The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD

1ST INTERNATIONAL ROADSIDE SAFETY CONFERENCE SAFER ROADS, SAVING LIVES, SAVING MONEY

Sponsored by TRB Standing Committee on Roadside Safety Design (AFB20)

Co-Sponsored by

Transportation Pooled Fund Program Project No. TPF-5(329), including US State Departments of Transportation for Kentucky, Minnesota, Nebraska, Ohio, Washington, and West Virginia The National Academies of SCIENCES • ENGINEERING • MEDICINE

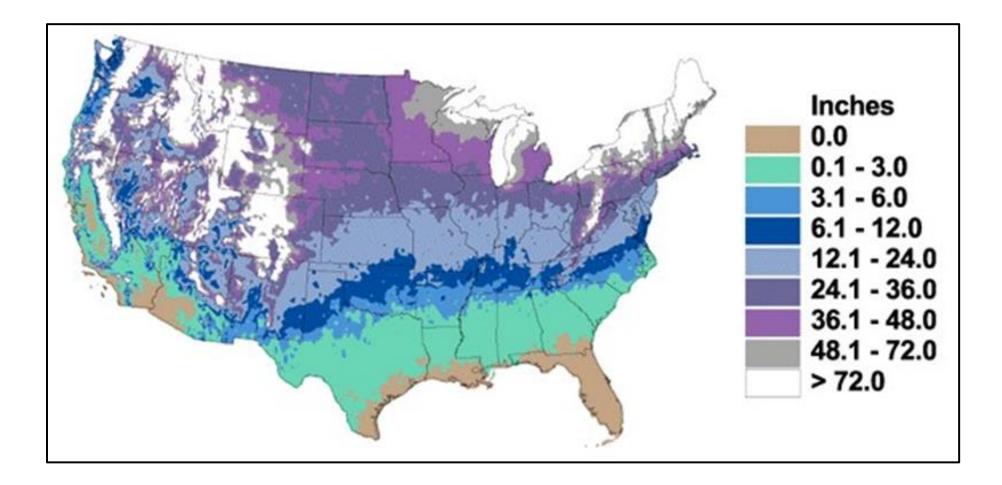
TRANSPORTATION RESEARCH BOARD

1ST INTERNATIONAL ROADSIDE SAFETY CONFERENCE SAFER ROADS, SAVING LIVES, SAVING MONEY

As a courtesy to other attendees, please observe good mobile manners. Please mute or turn off cell phones.

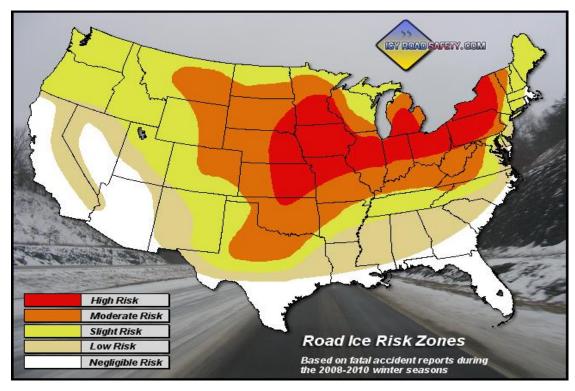
Sponsored by TRB Standing Committee on Roadside Safety Design (AFB20)

Co-Sponsored by


Transportation Pooled Fund Program Project No. TPF-5(329), including US State Departments of Transportation for Kentucky, Minnesota, Nebraska, Ohio, Washington, and West Virginia

Dave Bergner, M.A., PWLF Monte Vista Associates, LLC TRB First International Roadside Safety Conference June 13, 2017

- •Over 70% of U.S. roads in regions with more than 5" average snowfall annually.
- •Nearly 70% of U.S. population lives in these regions.
- •Over 1,300 people killed and more than 116,800 people injured
- in crashes on snowy, slushy or icy pavement annually.
- •nearly 900 people killed and nearly 76,000 people injured in crashes *during* snowfall or sleet each year.
- •Freeway speeds reduced 3 -13% in light snow;
- by 5 -40% in heavy snow.
- •Average speeds on arterial roads decline
- by 30 to 40% on snowy or slushy pavement.


- About 24% of all vehicle collisions in U.S. are due to snowy or icy roadways.
- 15% happen during snow or sleet.
- Many of these crashes involve run-off roadway (ROR) vehicles that strike objects.
- Collisions with fixed objects and non-collisions account for 19% of all reported crashes in U.S., resulting in 44% of all fatal crashes (*National Highway Traffic Safety Administration*)

Correlation of winter road maintenance with ROR is difficult to determine: "Although a large number of studies have attempted to draw conclusions about factors contributing to road departures, most rely on crash data ... a second hand and incomplete picture of the events leading to the crash."

Snow or ice *increases* the likelihood (of ROR events) by seven times that of dry conditions. (NHTSA)

Goal of transportation agencies:

Restore safety and mobility effectively and efficiently within a reasonable time.

Winter maintenance has substantially evolved due to advancements in:

- weather forecasting and reporting,
- equipment,
- materials,
- science and art of plowing and material applications.

TRB Roadside Safety Conf. FINAL

Snow and ice control is <u>20%</u> of state transportation agencies maintenance budgets. Develop ways to improve efficiency and effectiveness while encountering:

- budget reductions,
- increased retirements,
- difficulty in recruiting and retaining new employees,
- aging infrastructure
- obsolete equipment,
- stricter environmental mandates,
- higher demands and expectations from the public.

Snow and ice and control measures may adversely affect roadside safety:

- Plowing and abrasive materials destroy pavement markings.
- Snow cast by plows accumulates on warning signs.
- Plows knock down signs, signals and warning beacons.
- Snow plows wear down special friction surfaces.
- Abrasives on bare pavement can cause a loss of traction.
- Some liquid deicers can create slickness under certain conditions.
- Plowed snow hides roadside objects such as shorter posts, railings, hydrants, etc.
- Snow plowed against guardrails creates "ramps" that project vehicles up and over.
- Piled snow on the roadside melts and refreezes into unexpected icy patches on road.

Research on equipment, plowing, materials, application methods conducted by:

- Transportation Research Board (TRB),
- American Association of State Highway and Transportation Officials (AASHTO),
- Pacific Northwest Snowfighters,
- Clear Roads Consortium,
- Aurora,
- FHWA,
- several state DOTs and universities

Strategies and Tactics

- Anti-icing---apply liquid materials before storms to prevent bonding.
- *De-icing*---apply rock salt and/or liquid chemicals on snow/ ice.
- *Gritting* ---apply abrasives
- Plowing--- mechanical removal of snow and ice
- *Hauling*---remove accumulations of plowed snow
- *Snow fences---* roadside structures reduce snow drifting.
- Avalanche sheds---structures cover mountain road.
- Closures---extreme measure.
- Tire Chains---mandatory in certain locations

Anti-icing:

- not practical for all winter storms; certain conditions must be present.
- very effective, especially for preventing black ice.
- applied by sprayer trucks up to several days before a snow or ice event.
- Fixed Automated Spray systems (FAST) installed on bridges and overpasses.

De-icing

- materials work well at milder pavement and air temperatures.
- less effective at colder temperatures and packed snow and ice.
- Abrasives
 - used with or without rock salt and liquids.
 - abrasives do not have any melting properties.
 - agencies reducing/eliminating sand due to environmental considerations.
 - traction improvement very short-lived.
- Plowing
 - size, shape and composition of plows and blades increases capability.
 - mitigates ROR by quickly improving pavement condition.

Snow Fencing

Chain Restrictions

Road Closure

Levels of Service Adjustments

- transportation agencies may have to adjust LOS to balance limited resources with maintaining safety and mobility.
- reduced plowing and treatment may increase potential for ROR:
 - 17% of weather -related crashes occur during snow sleet,
 - 13% occur on icy pavement and,
 - 14% take place on snowy or slushy pavement.

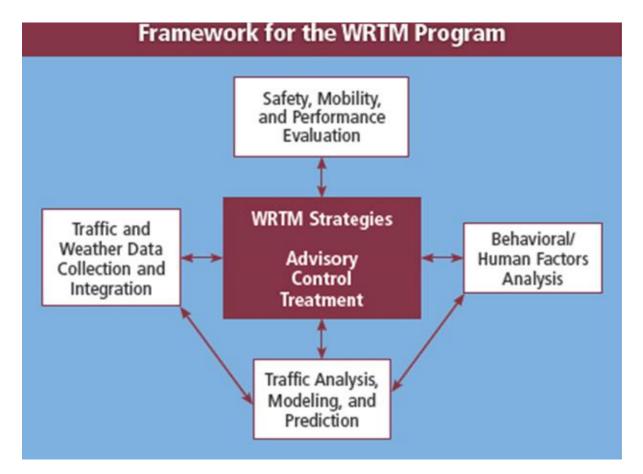
ROUTES

- lane-miles/kilometers, cycle-times, traffic patterns, distance from maintenance facilities, application rates, and quantities, types and capacities of equipment major factors in determining the routes.
- higher priority routes have shorter cycle-times.
- the faster a truck can complete its route, the better the road conditions.

• few have been reconfigured based on optimizing for highest efficiency

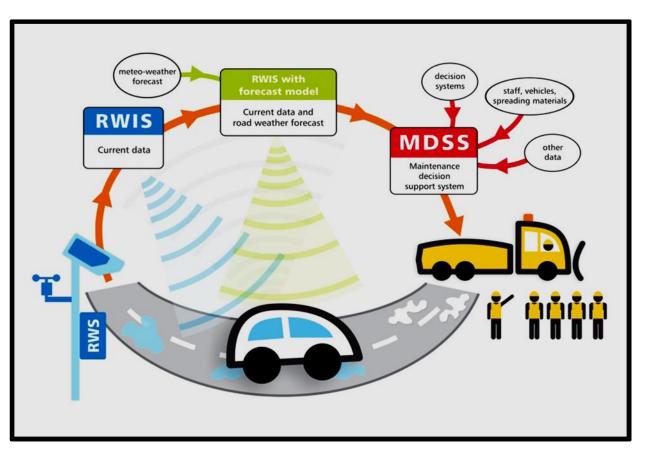
- Identify "trouble spots" such as steep grades, curves, elevated structures, open areas susceptible to snow drifting or melt/ refreeze.
- Pre-season "dry-runs" familiarize the plow operators with those locations.
- Supervisors determine treatments for these chronic hazardous locations.

Transportation agencies use both public and private weather services to plan, prepare and conduct winter road operations. Accuracy and reliability rapidly improving .



Road Weather Information Systems (RWIS) provide real-time data:

- air temperature,
- amount and type of precipitation,
- visibility,
- dew point,
- relative humidity,
- wind speed and direction,
- pavement temperature,
- subsurface temperature,
- surface condition (dry, wet, frozen),
- pavement salinity and freezing point of the road surface.


