

 Never Stand Still
 Science
 Transport and Road Safety (TARS) Research

Development of a Motorcycle FE Model for Simulating Impacts into Roadside Safety Barriers

Mongiardini M., Walton B., Mckay M., Grzebieta R., Menictas C., Berg A., Rücker P.

Transport And Road Safety (TARS) – Univ. of New South Wales

1st International Roadside Safety Conference (IRSC 2017) San Francisco, California — Jun. 12-15, 2017

□ INTRODUCTION

BACKGROUND

□ Safety Barriers may be a Hazard to Motorcyclists

- Highly safe for enclosed vehicles (cars / trucks) (majority of injured & killed road users)
- Potentially harmful for bikers
 - o "Hooking" Posts
 - o Sharp edges
 - o Ramping effect, etc.

□ Need to Consider Motorcyclist-friendly Barriers

- Increasing number of fatalities
- Safe-system approach

MOTORCYCLIST CRASHES INTO BARRIERS

□ Two Main Crash Typologies

- Biker riding into the barrier (upright riding position)
- Biker sliding into the barrier (separated from bike)

□ Statistics of Crashes into Barriers

- NOW: Either crash postures equally distributed (Australia and New Zealand as well as in Europe)
- PREDICTED : Most crashes in upright position [due to active stability systems (e.g., MABS)]

TESTING OF MOTORCYCLE FRIENDLY BARRIERS

European Testing Protocols

- ATD sliding into the barrier (EN 1317, Spanish, French, protocols)
- ATD riding the motorcycle (German protocol BASt)

□ Computer simulations

- Improve knowledge on interaction b/w motorcyclists and barriers in upright crash posture
- Assess countermeasures to reduce injury risks in motorcyclist crashes into barriers

OBJECTIVE & METHOD

□ <u>Objective</u>: Develop a Motorcycle FE Model

(for crashes into barrier in upright riding posture)

□ Method:

- Modeling a sport-touring motorcycle (touring bikes tend to collide in an upright posture)
- Model Verification and Validation

SUZUKI GSX-650F

□ Based on a 2008 Suzuki GSX-650F

- Major structural components
- > Non-structural parts that may interact w/ barrier or rider

SUZUKI GSX-650F

□ Based on a 2008 Suzuki GSX-650F

- Major structural components
- > Non-structural parts that may interact w/ barrier or rider
- □ Solid, Shell, and Discrete elements
 - Most components modeled w/ shells
 - Bulky parts modeled w/ solids (engine, radiator, brake calipers)
 - Lumped mass (inertia of non-modelled components)

Match CG location of actual motorcycle

Rigid Links b/w Frame & Components

(Depending on specific degrees of freedom)

FRONT SUSPENSION

□ Upper and Lower Forks Modeled w/ Shell Elements

- Cylindrical joint b/w each pair of forks
- Spring/damper discrete elements (coil spring & oil damping)
- Rigid constraint b/w upper forks (triple clamps)

TARS

REAR SUSPENSION

Swingarm Explicitly Modeled w/ Shell Elements Various Links Modeled w/ Kinematical Joints

- Revolute joint b/w swingarm & frame (hinge)
- Pairs of revolute joints b/w 2 dummy elements (Cushion-lever-rod assembly)

TARS

□ Front/Rear Suspensions

- Static behavior: compression/extension up to the limit
 - Stiffness & damping zeroed (to speed up process)
 - Bike frame constrained in the vertical plane (to prevent tilting)
 - Model settled under gravity (onto rigid plane)

11

TARS Researc

□ Front/Rear Suspensions

- Static behavior: compression/extension up to the limit
- Dynamic behavior: riding over a bump
 - o Bump height: 200 mm
 - o Initial speed: 10 km/h

□ Steering

Static behavior: Steering up to limit angle (32 deg)

o Steering input: 50-N (applied @ outer rim)

