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Overview 

• US Railroads spend on the order of $11 Billion on Track and Property 

• Rail Fatigue is one of the Primary causes of rail failure 

• Weibull Analysis allows determination of the rate of failure 

• Recent advances in “Big Data” present the option of refining the 
Weibull methodology 

• Better prediction means less waste, saving money or allowing more to 
be repaired 



Data and Baseline Analysis 
• 10 years of data from a Class 1 railroad 

• 11,000 miles of track 
• 98,000 defects, of which 41,000 are fatigue defects 
• Rail Grinding, Curvature and Location data included 

• Traditional 2-parameter Weibull Analysis has been used by railroads 
to forecast rate of fatigue defect development 

• Data does not always follow traditional Weibull expectations 
• Various reasons why: data collection methods, errors in recording 

• Enhanced 3-Parameter Weibull Analysis applied 
• 3rd Parameter is an intercept/”failure free” period 
• Often results in better fits, but justification behind the use is still in debate 



Track Segment A 

• Shows a good relationship to the 
2-parameter Weibull Function 

• 3-parameter Weibull overlaid 
with similar results  

• Several small “jumps”  observed; 
corresponding to several defects 
occurring at the same time ( 
tonnage level of  MGT) 



Track Segment B 

• “Steps”/”Jumps” in data are 
more noticeable 

• 3-Parameter Weibull fits better, 
but cannot be rationalized 

 



Track Segment C 

• 2-parameter and 3-parameter 
Weibull curves are identical  

• “Early”/Low MGT defects do not 
appear to follow Weibull 

• “Late”/High MGT defects follow 
Weibull much better 

• Possibly a result of two different 
defect types 



Literature Search 
• To date, over 60 papers were reviewed 

• One approach looked at the applications of hazard functions in the Weibull 
equation 
• Allows a better fit when two defect populations result in “jumps” or “steps” similar 

to Segments B and C.  

• Rare-Event prediction with Big-Data may allow more precise pinpointing of 
future defects 
• Instead of track segments on the order of 30 miles, could reduce down to <1 mile 

• Expanding the Weibull function to account for situational variations 
• Follows other work that generalized the Weibull function up to a 5-parameter 

method 



Early Machine Learning Tests 

• K-Nearest Neighbors was applied to the data 
• Looked at predicting the state of individual track segments approx. 1 mile in 

length vs. Weibull’s ~30 mile segments 

• Included tests to see if increasing years of historical data improved results 

• Due to majority of null-responses, accuracy was based on only positive 
predictions 

• Not an effective fit 

 



KNN Results Pt.1 
Trial 1 Output 0 Output 1   Trial 2 Output 0 Output 1 

Input 

0 

21739 93   Input 0 21832 0 

Input 

1 

420 1   Input 1 421 0 

False Positive 

Rate 

0.426% False Positive 

Rate 

0.000% 

False Negative 

Rate 

99.762% False Negative 

Rate 

100.000

% 

• Trial 1 was a basic KNN using a 
single year of historical data 
• Only one track segment was 

correctly determined 

• Trial 2 expanded K to 6 
• Overabundance of null-responses 

resulted in everything being 
classed as Null 



KNN Results Pt.2 

Trial 3 Output 0 Output 1   Trial 4 Output 0 Output 1 

Input 0 21751 261   Input 0 21761 251 

Input 1 229 12   Input 1 225 16 

False Positive Rate 1.186%   False Positive Rate 1.140% 

False Negative Rate 95.021%   False Negative Rate 93.361% 

• Trial 3 included Milepost 
as an additional location 
parameter 

• Trial 4 dropped MGT as a 
parameter 



Future Work 

• Apply methodologies found in Literature Search 

• Expand Machine Learning tests to include other methodologies, such 
as Neural Networks 

• Apply Big-Data methodologies to generate  Weibull functions that are 
sensitive to key railroad variables  

• Provide a detailed method of forecasting rail life due to fatigue and 
the improvements to maintenance efforts 
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