FHWA's Road Weather Management Program is developing and implementing weather responsive traffic management (WRTM) solutions to improve traffic flow and operations during inclement weather. It uses existing ITS to make connected vehicles into mobile weather stations.

 Automated vehicles "read the road" by identifying presence, proximity and type of markings, signs, signals, posts, poles, guardrails and barriers.

 Connective vehicle (CV) technologies and mobile networks help deliver faster, more accurate traffic risk and incident information to drivers, traffic management centers and highway maintenance depots.

- vehicles equipped with air and pavement surface temperature sensors.
- Some sensors detect surface moisture and salinity.
- Sensors being developed to measure the thickness of ice or snow.
- More plow trucks now equipped with
- AVL (Automatic Vehicle Locator) that report direction, speed, plow position, operation
 , material application rate.
- Friction sensors in development

Ben Hodges, transportation maintenance supervisor at MDOT's Grand Ledge garage, checks on plow AVL information. Photo courtesy of MDOT.

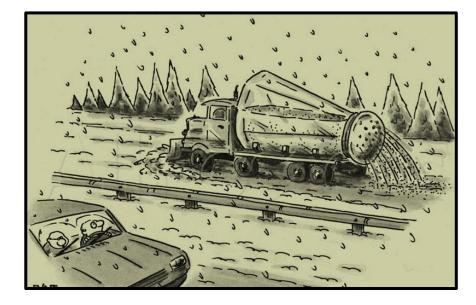
"Preventive treatment of the road is important to reduce the risk of ice forming on the road. The use of advanced systems in weather forecasting and monitoring along with staff education and improved procedures is expected to improve the winter traffic safety." (Thordasonn and Olaffsonn)

Winter road operations control is trending towards co-location with Traffic Management Centers (TMC) to share technology and information. Managers can adjust operations faster and more effectively when they have access to real-time traffic information combined with the data from telematics on-board the plow trucks.

PUBLIC INFORMATION

- Educating, informing and alerting the public reduce risk of ROR on winter roads.
- Transportation agencies use radio, television, newspapers (print and digital), agency websites, social media, mass e-mails and texts to inform the public.
- Highway Advisory Radio (HAR) and Dynamic Message Signs (both portable and stationary).

Summary:


- Transportation agencies place highest priority on safety and mobility.
- Much progress on snow and ice control methods, materials and machinery.
- Continued advances in the technology, science and "art " of winter roadway operations blended with ITS and Automated/Connected Vehicles will result in significant reduction of collisions including ROR.

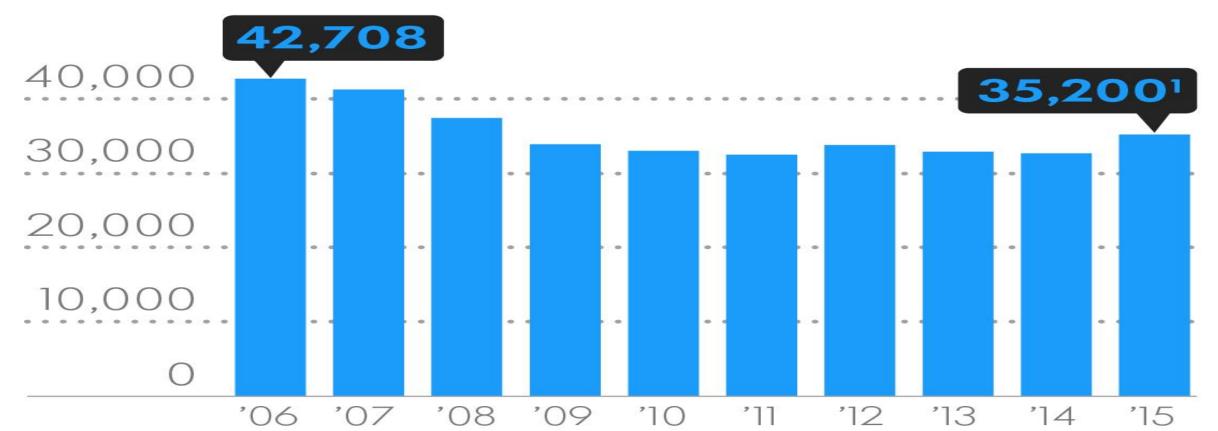
Sometimes, it's just too slick even for the plow trucks!

Dave Bergner Monte Vista Associates, LLC dlbergner@gmail.com

Questions?

Richard J. Baker DBI Services, LLC Market Development Manager 804-539-5582 rbaker@dbiservices.com

TRB First International Roadside Safety Conference, San Francisco.CA


High Friction Surfacing Treatment, how a 45 year old process has been re-engineered into one of the leading national safety systems deployed by the US highway agencies

Lives Saved, Serious Injuries Reduced Through the use of HFST: How Highway Agencies are Deploying HFST Nationally. How does HFST function in a curve

TRAFFIC FATALITIES ROSE IN 2015

Traffic deaths increased about 7.7% last year from 2014, according to preliminary estimates. Deaths from motor vehicle accidents:

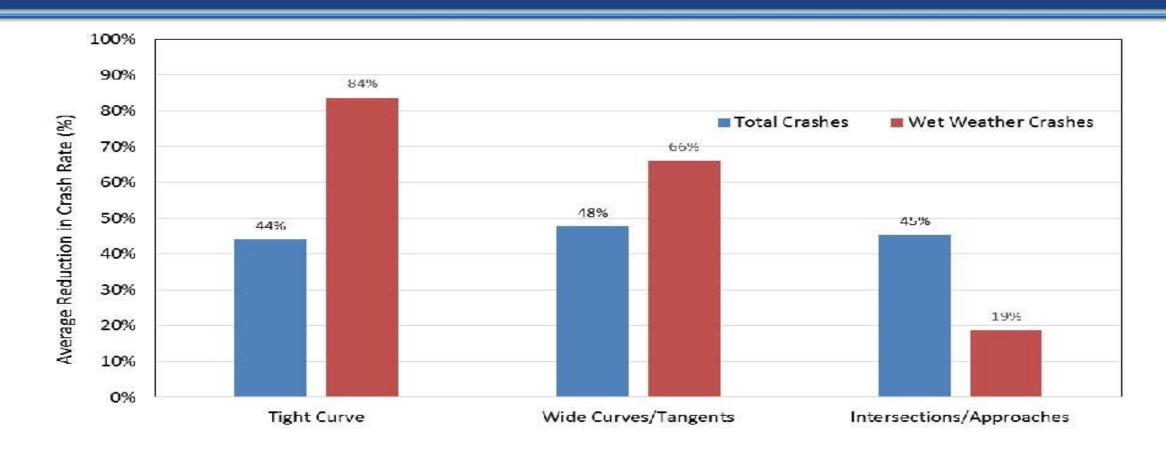
1 — Projection SOURCE: National Highway Transportation Safety Administration George Petras, USA TODAY

In **2013**, there were approximately **5.6 million crashes** reported across the nation, including **32,719 fatalities** and over **2.3 million injuries.**¹ More than half of the 2013 fatalities were roadway departure crashes.

Often, a small subset of the total highway network is responsible for a significant percentage of certain crash types. In 2008, for example, 28 percent of fatal crashes occurred on *horizontal curves*, yet horizontal curves make up only 5 percent of our Nation's roadways. Compared to vehicles driving on a *tangent road section*, vehicles traversing horizontal curves require a greater lateral friction due to centrifugal forces.

A roadway must have an appropriate level of pavement friction to ensure that vehicles stay safely in their lane. Poor pavement conditions, especially wet pavement, have been identified as one of the major contributing factors in roadway departure (RwD) crashes. When a pavement surface is wet or polished from wear, the level of pavement friction is reduced which may lead to skidding or hydroplaning. A high friction surface treatment (HFST) is an ideal countermeasure for such locations because it significantly increases pavement friction and helps prevent drivers from losing control on severe curves...

Despite gains in safety, 2015 saw the *largest percentage rise in motor vehicle deaths in the past 50 years*, according to the National Safety Council. Cheaper gas and a stronger economy were likely key factors in the rise, the nonprofit group says.


The figures are estimates from the <u>National Safety Council</u>, which says it currently estimates that last year, "38,300 people were killed on U.S. roads, and 4.4 million were seriously injured, meaning <u>2015 likely was the deadliest</u> <u>driving year since 2008</u>

A total of 40,200 people died on U.S. roads in 2016, the highest level in almost a decade, according to preliminary estimates from the National Safety Council (NSC).

The number of traffic fatalities last year represents a 6 percent increase over 2015 and a 14 percent increase over 2014 — the sharpest two-year escalation in more than 50 years, the safety group said.

The NSC draws its data from the states and the report could differ from final federal estimates. Still, safety advocates say the early data represents an **alarming trend**

Crash Performance (333 Specification)

Roadway Section Type

What is a High Friction Surface Treatment?

High Friction Surface Treatment (HFST) is a pavement surfacing overlay system with:

Exceptional skid-resistant properties that are not typically acquired by conventional materials

Retains the higher friction property for a much longer time

Commercially available resin-based products

Generally applied in highway sections to improve safety locations where friction demand is critical

HFST Binder Materials

- Polymer binder systems
 - Epoxy-resin two-part systems
 - Polyester-resin three part systems

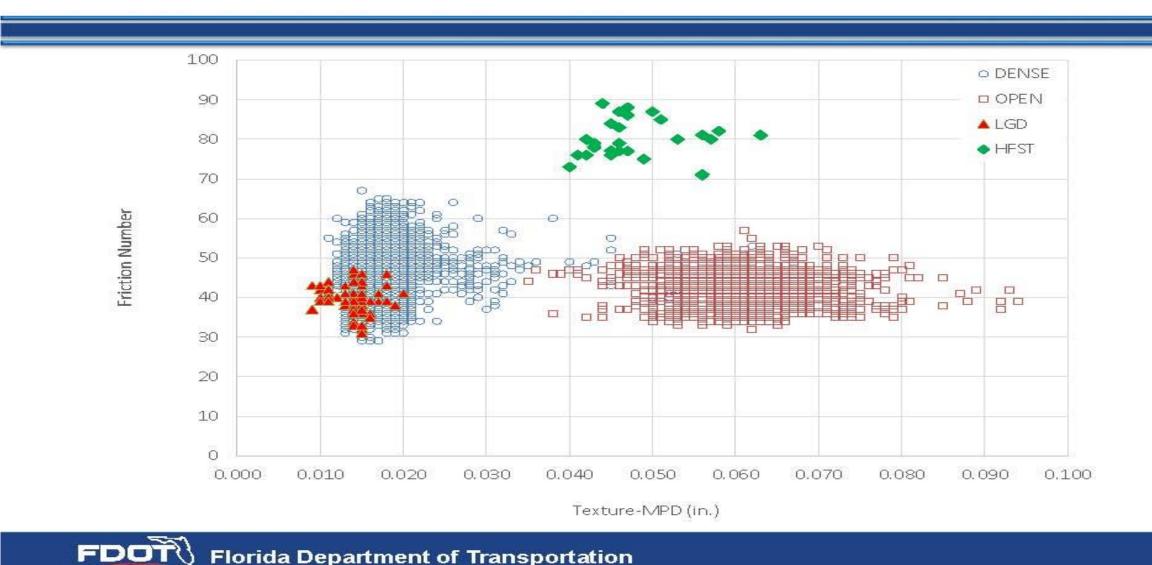
To form a laminate layer that allows for 75% aggregate embedment depth

HFST Aggregate

Recommended aggregate is calcined bauxite which provides the highest resistance to

polishing

Typically referred to as a 1-3mm aggregate


Report 17-01 NCAT

	Traction Control		Calcined Bauxite			
Number Of Cycles	Slab 1 (Avg)	Slab (Avg)	Slab 1 (Avg)	Slab (Avg)		
	0.77	0.78	0.90	0.94		
0	0.80	0.81	0.95	0.97		
U	0.80	0.82	0.94	1.05		
	0.51	0.54	0.78	0.81		
70,000	0.55	0.57	0.77	0.79		
	0.57	0.62	0.74	0.79		
	0.47	0.51	0.79	0.81		
140,000	0.47	0.54	0.79	0.80		
	0.50	0.53	0.77	0.82		

NCAT Three Wheel Polishing Device

Friction Performance

Why Calcined Bauxite?

