 to 7.8)
— Air 25% (3.0 to 9.0)

Oregon State University

College of Engineering
60 N DU DR DU DU DU BTN BTN B
@
ry - = - Deterministic + o
= ® COV -5% w/c; 5% Air ®
@ 7 e coV-5%wic; 15% Air + o -
: 4+ COV -5% w/c; 25% Air + 3
2 40 — + $ _
S @
= é
= .
(75 ------------i-. ------------- -
S .33
(&) ® o 3=
e Ce +
Jd e + ) ) n
= + Criteria
= T + 20% Failure Rate
O * |} l |} l |} l |} l |} l |} l |} l |} l |} l |}
O 10 20 30 40 50 60 70 80 90 100

Probability of Failure (%)




Model Correlations

—~ 60 M I T N B
P ® SAM <= 0.20 and Air => 4.5%
> B SAM>0.200r Air<4.5% i
c
A=) ®
wid
g 40 — —
= 4
(75 - L
S ° 3%
= 20 — —
O L,
-8 . o H n
()] (| |
E O O
= T

0 20 40 60 80 100

Durability Factor (%)

ASTM C666 Durability Factor (%)
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100 [ I 1 I 1 I 1 I 1
D ]
- q ®e L I | IE] -
I I
80 — ®. - —
3.5% Air ! I
) > | B
For Mix A I U
60 — : L —
- : | 6% Air -
40 — o, 1 For Mix B —
] I
. | — | _
w/ic 0.40
20 — : ] : ® MixA —
- I i w/ic 0.40 |
L | Mix B
D Ll * I - I I l. I l I
0 2 4 6 8 10

Volume of Air (%)
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o o o
S -3 -] =

e
Y

Cumulative Percentage (%)

0

220 240 260
Sealed Re:

Barde et al. 2007
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Summary

Name
Transport/Corrosion | Random Cracking Freeze-Thaw Salt Damage
Damage
Mechanism : s " : Calcium
Formation Factor Crack Probability Critical Saturation :
Oxychloride
Test Method Resistivity © | Ring Testing © | Sorption/Sat @ | LTDSC
Correction F-Factor © | Probability © | DegreeofSat. @ | Damage Model
Model GEMS @ | Stress Develop. © | Critical Saturation@ | GEMS 9
o
(@
Material HPC, VMA @ | Vol Paste, SRA, IC@® | Air, HPC, new FT @ | SCM, carb., topical ©
)
Implementation | Evaluation, Spec Limited Discussion Limited .%
=
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