

NextSTEPS (Sustainable Transportation Energy Pathways)

Infrastructure for Alternative Fuels: Policy Lessons

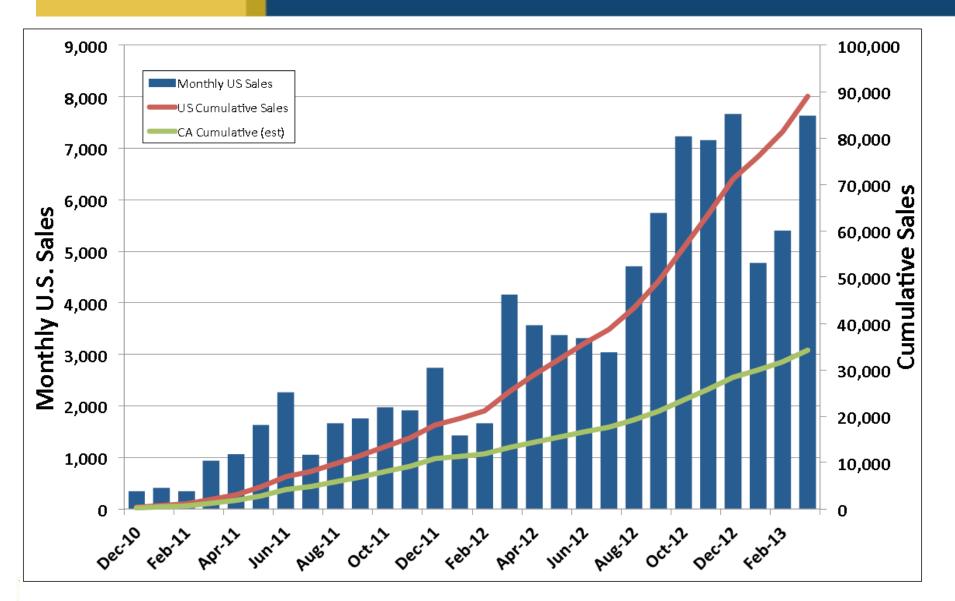
Amy Myers Jaffe, Fossil Fuels Lead

Institute of Transportation Studies, June 2013

www.steps.ucdavis.edu

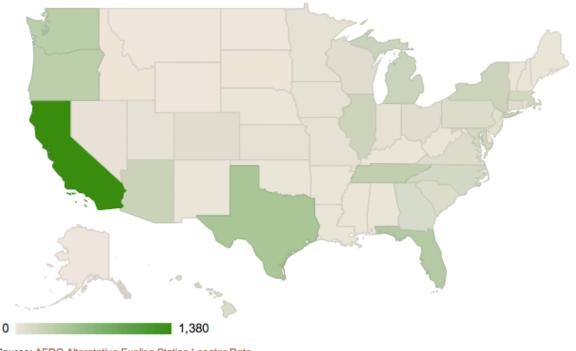
Lessons on Infrastructure Development for Alternative Fuels and Vehicles

<u>Pathways</u>


•	Electricity:	California Case on EVs – Strongest progress to date on ZEV mandate
•	Hydrogen:	H2USA announced by USDOE (new public private partnership to develop H2 infra.)
•	Biofuels:	E 85 Case - uneven progress
•	Natural Gas:	Oklahoma succeeding with new model