In-place friction characteristics must meet a minimum requirement of 65 FN40R when tested in accordance to AASHTO T 242 upon completion of the installation

Many states are using values greater than 70

Fully Automated HFST Application Generation III Vehicles

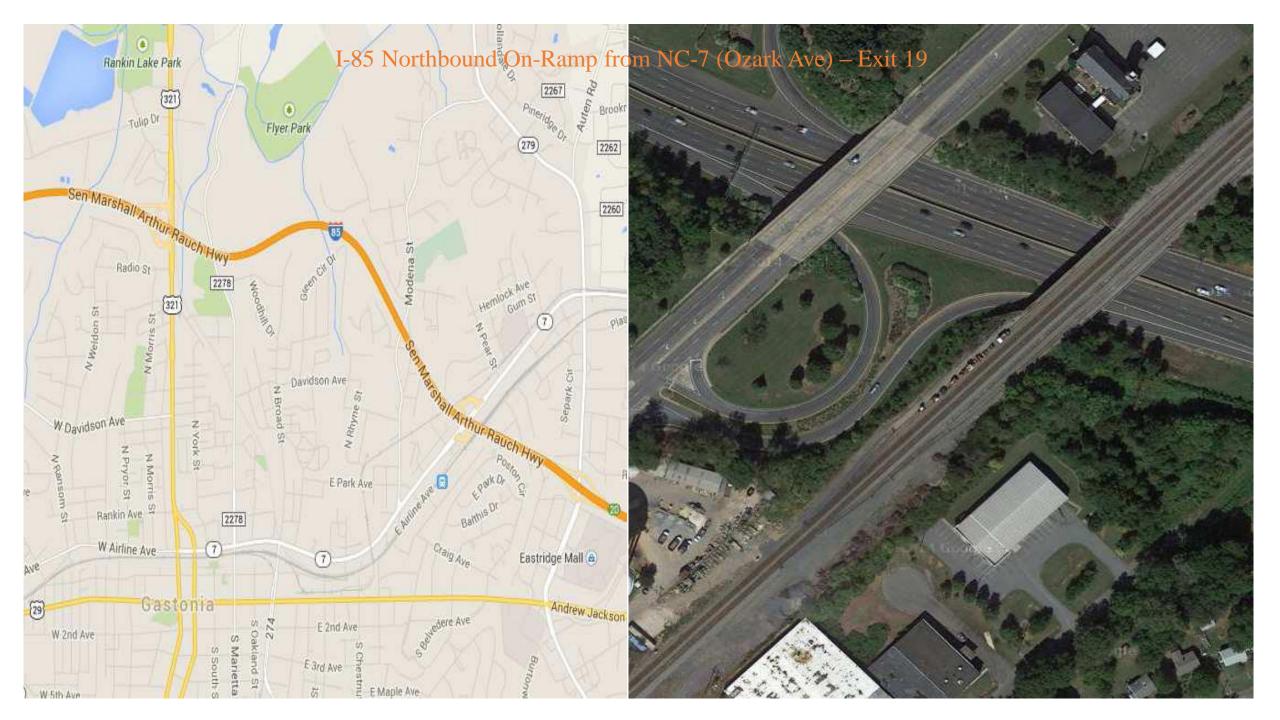
A typical HFST installation (photo thanks to Alaska DOT)

Texas Transportation Institute is one of the leading engineering consultants for transportation studies compared friction performance of a HFST surface and conventional concrete pavement at the TTI Testing Facilities Skid testing conducted at the TTI test track College Station, TX

Skid Numbers: Concrete: 54.1, 50.2, 50.9 without HFST HFST: **85.8, 85.8, 83.2 with HFST**

Stopping Distance @ 45 mph (ft.): Concrete: 99, 91, 101, 91* without HFST HFST: **76, 76, 79, 76* with HFST** *Cars changed lanes

A recent industry high speed braking test in the UK



GA DOT 1,200,000 square yards of HFST spread across 3 districts and 16 counties, extending for 10 months. Represents the largest series of projects ever undertaken in the US.

NC DOT 2008 SC DOT 2009

Lives Saved, Serious Injuries Reduced Through the use of HFST. How Highway Agencies are Deploying HFST nationally.

I-85 Northbound On-Ramp from NC-7 (Ozark Ave) – Exit 19

Injury Crash Summary Before After Percent Reduction

Class B injury Crashes 5 0 - 100.0 % Class C Injury Crashes 20 2 - 90.0 % Property Damage Only 25 9 - 64.0 %

Overall Summary Results

Total Crashes: - 78 % (reduction) Total Crash Severity: - 50 % (reduction) Target LD Crashes: - 81 % (reduction) Target LD Crash Severity: - 44 % (reduction)

Additional Summary Results

Lane Departure Wet Crashes: - 84 % (reduction) Night Crashes: - 60 % (reduction) NORTH CAROLINA SOUTH CAROLINA

Citing a before and after study of seven HFST project locations, SCDOT experienced an 81 percent reduction in wet crashes and 71 percent reduction in total crashes. Since HFST has proven to be a very costeffective safety countermeasure, SCDOT has installed 20 HFST projects, with approximately 20 more locations planned for 2015. Widespread deployment will be incorporated once the DOT identifies the horizontal curves throughout the State. The benefit/cost analysis for these locations has proven HFST to be a very cost-effective countermeasure.

LANE TEST ROUTE DIRECTION MILEPOST WHEEL FRICTION SPEED PAVEMENT COUNTY NO. NUMBER US-25 2 AC 0 Ν 3.666 49.6 40.1 23 1 US-25 Ν 2 3.333 49.1 40.9 AC 23 1 US-25 40.7 AC 23 Ν 2 3 47.7 2 US-25 2 51 41 AC 23 3 Ν 2.667 AC US-25 Ν 2 2.334 49 40.6 23 4 AC US-25 Ν 2 47.8 23 2.001 41.3 5 L 79.9 2 TEST 23 6 US-25 Ν 1.668 37.3 79.6 2 7 US-25 Ν 1.335 40.1 TEST 23 79.1 2 23 8 US-25 Ν 1.002 40.1 TEST 9 US-25 Ν 2 0.669 50.7 41 AC 23 US-25 2 AC 23 10 Ν 0.336 44.9 40.7 US-25 11 Ν 2 0 46.6 41.6 AC 23 AC 23 0 US-25 Ν 3.666 44.2 40.7 23 US-25 Ν 3.333 44.1 41.2 AC 23 US-25 Ν 3 43.2 40.9 AC 2 23 3 US-25 Ν 2.667 43.5 41.2 AC AC US-25 2.334 41.3 23 Ν 41.6 4 US-25 45.5 39.2 AC 23 5 Ν 2.001 1 L 74.4 6 US-25 Ν 1.668 38.1 TEST 23 1 74.1 TEST 7 US-25 Ν 1.335 40.6 23 1 67.9 US-25 40.5 TEST 23 8 Ν 1.002 US-25 23 9 Ν 1 0.669 43.8 38.3 AC US-25 Ν AC 23 10 0.336 42.3 38.5 US-25 Ν 0 44.8 40.7 AC 23 11 AC 23 0 US-25 S 0 46.1 41 US-25 S 0.333 43.1 45.4 AC 23 1 S 42.9 AC 23 2 US-25 0.666 45.7 72.9 3 US-25 S 0.999 41.4 TEST 23 75.3 S 23 US-25 1.332 42.2 TEST 4 73.8 S 23 US-25 1.665 42.7 TEST 5 US-25 S 1.998 46.6 42.5 AC 23 6 US-25 S 2.331 41.9 43.8 AC 23 7 US-25 45 AC S 2.664 45 23 8 9 US-25 S 2.997 45.3 44.3 AC 23 10 US-25 S 40.7 AC 23 3.33 46.3 AC 23 11 US-25 S 3.663 48.4 39.3 23 0 US-25 S 2 0 49.1 41.1 AC 2 23 US-25 S 0.333 44 41.2 AC 1 US-25 S 2 AC 23 2 0.666 48.1 42.4 77.3 3 US-25 S 2 0.999 39.9 TEST 23 81.4 US-25 S 2 1.332 39.3 TEST 23 4 70 7

FRICTION TESTS US-25 - GREENVILLE CO. - RESEARCH - 7/28/2009

Lessons learned and improvements made / NC DOT

Installed three times because of the variable application method, ramp is on a grade the resin binder thickness couldn't be controlled with manual squeegees. The resin binder ran off the side of the pavement, the aggregate distribution was uneven with bare spots because of not being able to control the aggregate spread rate and identify missed spots working at night

2009 application advancement SC DOT

Automated metering and mixing of the resin binder, self adjusting telescoping application bar with a thickness control device, a creep drive activated aggregate spreader.

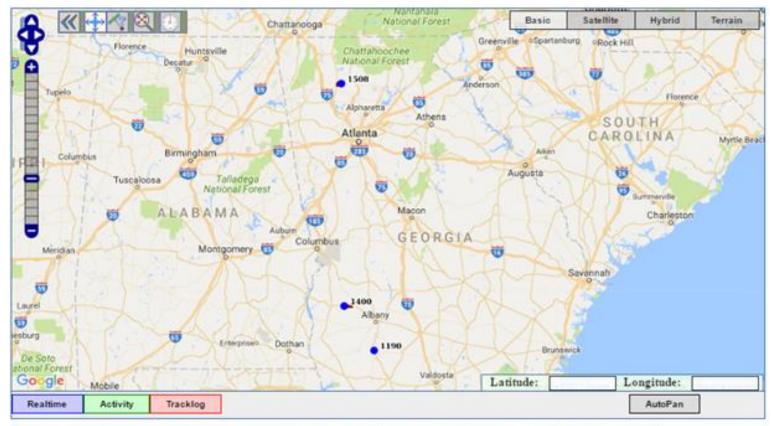
A two mile project was completed within the specification tolerances in half of the estimated application time by progressing to an automated application.

