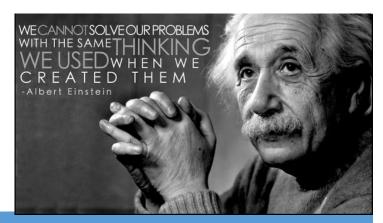
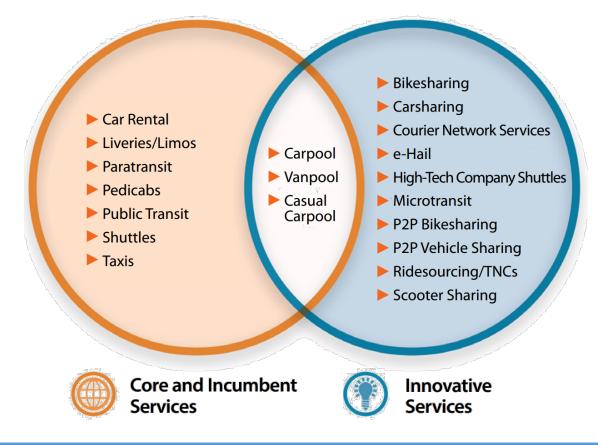


Impact of Shared Mobility and Technology on Public Transportation

Susan Shaheen, PhD Email: sshaheen@berkeley.edu Twitter: SusanShaheen1 LinkedIn: Susan Shaheen



UNIVERSITY OF CALIFORNIA Berkeley Transportation Sustainability RESEARCH CENTER


Overview

- Defining shared mobility and impacts
- Declines in public transit use
- Key questions for public transit
- Need for research
- Upcoming studies and current reports

Defining Shared Mobility

Shared mobility—the shared use of a vehicle, bicycle, or other low-speed travel mode—is an innovative transportation strategy that enables users to have short-term access to a mode of transportation on an as-needed basis.

Shared Mobility Impacts

Environmental Effects

- Can yield lower GHG emissions via decreased VMT, low-emission vehicles, carbon offset programs
- Can reduce vehicle ownership

Social Effects

- Offers "pay-as-you-go" alternative to vehicle ownership
- Reasonable for college students and low-income households
- Can increases mobility of low-income residents, disabled, and college students
- Provides car use without bearing full ownership cost

Transportation Network Effects

- Takes cars off the road via reduced VMT, forgone/delayed vehicle purchases or sale of vehicle
- Reduced parking demand
- Can complement/complete with alternative transportation modes, e.g., public transit, walking, biking, etc., and can help address first and last mile issue

One-Way Carsharing Study

ONE-WAY CARSHARING IMPACTS

Member Vehicle Holdings

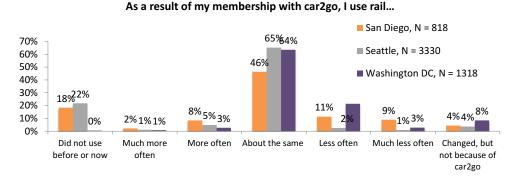
2% - 5%	sold a vehicle	1	car2go vehicle	replaces	/-11 vehicles
1 - 3	vehicles sold per car2go vehicle				
7% - 10%	postponed a vehicle purchase		0	=	
4 - 9	vehicle acquisitions suppressed per car2go vehicle	C	or 28,00 vehicle	00 across	5-city study

Reduction of VMT and GHG emissions

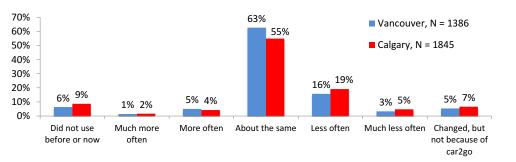
6% - 16%

4% - 18%

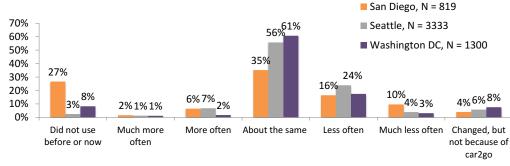
- Average reduction of VMT per car2go household
- Average reduction of GHG emissions per car2go household