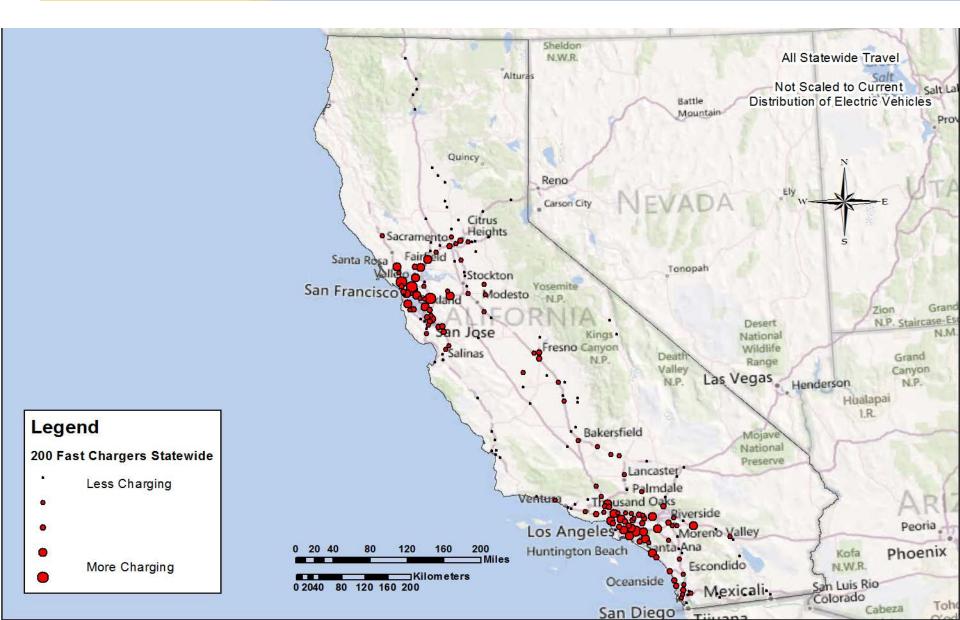
<u>Context</u>

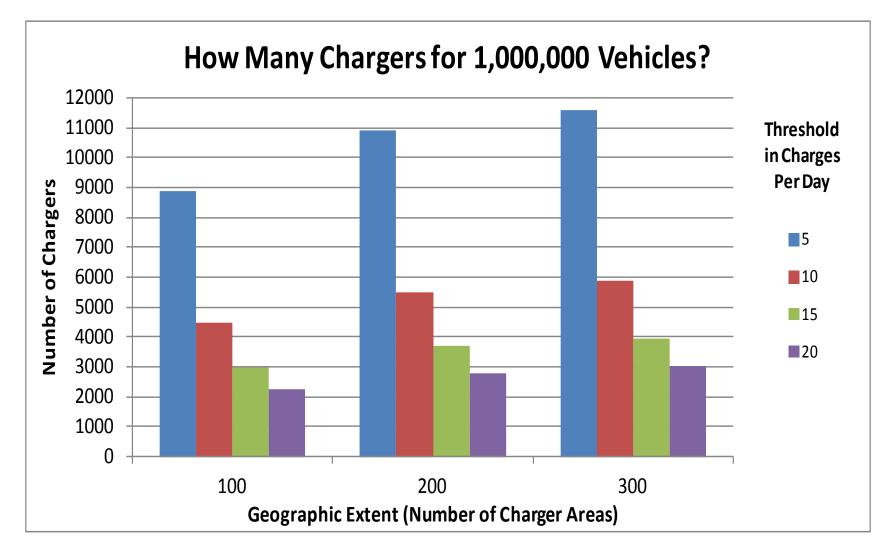
- Climate Change: 400 ppm CO2 concentration now reached
- Unrest in Middle East
- US Shale Revolution


Electricity: PEV Sales Set Rapid Pace (cumulative sales hit 100K!)

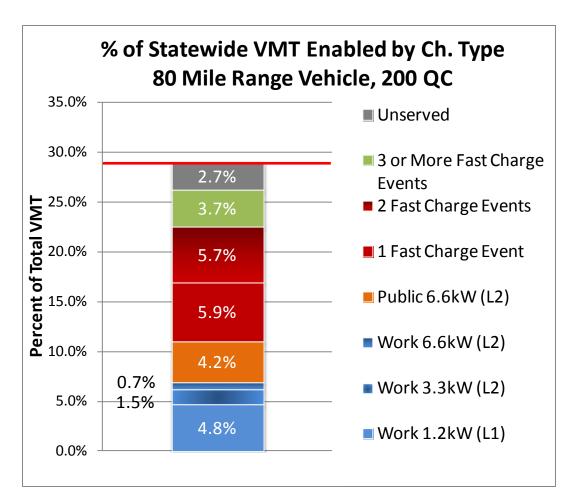
Note: Approximation assumes CA sales were 60% of U.S. sales in 2011 and 33% in 2012 and 2013. Reference: www.hybridcars.com

5,894 EV public charging stations in the US 1,322 EV public charging stations in California


Electric Charging Station Locations by State

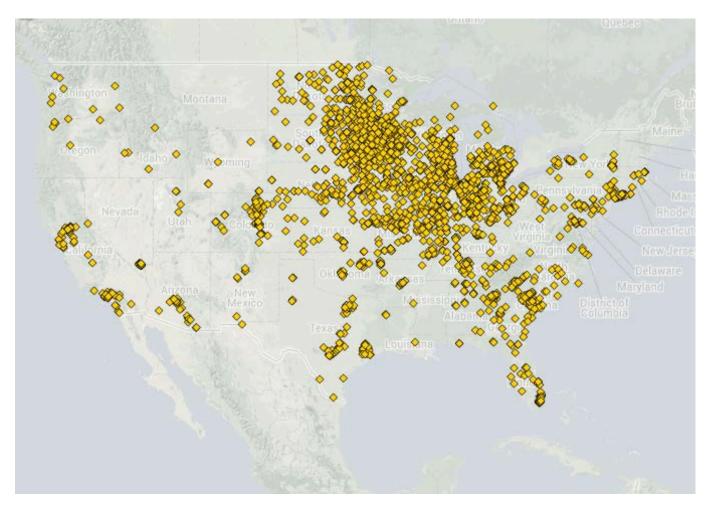

Source: AFDC Alterntative Fueling Station Locator Data

Statewide Demand Distribution: 200 Initial Locations (246 Chargers @30,000 BEV)



Scaling Locations to Number of Chargers in California. For an 80 Mile BEV, Approx. 1 Fast Charger/500 vehicles.