2016 state of the art development

Full lane width application, electronic "realtime" live stream reporting on the resin binder thickness, pavement and ambient temperatures, aggregate usage per square yard and materials consumption.

Grade control, long range continuous applications with no breaks for constant quality control.

High Friction Surface treatment Automated Reporting System

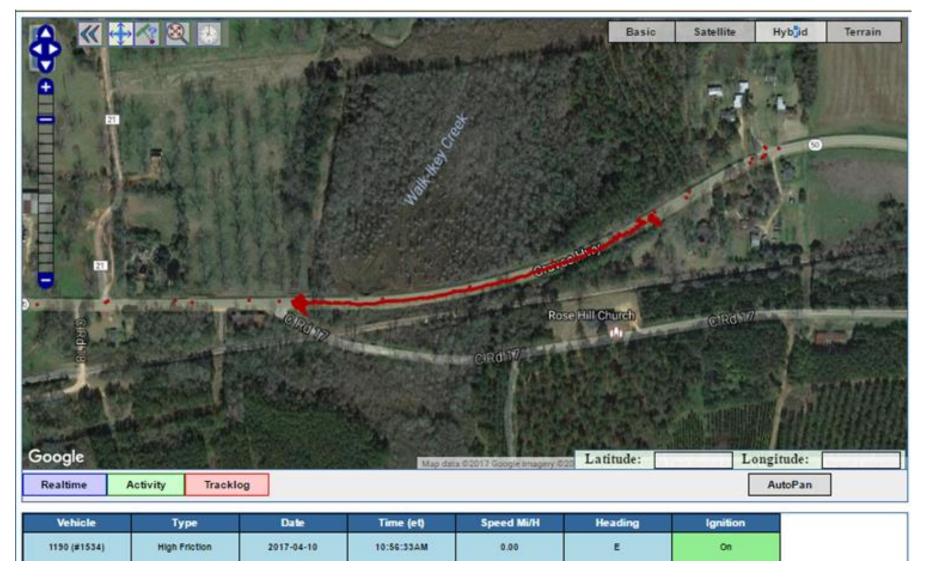


HFST Real-time Reporting System

T T					-		X
Operator:	Operator 2	Pulses:	500	Reset	l		
Project:	Project 2	######################################					_
Location:	locat 2	*****					
Ending Gallons A:	14	Project: Location:	Project 2 Locat 2				
Ending Gallons B:	11	Date: Time:	2/15/2017 12:00:00 AM 14:40:37.2917372				
Starting Weight:	444	Operator: Gallons of A:	Operator 2 14				
Ending Weight:	333	Mil Thickness (per sq ft): Gallons of B:	1244.25				
Starting Air Temp:	54	Application rate A: Application rate B:	2.53 per square yard 1.99 per square yard				
Starting Pavement Te	emp: 52	Aggregate used: Aggregate used (lbs):	0.02 cubic yards				
Application Width:	3	Square yards applied: Aggregate 1bs per square yard:	5.53				
Epoxy Mfg Name:	Epox 1	Aggregate its per square yard. Air temperature: Pavement temperature:	54 52				
Lot #	1		255				
Aggregate Mfg Name	Epox 2	Epoxy Mfg. Name: Lot #:	Epox 1 1				
Lot #	2	Aggregate Mfg. Name: Lot #:	Epox 2 2				
Comments:	These are the final comments.	Final Comments: These are t	the final comments.				
Device Port:	v	<					
Generate Form						Pri	nt

Real time report generated in truck

HFST Real-time Reporting System


Vehicle	Туре	Date	Time (et)	Speed Mi/H	Heading	Ignition
1190 (#1534)	High Priction	2017-04-10	10:59:33AM	0.00	8	On
1400 (#350)	High Friction	2017-04-10	10:53:39AM	10.56	5	On
1508 (#1354)	High Friction	2017-04-10	10:53:46AM	0.00	зюv	On
2249 (#1368)	High Friction	2017-04-08	04:55:10PM	0.0	5	on
2250 (#1569)	High Friction	2016-09-20	04:05:55PM	0.0	зtw	orr

Real-time fleet tracking

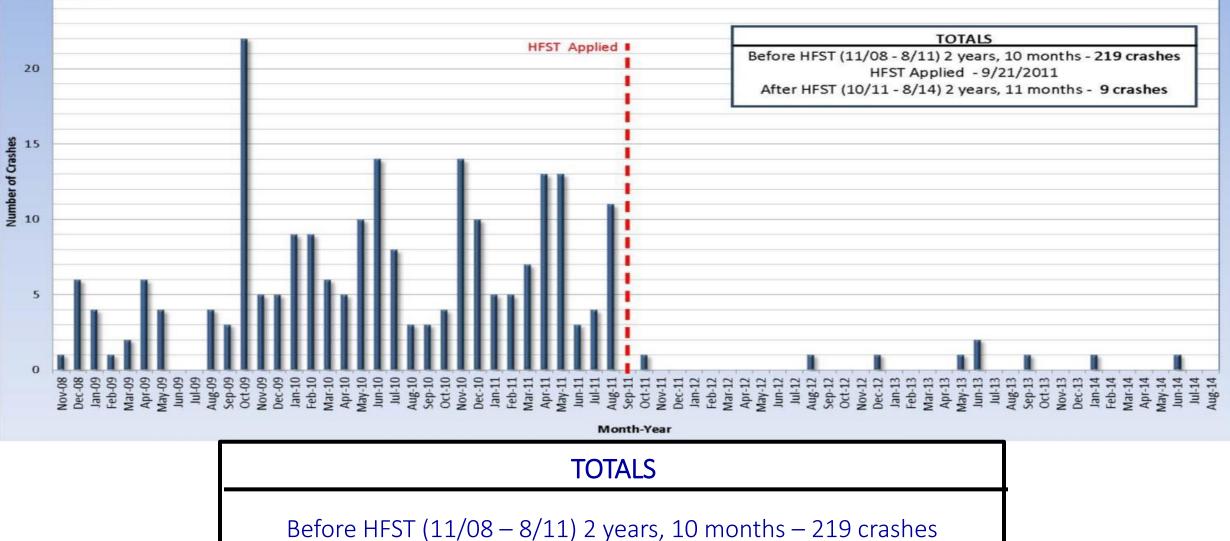
Fully automated application truck with "real time" reporting module, four application staff 42,000lbs of bauxite and 1200 gallons of resin binder applying HFST at full lane widths up to the road markings. Application speeds of up to 26 linear feet per minute.

HFST Real-time Reporting System

Real time page shows actual application areas

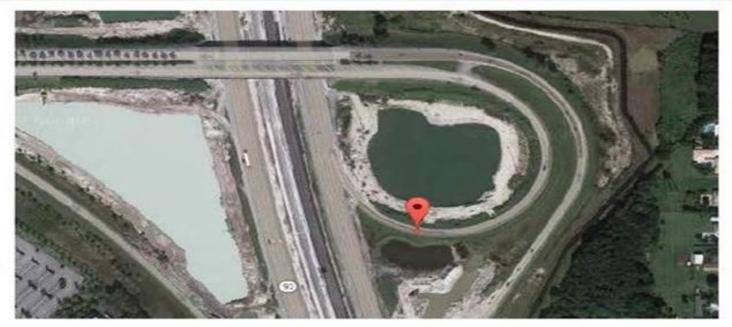
HFST Real-time Reporting System

Application reports for any vehicle can be pulled up by clicking on the vehicle and then the reports tab at the top of the page


T					-		
Operator:	Operator 2	Pulses:	500	Reset			
Project:	Project 2	*****					
10.00		## High Friction Surface					
Location:	Locat 2	************************					
Ending Gallons A:	14	Project:	Project 2				
using outprise is	·	Location:	Locat 2				
Ending Gallons B:	11	Date:	2/15/2017 12:00:00 AM				
and one of		Time:	14:40:37.2917372				
Rating Weight:	444	Operator: Gallons of 3:	Operator 2 14				
		Mil Thickness (per sq ft):	14 1244.25				
Ending Weight:	333	Gallons of B:	1244.20				
Rating Air Temp:	54	Application rate A:	2.53 per square yard				
vanity re tony.	<u></u>	Application rate B:	1.99 per square yard				
Rating Pavement Te	emp: 52	Apgregate used:	0.02 cubic yards				
		Appregate used (lbs):	-109				
oplication Width:	3	Square yards applied:	5.53				
Epoxy Mig Name:	Epox 1	Aggregate lbs per square yard	1: 15.54				
epoxy iving rvame:	Epox 1	Air temperature:	54				
Lot #	1	Pavement temperature:	52				
lopregate Mig Name	E Epox 2	Epoxy Mfg. Name:	Epox 1				
All of the set of the	e. Lepon e	Lot #:	1				
lat #	2	Aggregate Mfg. Name:	Epox 2				
		Lot #:	2				
Connects	These are the final comments.						
Connerts.		Final Comments: These are	the final comments.				
Device Port:	v						
Generate Form						Prin	1

The Marquette Interchange

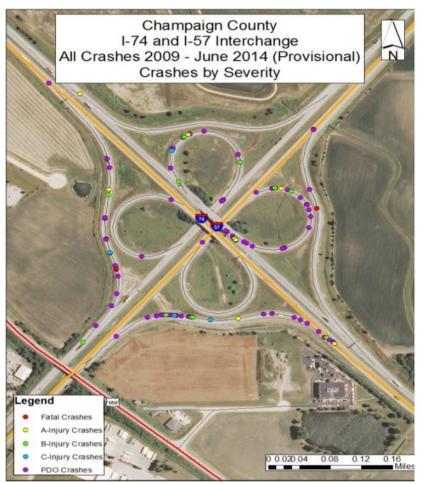
Systems interchange Junction of I-94, I-43, & I-794 Reconstruction completed in August 2008 Featured Context Sensitive Solutions for the surrounding community


HFST Applied – 9/21/2011

<u>After HFST (10/11 – 8/14) 2 years, 11 months – 9 crashes</u>

Royal Palm Boulevard/I-75 NB Ramp-2006

- Built in 2006
- High FN
- Yearly crash rate reduced 45%
- Safety reported reduced driving speed


North	pound Ramp	Test Date	
Lane 1	Material	rest Date	
35	Asphalt (FC-2)	4/11/2006	
104	HFST	5/23/2006	
66	HFST	3/8/2010	
67	HFST	11/8/2013	
68	HFST	12/6/2016	

 A ramp to north I-75 in District 4 was treated with HFST in 2006 and still performs well with more than 60 of FN.