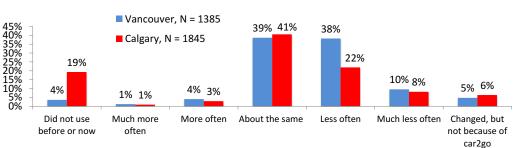

One-Way Carsharing: 5-Cities

City	Vehicles Sold	Vehicles Suppressed (foregone purchases)	Total Vehicles Removed per Carsharing Vehicle	Range of Vehicles Removed per Carsharing Vehicle	% Reduction in VMT by Car2go Hhd	% Reduction in GHGs by Car2go Hhd
Calgary, AB (n=1,498)	2	9	11	2 to 11	-6%	-4%
San Diego, CA (n=824)	1	6	7	1 to 7	-7%	-6%
Seattle, WA (n=2,887)	3	7	10	3 to 10	-10%	-10%
Vancouver, BC (n=1,010)	2	7	9	2 to 9	-16%	-15%
Washington, D.C. (n=1,127)	3	5	8	3 to 8	-16%	-18%



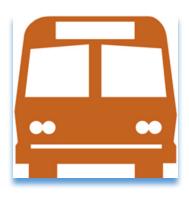
Martin and Shaheen, 2016


Shifts in Rail and Bus


As a result of my membership with car2go, I use rail...

ITSBerkeley 70 YEARS

As a result of my membership with car2go, I use the bus...


Martin and Shaheen, 2016

© UC Berkeley, 2018

As a result of my membership with car2go, I use the bus...

© UC Ber

Bikesharing Impacts

- Large cities Bikesharing members rode the bus less, due to reduced cost and faster travel
- All cities Increased bus use attributed to bikesharing improving access to/from a bus line

- Small cities increased rail use
- Large cities decreased rail use
- Shifts away from public transit often due to faster travel times and cost savings with bikesharing

Bikesharing Impacts (Cont'd)

5.5% of bikesharing members sold or postponed a vehicle purchase

of bikesharing members increased cycling

of bikesharing members reduced personal auto use

Shaheen et al., 2014; Shaheen and Chan 2015

Ridesourcing Modal Shift Impacts

Study Authors Location Survey Year	Rayle et al. San Francisco, CA (2014)	Henao Denver and Boulder, CO (2016)	Clewlow and Mishra* Seven U.S. Cities** Two Phases (2014 - 2016)
Drive	7%	37%	39%
Public Transit	30%	22%	15%
Taxi	36%	10%	1%
Bike or Walk	9%	12%	23%
Would not have made trip	8%	12%	22%
Other / Other Ridesourcing/TNC	10%	7%	-

*Impacts in this study were weighted by usage and aggregated across 7 cities. **Cities in study include: Austin, Boston, Chicago, Los Angeles, San Francisco, Seattle and Washington, DC.

Shaheen et al., 2018

Ridesourcing VMT Impacts

- 3.5% increase in citywide VMT and 7% increase in Manhattan, western Queens, and western Brooklyn in 2016 (Schaller, 2017)
- In Denver, average of 100 vehicle miles to transport passenger
 60.8 miles (~40% deadheading miles) (Henao, 2017)
- In SF, SFCTA (2017) found ~20% of total ridesourcing VMT included deadheading miles
- May be increase in VMT due to ridesourcing, although exact magnitude still unknown and likely varies by location (e.g., density, land use, and built environment)
- Services still new (August 2012) and evolving (e.g., pooling, SAVs)

Growing Number of Pooled Options

- Ridesplitting/pooling Users may volunteer to share a for-hire ride for a discount; may or may not be pooled depending on availability (e.g., UberPOOL, Lyft Line)
- Taxi Sharing Users may opt to share a taxi cab (e.g., Bandwagon)