□ Steering

> Static behavior: Steering up to limit angle (32 deg)

Dynamic behavior: induce turn when bike is travelling

- Steering input: 50-N (applied @ outer rim)
- o Initial speed: 10 km/h
- Initial bike roll angle: 30 deg (to center of curvature)

Response to Sloped Obstacles

- Validated against experimental tests
 - Slope height: 200-mm (7.9-in)
 - Initial speeds: 15 km/h (9.3 mph) 20 km/h (12.4 mph) Ο
 - Slope steepness: 20 deg / 45 deg
 - Approach angle: 90 deg / 45 deg

			Impact Speed *	Ramp Angle	Approach Angle
Test No.		20/00 1	$\frac{(\mathbf{KIII/II}) [IIIPII]}{20.1 [12.5]}$	(deg) 20	(deg) 90
		20/90-1	20.1 [12.5]		
		20/90-2	20.6 [12.8]		
	e e	20/90-3	19.7 [12.2]		
	20° Slop	20/45-1	14.4 [8.9]	20	45
		20/45-2	18.0 [11.2]		
		20/45-3	18.2 [11.3]		
		20/45-4	19.3 [12.0]		
	e	45/90-1	15.6 [9.7]	45	90
	45 [°] lop	45/90-2	17.0 [10.6]		
	\mathbf{N}	45/90-3 17.9 [11.1]			
[*] Speed determined at time front suspension begins compressing upon contact w/ ramp					

Development of a Motorcycle FE Model for Simulating Impacts

into Roadside Safety Barriers

□ Response to Sloped Obstacles

- Validated against experimental tests
 - MOTORCYCLE KINEMATICS (Example: 20-deg slope & 45-deg approach angle)

Development of a Motorcycle FE Model for Simulating Impacts into Roadside Safety Barriers

TARS

□ Response to Sloped Obstacles

- Validated against experimental tests
 - MOTORCYCLE KINEMATICS
 (Example: 20-deg slope & 45-deg approach angle)

TARS

□ Response to Sloped Obstacles

- Validated against experimental tests
 - SUSPENSION COMPRESSION
 (Example: 20-deg slope & 45-deg approach angle)

□ Full-Scale Crash into Jersey Barrier

- Test conducted by DEKRA on a Kawasaki ER-5
 - o Barrier Type: Jersey [810-mm (32-in) tall]
 - Impact speed: 58.5 km/h (36.4 mph)
 - o Impact and angle: 12 deg

□ Full-Scale Crash into Jersey Barrier

Test conducted by DEKRA on a Kawasaki ER-5 *MOTORCYCLE KINEMATICS*

□ Full-Scale Crash into Jersey Barrier

Test conducted by DEKRA on a Kawasaki ER-5

• MOTORCYCLE KINEMATICS

TARS

□ Full-Scale Crash into Jersey Barrier

- Test conducted by DEKRA on a Kawasaki ER-5
 - RES. ACCELERATION @ Top Steering Column

□ Full-Scale Crash into Jersey Barrier

- Test conducted by DEKRA on a Kawasaki ER-5
 - RES. ACCELERATION @ Seat

CONCLUSIONS

□ FE Model to Simulate Upright Motorcyclist Impacts

- Reliable kinematics of steering and suspensions
 - Verified functionality
 - Validated response against slope tests (suspensions only)

Promising Results when Coupled w/ ATD Model

- Reliable kinematics of both motorcycle and ATD
- Differences w/ full-scale test likely due to geometric differences w/ tested bike

□ Next, Further Validation...

- Against ATD loads (w/ better ATD Model ?)
- Against crashes into semi-rigid and flexible barriers

ACKNOWLEDGMENTS

Experimental Testing

- Dept. of Mechanical Engineering at UNSW (Mechanical shop)
- Road & Maritime Services CrashLab (Test instrumentation)
- Mr. Cameron Peacock (Manufacturing of ramps)

QUESTIONS?