I-74 and I-57 Crash Data (2009 – June 2014)

Collision Type		Total	Fatal	A- Injuries	B- Injuries	C- Injuries	PDs
Fixed Object	:t	79	2	3	3	3	71
Overturned		21	0	3	7	1	11
Angle		5	0	3	0	0	2
Sideswipe S Direction	Same	5	0	0	0	0	5
Rear End		3	0	0	2	0	1
Other Non-	Collision	3	0	0	0	0	3
	TOTAL:	116	2	9	12	4	93

Road Surface		
Wet	78	67%
Dry	28	24%
Ice	7	6%
Snow or Slush	3	3%
Total:	116	

Slide Courtesy of Illinois DOT

I-74 and I-57 Interchange Crash Totals

Zero Crashes have been reported since HFST was installed!

Slide Courtesy of Illinois DOT

1997 – 2005, 21 Crashes ADT is 5,000 with 8% trucks

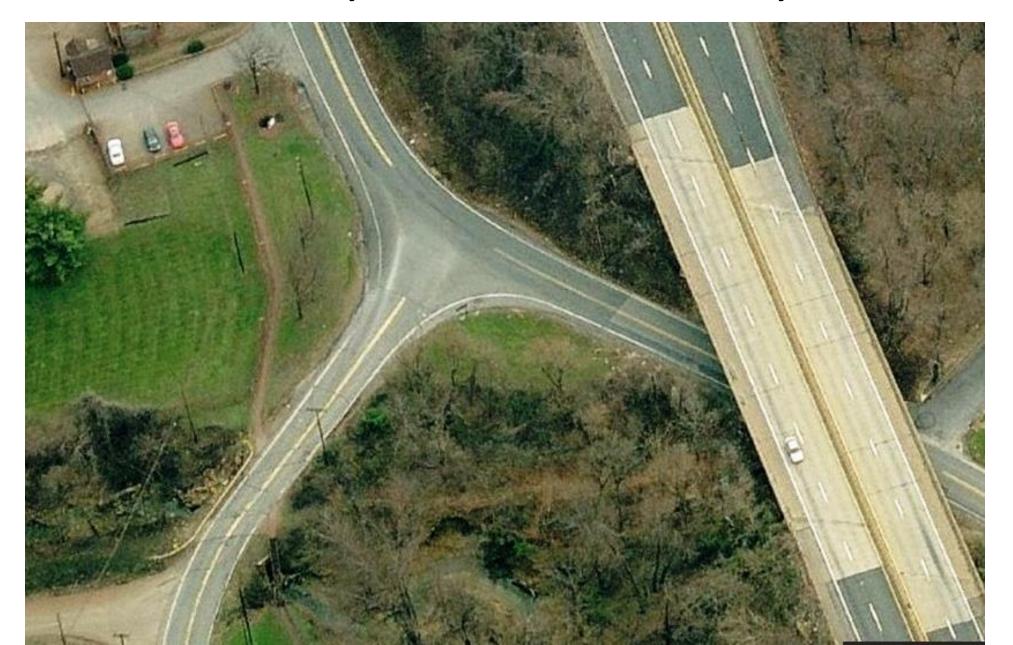
Install HFST June 13, 2007 Southbound Lane Only

Installed Safety Features:

- **Chevrons**
- Painted Slows
- Advanced Signs
- Reduced speed
- GR & Reflectors
- CLRS

SR 611 Northampton County, PA

Skid Testing & Crash Results


<u>Skid Results</u>					
Test Lane	Control Lane				
Before Installation Avg. 24 *	Avg. 34 * * 11/30/06				
After Installation (June 13 th , 2007)					
Aug '07 = Avg. 75	Avg. 34				
Apr '08 = Avg. 75	Avg. 40				
Nov '08 = Avg. 72	Avg. 44				
Mar '09 = Avg. 74	Avg. 58 * Repaved				
Nov '09 = Avg. 72	Avg. 44				
Jun '10 = Avg. 71	Avg. 44				

Reportable Crash Results

Before Installation = 21 (south lane) After Installation = 0

Slide Courtesy of Pennsylvania DOT

Pennsylvania Success Story

Pennsylvania Project Summary Installed 10/27/12

Slide Courtesy of Pennsylvania DOT

Case Studies: PennDOT District 5 "Like a Miracle"

PennDOT District 5-0 evaluated 12 curves

Before installation (3 yrs.) = 136 crashes

After installation (3 yrs.) = 17 crashes

Slide Courtesy of Pennsylvania DOT

Kentucky HFST Program

Avg. Annual (70 locations)	Before	After
Wet Avg.	212	21
Dry Avg.	65	15
Total Avg.	277	36

(As of 6/22/2015)

Kentucky HFST Program

Avg. Annual (70 locations)	Reduction %
Wet Avg.	90%
Dry Avg.	77%
Total Avg.	87%

(As of 6/22/2015) Slide Courtesy of Kentucky Transportation Cabinet

CASE STUDY

HIGH FRICTION SURFACE TREATMENT (HFST

A Life-Saving and Cost-Effective Solution for an Environmentally Sensitive Location

NORTHERN CALIFORNIA

HIGH FRICTION SURFACE TREATMENT (HFST)

Table 1. Comparison of Factors between HFST and Curve Realignment on US 199

	Environmental Review	4-6 Months				
HFST Curve Realignment	& Design Timeframe		2-5 Years			
	Construction Duration	10 working Days				
			6+ Months			
		~\$250,000				
	Cost		\$14,000,000+			

Detour

Not Necessary: Treatment can be installed one lane at a time

Necessary: Roadway must be closed during construction.

Field Observations, installation location selections and agency supervision

Installation selection pavement conditions

- Pavement conditions are sometimes not always taken into consideration.
- Large unsealed cracks
- Potholes, alligator cracking and delamination's
- Substrate issues, moisture and drainage
- Unsound concrete, badly cracked slabs and unsealed joints

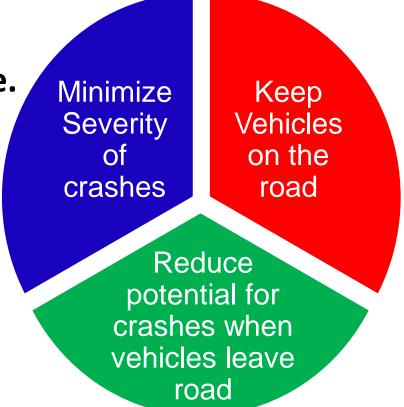
Agency supervision of installations

- Not understanding the project specification scope
- Not enforcing the project specification
- Allowing substandard materials components to be installed
- An inability to stop an installation for non-compliancy to the project specification

HFST should be a mandatory safety requirement on US Highways.

A goal we can all live by!!

Questions?


2017 TRB – AFB 20 International Roadside Safety Conference San Francisco, CA

June, 2017

Joseph Cheung P.E. FHWA – Office of Safety

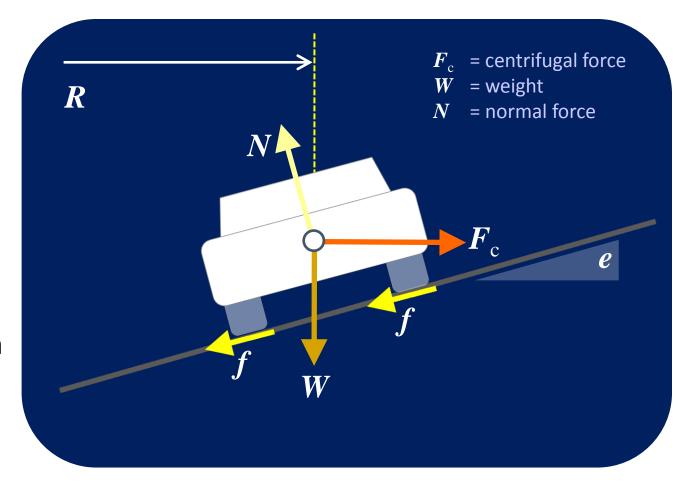
Roadway Departure Objectives

- Keep vehicles on the roadway, in their appropriate directional lane.
- Reduce the potential for crashes when vehicles do leave the roadway or cross into opposing traffic lanes.
- Minimize the severity of crashes that do occur.

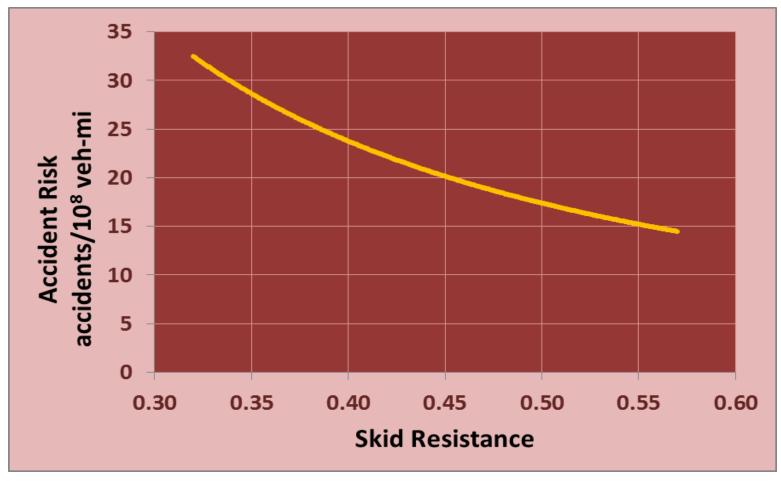
Strategies to keep vehicles on the roadway

- Improved curve delineation
- Friction treatments in curves and other spot locations
- Edge line, shoulder & centerline rumble strips.

Skid related crashes are determined by many factors:


- •Tire issues
- •Weather Conditions
- Friction Demand Road Geometry, Vehicle Speeds Driver Actions, Vehicle Characteristics

Keep Vehicles on the road


Forces Acting on a Vehicle

$$f + e = \frac{V^2}{15R}$$

f = side friction
V = vehicle speed
e = superelevation
R = curve radius

Accident Risk vs Skid Resistance

Viner et al., 2004

Why High Friction Surface Treatment?

HFST is effective in reducing crashes:

- Horizontal Curves and Ramps
- Intersections or braking conditions
- Grades
- Combination of all of the above

Picture Courtesy Illinois DOT

What is a High Friction Surface Treatment?

High Friction Surface Treatments (HFST) are pavement surfacing overlay systems with:

- exceptional skid-resistant properties that are not typically acquired by conventional materials
- and retains the higher friction property for a much longer time.
- Commercially available resin-based products and processes
- Generally applied in short sections to improve **spot locations** where friction demand is critical.

Bonding Agents

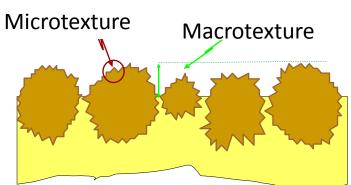
Binder

Curing Temp.