- Home Charging VMT
 - 60 Mile Veh. = 59%
 - 80 Mile Veh. = 71%
 - 100 Mile Veh. = 79%
- L1 Work Charging is sufficient for ~5%
- L2 Work Charging is needed for ~2%
- QC accommodates up to an additional 10% EV miles


Nicholas, Michael, Gil Tal, and Justin Woodjack. 2013, January. California Statewide Charging Assessment Model for Plug-in Electric Vehciles: Learning from Statewide Travel SurveysDavis, CA: University of California, Davis. Institute of Transportation Studies, UCD-ITS-WP-13-01.

Biofuels Face Blend Wall Problem, Slow Progress on Drop in Fuels

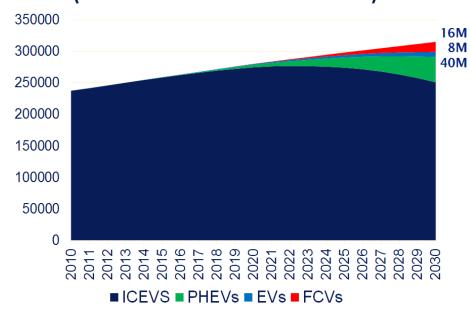
- Total E85 station in US= 2,342
- E85 stations in farm states (Iowa, Illinios, Nebraska, Minnesota, Indiana, Ohio, South Dakota, Wisconsin, Missouri, Kansas) = 1,389
- 59.3% of the US E85 fueling stations are in the Midwest
- US oil refiners generally speaking resisting regulations, R & D on drop in fuels making slower progress than expected
- RFS targets will not be met

Locations for E 85 Stations in the United States

Natural Gas for Transportation: Lessons from Oklahoma

- State of Oklahoma initiative multi-state RFP for the purchase of CNG vehicles resulted in major cost savings for direct purchases from OEMs, combined with simultaneous station provider commitments. Incentives 75% cost of filling stations, 50% home refueling costs, funded via 0.25 GGE surcharge
- Natural gas producers increasingly focused on creating new demand markets for natural gas including transportation
- Currently natural gas has a \$1.00 to \$1.50/gge cost advantage compared with diesel which for an LNG heavy duty vehicle that goes 90,000 miles a year means a payback of less than 3 years
- Transportation demand in US could top 1 Bcf/d to 3Bcf/d if oil-gas price ratio holds
- Oklahoma model an example for future initiatives in alternative fuels

Pricing Examples (Oklahoma)


Vehicle Awarded	Previous Contract Option & Post-RFP Option	Savings
Dodge Ram 2500, Crew Cab (b)	Before: \$36,302	\$6,309
	After: \$29,993	
Honda Civic GX (d)	Before: \$27,095	\$2,191
	After: \$24,904	
Ford Transit Connect (b)	Before: \$31,000	\$1,261
ord Transit Connect (b)	After: \$29,739	
Ford E 250 (b)	Before: \$33,678	\$4,689
Ford E-250 (b)	After: \$28,989	
Ford E 250 (h)	Before: \$35,827	\$5,459
Ford E-350 (b)	After: \$30,368	

Notes: (b) bifuel (d) dedicated

Investments to Support Alt. Fueled Vehicles to Breakeven Cost Competitiveness w/ ref. Gasoline Vehicle (Ogden/Fulton)

Scenario for Fleet Mix to 2030 (1000s vehicles on road – US)

H2	PHEVs	Battery EVs
Breakeven in 2023 2 million FCVs	Breakeven in 2026 20 million PHEVs	Breakeven in 2020 1 million BEVs
~\$4B for H2 supply	~\$20 B for chargers	~\$1-2 B for chargers
~\$11 B to	~ \$140 B to	~\$7B to

Ogden/Fulton – Transition Costs presentation, NextSTEPS Symposium, May 2013

<u>LCFS and RFS Status Updates - Yeh</u> California LCFS Carbon Credits Come from a Range of Sources

450 LCFS carbon credits (thousand 400 The shares of credits for different fuel types Elec 350 have remained relatively constant. 300 250 200 200 LNG CNG Ethanol: 78% RD Fossil/bio LNG/CNG:12% 150 Biodiesel Bio-/renewable diesel: 9% 100 ETH 50 Electricity: 1% 0 2011 Q1 Q2 Q4 2012 Q1 Q2 Q3 Q3 Q4 100% 90% LCFS carbon credit share 80% 70% Elec 60% ⊐ LNG 50% CNG 40% < RD 30% Biodiesel 20% ETH 10% 0% Q4 2012 Q1 Q2 Q3 2011 Q1 Q2 Q3 Q4

Yeh, Witcover, Kessler – LCFS and FRS Update, NextSTEPS Symposium, May 2013

•

•

•

Appendix

NextSTEPS Consortium Sponsors