Epoxy-Resin 3 - 4 hours 70+ F Rosin-Ester As soon as it reaches ambient temperature Polyurethane-Resin 2.5 hours Methyl Methacrylate 1.5 hours <20F to 100+F

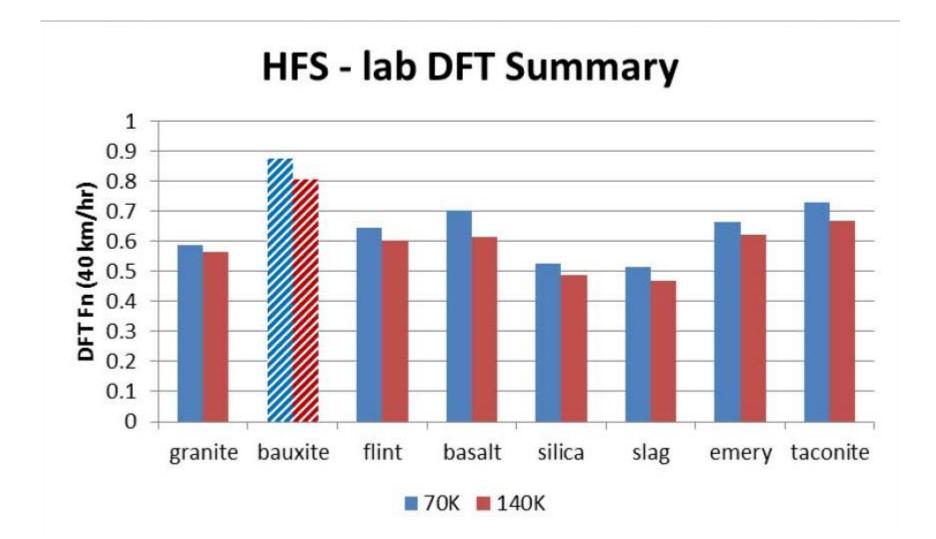
Curing Time

• Polyester-Resin 2 hours <40F to 100+F

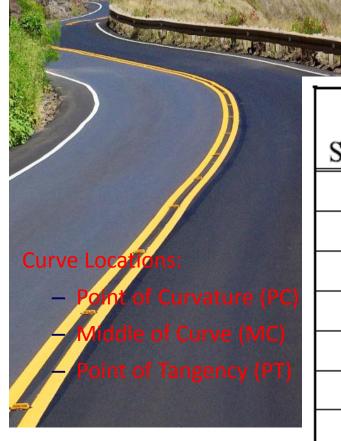

HFST Aggregates

• Recommended aggregate is calcined bauxite which provides the highest resistance to polishing.

Typically referred to as a 3 mm aggregate



Typical Macrotexture Depths & Friction Factors


Pavement Treatment	Macrotexture Depth	Friction Factor
Slurry Seal	0.3 to 0.6 mm	
Thin Hot Mix Asphalt Overlay (Dense Graded)	0.4 to 0.6 mm	
Thin Hot Mix Asphalt Overlay (Stone Matrix)	> 1.0 mm	
Microsurfacing	0.5 to 1.0 mm	
Diamond Grinding	0.7 to 1.2 mm	
Grooving	0.9 to 1.4 mm	
Ultra-Thin Bonded Wearing Course (UTBWC)	> 1.0 mm	
Chip Seal (various binder types)	> 1.0 mm	
Open Graded Friction Course (OGEC)	1.5 to 3.0 mm	
High Friction Surfacing (HFS)	> 1.5 mm	

NCAT Aggregate Durability Study Phase I – Laboratory Samples

limits of HFST installation

Texas Curve Margin of Safety = Friction Supply – Friction Demand

Recommended Distance Upstream of the PC to Begin HFST Application

Approach	Curve Speed (mph)						
Speed (mph)	30	35	40	45	50	55	60
35	35	_	_	-	-	-	-
40	76	41	-	-	-	-	-
45	122	86	46	-	-	-	-
50	173	138	97	51	-	-	-
55	230	194	154	108	57	-	-
60	292	257	216	170	119	62	-
65	359	324	284	238	186	130	68

Manual Installation

- Manual mixing of epoxy material
- Manual application of epoxy with squeegee
- Hand broadcast and distribution of aggregate
- Production rates: 200-1000 SY/hr.

Mechanically Assisted Installation

- Machine mixing of binder
- Machine assistance in getting aggregate close to final position
- Binder distribution

 often by pump but total
 reliance on squeegees
 to attain binder
 thickness
- Production Rates: 1800 S.Y./hr.

Manual Installation Video

Mechanically Assisted Installation

This category also includes the aggregate sprayed on

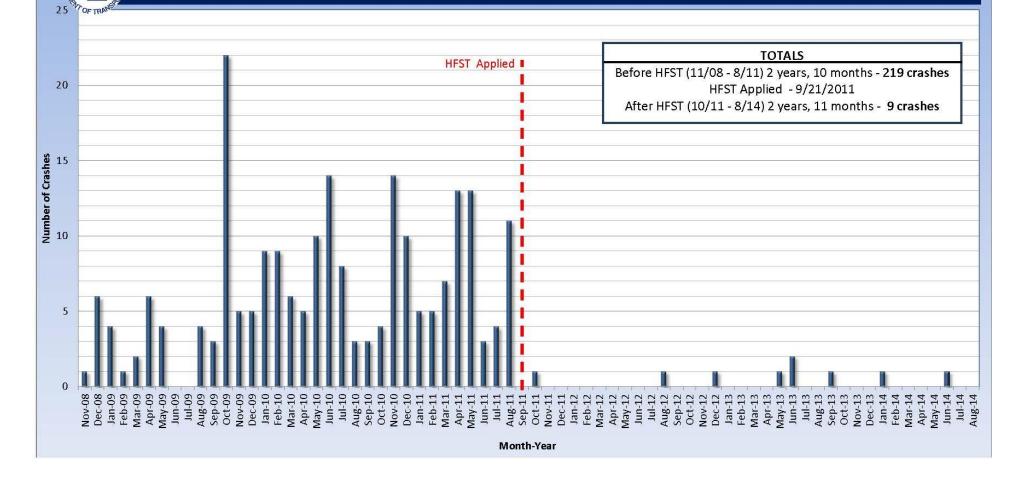
- May or may not include machine mixing of binder
- Binder distribution may include a pump but total reliance on squeegees to attain binder distribution and thickness
- Aggregate is sprayed to final position
- Production Rates: 1800 S.Y./hr.

Sprayed Aggregate Mechanically Assisted Installation Video

Automated Installation

- Machine mixes binder
- Machine places binder at final location
- Binder depth monitored constantly by machine
- Aggregate is placed by machine at final location within seconds of binder
- Handwork is limited to irregular areas
- Production Rates: 2800 SY/hr.

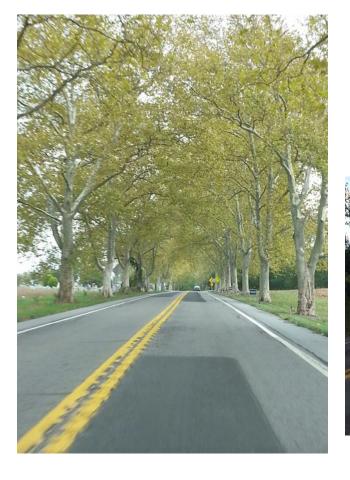
Manual vs. Fully-Automated Comparison


• The fully-automated HFST process installed 350 sq. yd. of full lane width in approx. 8 minutes, while the manual application installed 100 SY in 15 minutes (6 times faster).

Benefits of using the fully-automated processes include:

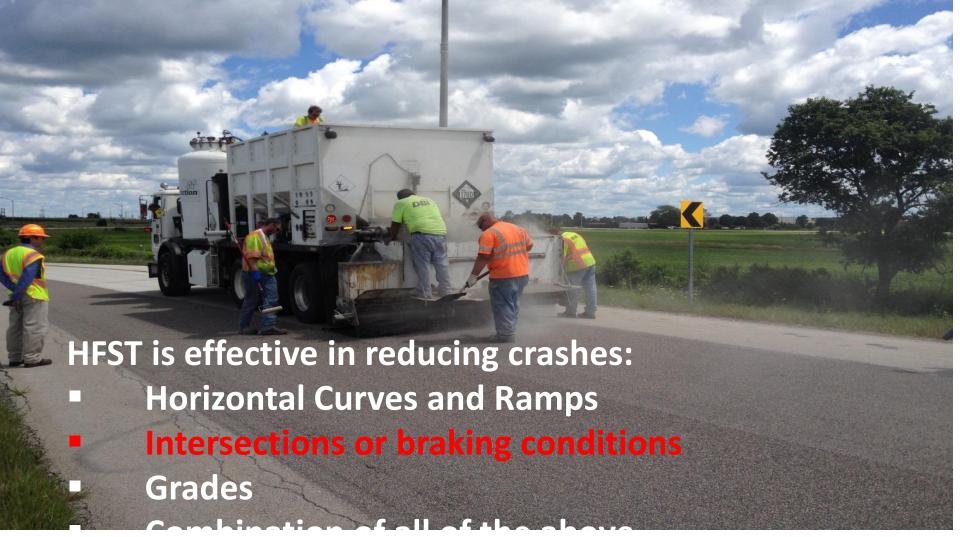
- Improved speed and quality result in reduced installation time; critical in states with high temperature
- Consistent proven specification;
- Full lane width 12' continuous operation in one pass;
- No material component waste;
- Reduced exposure of workers to live traffic; and
- Even application of binder and aggregate.

Marquette Interchange West to North Ramp Crashes Before & After High Friction Surface Treatment (HFST)



TOTALS

Before HFST (11/08 – 8/11) 2 years, 10 months – 219 crashes HFST Applied – 9/21/2011 After HFST (10/11 – 8/14) 2 years, 11 months – 9 crashes


Increasing Safety in Culturally Sensitive Areas

PA Route 147 in Dauphin County -"Sycamore Allée," Century-old mature sycamores line its roadsides.

Why High Friction Surface Treatment?

Picture Courtesy Illinois DOT

Texas Transportation Institute compared friction performance of a HFST surface and conventional concrete pavement

Skid testing conducted at the TTI test track Skid Numbers: Concrete: 54.1, 50.2, 50.9 without HFST HFST: **85.8, 85.8, 83.2 with HFST**

Stopping Distance @ 45 mph (ft.): Concrete: 99, 91, 101, 91* without HFST HFST: **76, 76, 79, 76* with HFST** *Cars changed lanes

Gore Area

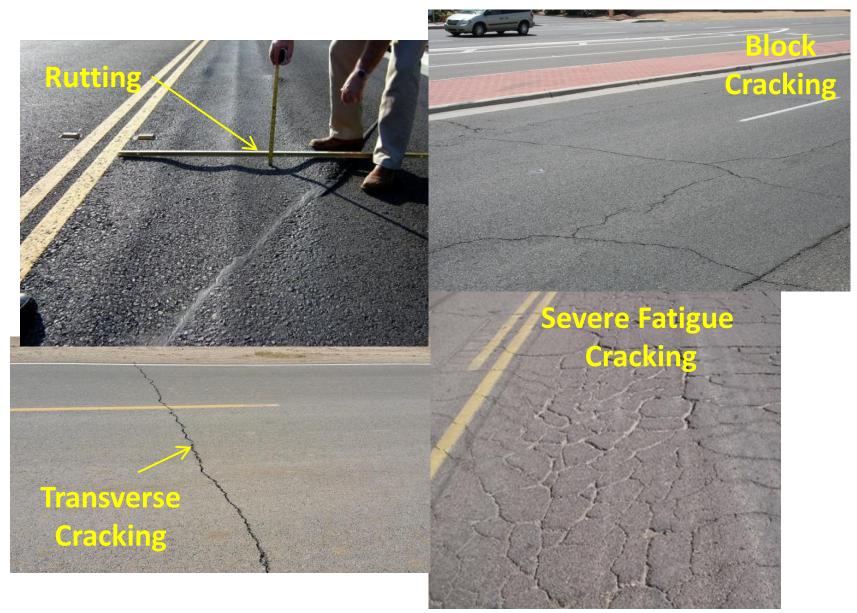
Bellevue, Washington State

- Local Road Project
- 15% downgrade
- Curve with an intersection at the bottom

- Mostly wet crashes
- Excessive speed is a factor
- Try large flashing sign
- Placed additional road markers
- Added lighting
- Installed Raised pavement markers

Installed HFST in October 2004

- Install HFST just before the intersection in 2004
- Installation time less than 6 hours


<u>After</u>

2 crashes, one brake failure, the other distracted driver

How Long Does HFST Last?

- The most significant issue is existing pavement condition
- We are expecting 10+ years based on accelerated test track results and current project experience
- But it depends on having a good specification and a good installation

Pavement Distresses

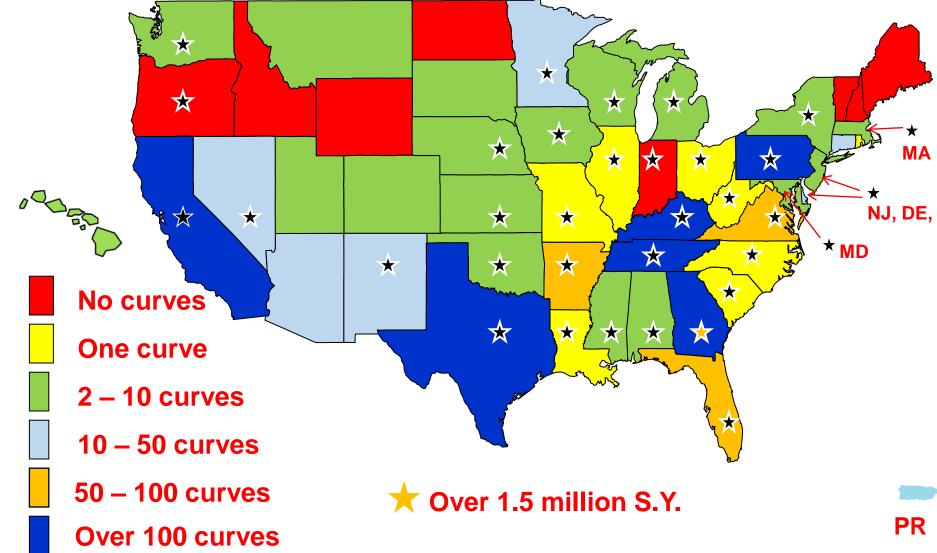
PA DOT Implementation of HFST

- 2012 RwD Safety Implementation Plan
- Utilized the curve sections identified in the plan to install HFST to reduce RwD crashes using HSIP funding
- Using Bauxite as aggregate and Epoxy for HFST application
- Conduct Benefit/Cost Analysis
- Collect crash data for 15 locations in 2 counties – approx. 1.18 miles of roadways
- HFST installations of three years or longer

Average Cost Benefit Table (15 locations)

	Crashes	Fatalities	Major/moderate/ minor injuries	PDO	Unknown Severity	Economic Savings Due to Reduction in Fatality/Injury
All 15 locations	49.13	.58	.79	30.71	13.92	ŚE 261 406
Annual	49.15	.50	.75	50.71	13.92	\$5,361,406
Reduction						
Annual						
Reduction	3.30	3.30 0.04	0.05	2.05	.93	\$357,427.08
per	5.50	0.04	0.05	2.05		
locations						

Benefit/Cost ratio 20.49 : 1


Averaged .04 lives saved per location

State DOT HFST Status

★ Active implementation as of 6/1/2017

HFST – A Game Changer "Something so simple could be this effective at stopping Run-Off the Road Crashes"

- Keep Vehicles on the road Minimize roadside hardware replacement
- Compensate for distracted driving and driving too fast for the conditions the only safety countermeasure that require minimal human interaction.
- Reduced both wet and dry crashes with dramatic crash reductions Marquette Interchange from 219 crashes (2 yr, 10 months) to 9 crashes (2 yr, 11 months)
- Cost effectiveness CA DN-199, \$14,000,000+ for curve realignment to approx. \$250,000 for HFST. Realignment takes 2 to 5 years vs 4 to 6 months for HFST.
- Negligible environmental impact no additional impervious area created
- Minimize traffic delay maintain 1 lane of traffic and eliminate the need for detour and reduce secondary crashes- reopen to traffic the same day

Questions and Discussion Joseph.cheung@dot.gov

http://safety.fhwa.dot.gov/roadway_dept/pavement_friction/

Questions?

THE SAFETY IMPACT OF HFST INSTALLATIONS IN PA

Dr. Seri Park, PhD, PTP

Assistant Professor

Kimberley Musey, EIT Graduate Researcher

"35,092 people died in motor vehicle crashes on the U.S. highway system during the year 2015 on the U.S. highway system"

Background

• High Friction Surface Treatments:

- Resurfacing system
- Aggregates = bauxite, flint, granite, slags
- Exceptional skid resistance

• Where to Apply HFSTs:

- Horizontal Curves
- Intersection Approaches
- Steep Grades

Results

Background	Research Objective	Methodology	Results	Conclusions & Future Research
Sustainable	nd schedule nmental Impa	act		

Case Studies:

As of June 2016, 40 states in the country have applied HFST on at least one project site.

Studies have shown significant Crash Reduction!

RESEARCH OBJECTIVE

BackgroundResearch
ObjectiveMethodologyResultsConclusions &
Future Research

ANSWER KEY QUESTIONS:

What has been the impact of these installations on safety?

Have they proven to be economical?

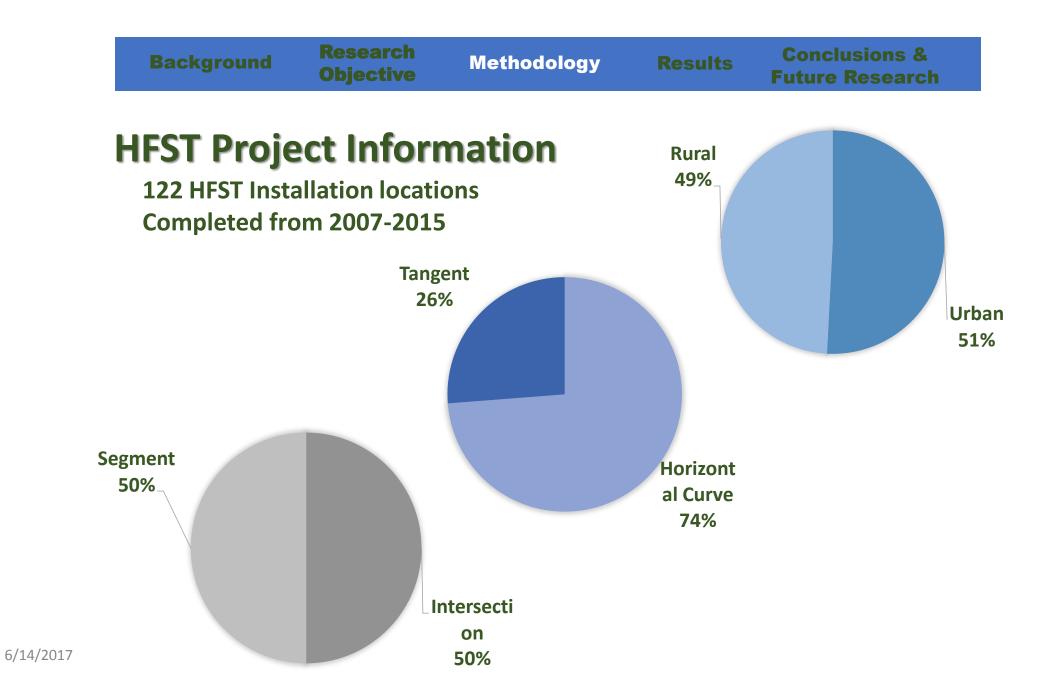
What types of locations should DOTs target for these treatments?

What results can DOTs expect to see?

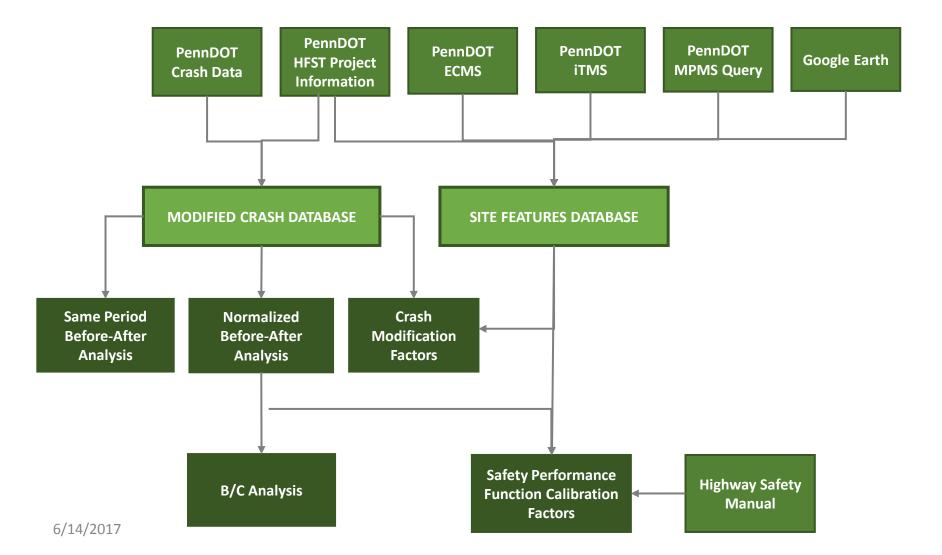
Background	Research Objective	Methodology	Results	Conclusions & Future Research
	objective			ruture kesearch

"Review the performance of HFSTs from a safety and economic perspective through a through analysis of HFST installation projects in Pennsylvania"

METHODOLOGY



Crash Data Overview


8 PennDOT District Crash Database 3322 Total Crashes from 2003-2016

Partial Sample PennDOT Resume File

<u>Date Ran</u> <u>A</u> i	County, Route, Segme ge: 1/1/2009 to 3/16/20 rea of (In County 20 C prest:	016	27(P) Between S	egment 0380 Offset 6	50 and Segmen	t 0380 Off	iset 115			ER ID/QUERY ID: 0020160316004	PENNDOT
	<u>CO DATE</u>	DAY TIME	LIGHTING	ROAD SURF	WEATHER	FAT	INJ	PED	<u>VEH</u>	MA	X SEVERIT
<u>2010093</u>	587 20 09/28/2010	TUE 08:45	DAYLIGHT	WET	RAIN	0	1	0	1	MODER	ATE INJUR
ENV RD MIDB	WY FACTORS: NOI 0027/0380/07									ні	T FIXED OE
VEH: VEH EV DVR ACT	ENTS: HIT EMBANK			NEGOTIATING CUR							
DVR ACT		MENT OR CONDITIONS									

BEFORE-AFTER ANALYSIS RESULTS

Background	Research Objective	Methodology	Results	Conclusions & Future Research
------------	-----------------------	-------------	---------	----------------------------------

TABLE 1 Simple Before-After Analysis

Crash Severity	Before	After	Crash Reduction	% Reduction
Fatal	5	0	-5	100
Major Injury	11	0	-11	100
Moderate Injury	24	0	-24	100
Minor Injury	72	0	-72	100
PDO	201	0	-201	100
Unknown Injury	31	0	-31	100
Total	344	0	-344	100.0

Background	Research Objective	Methodology	Results	Conclusions &
	Objective			Future Research

TABLE 2 Average Crashes Per Year Before-After

Crash Severity	Before	After	Crash Reduction	% Reduction
Fatal	2.2	0.0	-2.2	100.0
Major Injury	7.7	3.8	-3.9	50.4
Moderate Injury	22.3	5.3	-17.0	76.3
Minor Injury	59.7	4.5	-55.2	92.5
PDO	147.8	29.5	-118.3	80.0
Unknown Injury	26.3	5.3	-21.0	79.7
Total	266.1	48.5	-217.6	81.8

Background

Conclusions & Future Research

IMPACT OF CURVE RADIUS

High (< 300ft) Medium (300' – 600ft) Low curvature (>600ft)

FIGURE 1 Examples of high, medium, and low curvature (from left to right)

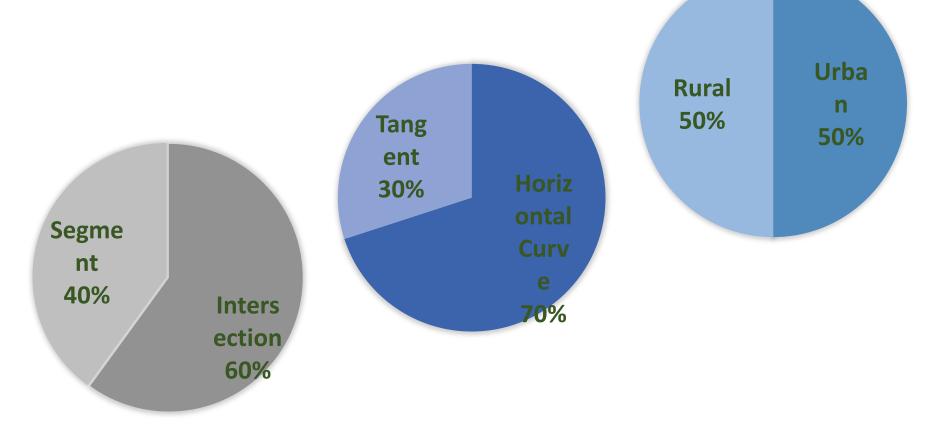
Background	Research Objective	Methodology	Results	Conclusions & Future Research
------------	-----------------------	-------------	---------	----------------------------------

TABLE 3 Average Crashes Per Year By Curvature

Crash Severity	Before	After	Reduction in Crashes	% Reduction
		Low Curvature		
Death	1.1	0.0	1.1	100.0%
Major Injury	2.8	4.0	-1.3	-46.9%
Moderate Injury	6.6	5.8	0.8	12.7%
Minor Injury	16.7	2.9	13.8	82.6%
PDO	40.9	7.2	33.7	82.3%
Unknown Injury	5.3	3.2	2.1	40.0%
Total	73.4	23.1	50.3	68.5%
		Medium Curvature	5	
Death	0.3	0.0	0.3	100.0%
Major Injury	1.0	0.7	0.4	35.6%
Moderate Injury	5.7	2.2	3.5	61.2%
Minor Injury	21.1	2.4	18.6	88.4%
PDO	39.9	6.2	33.7	84.4%
Unknown Injury	8.2	1.7	6.5	79.6%
Total	76.2	13.2	63.0	82.7%
		High Curvature		
Death	0.5	0.0	0.5	100.0%
Major Injury	2.7	1.6	1.2	43.2%
Moderate Injury	6.5	0.0	6.5	100.0%
Minor Injury	15.9	0.3	15.6	98.2%
PDO	48.4	7.1	41.3	85.3%
Unknown Injury	6.5	1.0	5.5	84.9%
Total	80.5	9.9	70.6	87.7%

BENEFIT-COST ANALYSIS

Background	Research	Methodology	Results	Conclusions &
Duonground	Objective	methodology	Nesures	Future Research


TABLE 4 Costs Per Crash Severity

Crash Severity	Average Cost
Death	\$ 6,245,689.80
Major Injury	\$ 1,365,629.20
Moderate Injury	\$ 91,285.40
Minor Injury	\$ 7,245.00
Property Damage Only	\$ 2,898.00
Unknown Injuries	\$ 7,245.00

B/C Ratio =	Total Benefit from Crash Reduction
D/C Ratio –	Total Installation Costs

TOP 10% B/C Ratio were experienced by sites with the following features:

BackgroundResearch
ObjectiveMethodologyResultsConclusions &
Future Research

TOP 3 B/C Ratios were experienced by sites with the following

2-Lane 4894 ADT 4% Trucks Urban 3-Leg Intersection Tangent B/C Ratio = 133 features

2-Lane 6253 ADT 11% Trucks Rural Segment Horizontal Curve B/C Ratio = 105

2-Lane 1488 ADT 2% Trucks Rural Segment Horizontal Curve B/C = 48

CRASH MODIFICATION FACTORS

Background **R** O

Definition of a Crash Modification Factor

Skip to main content | Notice | Sign Up for our e-Newsletter | Home

About the CMF Clearinghouse | Using CMFs | Developing CMFs | Additional Resources

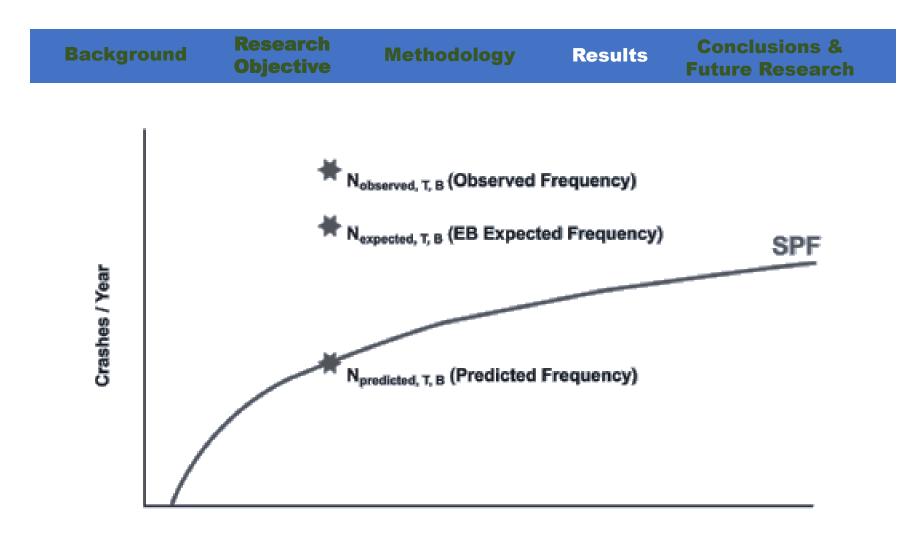
Home » About CMFs

About CMFs

A crash modification factor (CMF) is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site.

For example, an intersection is experiencing 100 angle crashes and 500 rear-end crashes per year. If you apply a countermeasure that has a CMF of 0.80 for angle crashes, then you can expect to see 80 angle crashes per year following the implementation of the countermeasure $(100 \times 0.80 = 80)$. If the same countermeasure also has a CMF of 1.10 for rear-end crashes, then you would also expect to also see 550 rear-end crashes per year following the countermeasure $(500 \times 1.10 = 550)$.

\times 1.10 = 550).


making, then you can expect to see ou angle change per year ronowing the mplementation of the countermeasure (100 x 0.80 = 80). If the same countermeasure also has a CMF of 1.10 for rear-end crashes, then you would also expect to also see 550 rear-end crashes per year following the countermeasure (500 expects).

- About CMFs
- FAQs
- Glossary
- Star Quality Rating
- Relationship to HSM
- CMF Most Wanted List
- Submit a CMF Research Need

Nee

- Submit a CMF Research
- CMF Most Wanted List

6/14/2017

Background	Research	Methodology	Results	Conclusions &
	Objective			Future Research

TABLE 5 CMF for Installing HFST on Various

Facility	Number of Sites	CMF
Rural 2-Lane Intersection	26	
Rural 2-Lane Segment	26	
Rural Multi-Lane Intersection	0	n/a
Rural Multi-Lane Segment	8	
Urban/Suburban Intersection	36	0.55
Urban/Suburban Segment	26	

CONCLUSIONS & FUTURE RESEARCH

• Key Findings:

- More than 70% reduction in average crashes per year across all injury categories
- 100% reduction in fatalities

• Conclusions:

- HFSTs are both an **effective** and **economical** means of improving roadway safety.
- In order to receive the greatest safety impact and return on investment, DOTs should first target horizontal curves at intersections in both an urban and rural environments

• Future Research:

- Complete CMF and calibration factors investigation
- Larger dataset
- Additional locations
- Full Bayesian Analysis to account for regression to the mean bias for observed crashes after installation

- Seri Park: seri.park@villanova.edu
- Kimberley Musey: <u>kmusey@villanova.edu</u>

Questions?