Convergence

Shaheen et al., 2016

Declines in Public Transit Ridership

UZA Name	Sum of 2015	Sum of 2016	Change
Seattle, WA	178,640,154	185,913,534	4.1%
Houston, TX	83,285,295	85,180,489	2.3%
Milwaukee, WI	40,610,851	41,476,982	2.1%
Detroit, MI	36,734,180	37,079,598	0.9%
New York-Newark, NY-NJ-CT	4,222,700,561	4,241,214,495	0.4%
San Francisco-Oakland, CA	454,952,418	454,996,256	0.0%
Boston, MA-NH-RI	403,464,723	402,554,159	-0.2%
Pittsburgh, PA	63,990,430	63,570,697	-0.7%
Denver-Aurora, CO	101,021,365	99,777,407	-1.2%
Portland, OR-WA	112,440,100	110,985,034	-1.3%
San Antonio, TX	37,983,886	37,290,201	-1.8%
Salt Lake City-West Valley City, UT	44,909,741	43,776,825	-2.5%
Minneapolis-St. Paul, MN-WI	96,636,368	93,716,857	-3.0%
Chicago, IL-IN	623,466,948	603,747,357	-3.2%
Urban Honolulu, HI	68,587,549	66,361,162	-3.2%
Las Vegas-Henderson, NV	72,044,767	69,420,973	-3.6%
Dallas-Fort Worth-Arlington, TX	75,998,371	72,137,725	-5.1%
Baltimore, MD	111,070,976	105,214,371	-5.3%
Atlanta, GA	141,154,134	132,925,293	-5.8%
Philadelphia, PA-NJ-DE-MD	369,644,085	346,276,496	-6.3%
Phoenix-Mesa, AZ	69,525,177	64,898,486	-6.7%
San Diego, CA	94,921,830	88,507,937	-6.8%
St. Louis, MO-IL	47,250,866	44,020,031	-6.8%
Cleveland, OH	46,844,074	43,507,057	-7.1%
Los Angeles-Long Beach-Anaheim, CA	619,459,557	572,589,716	-7.6%
San Jose, CA	44,718,244	40,763,554	-8.8%
Miami, FL	156,449,301	141,556,090	-9.5%
Washington, DC-VA-MD	441,222,366	396,260,838	-10.2%
Austin, TX	32,795,531	28,893,986	-11.9%
San Juan, PR	38,853,326	32,289,221	-16.9%

Increase

No Change

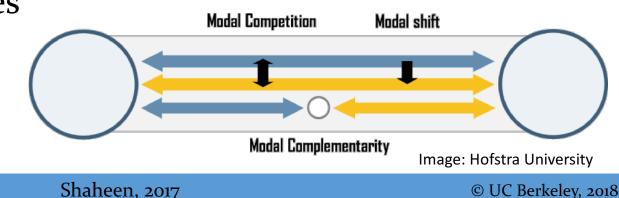
Decrease

© UC Berkeley, 2018

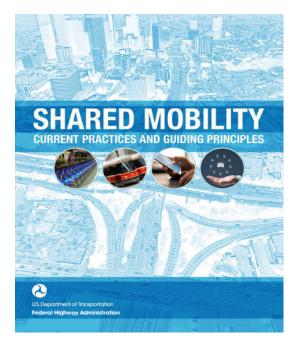
NTD, 2017

Key Questions for Public Transportation

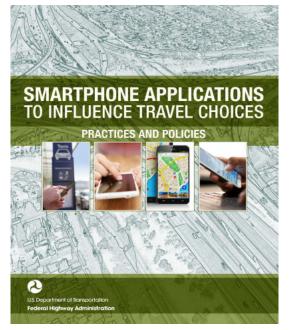
- When does shared mobility complement public transit and when does it compete?
 - How does it vary by mode & context?



- What factors influence complementarity vs. competition?
- How can shared mobility be used to enhance accessibility to areas without public transit service?
- How can shared mobility be used to improve efficiency and/or reduce service inefficiencies?
- How should public transportation respond to short-, mid-, and long-term changes? (e.g., shared mobility, AVs, SAVs, and other innovations)


Shared Mobility and Public Transportation: Research

More study needed to evaluate traveler behavior and elasticity of individual and combined variables

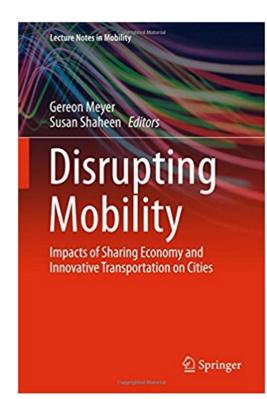

- Cost, occupancy
- Fare type (e.g., pass, per trip, per mile) and stability (e.g., fixed vs. variable pricing)
- Temporal and spatial scale
- Convenience
- Travel time
- Wait / transfer times
- Number of modes
- Other factors

Recent Reports

https://ops.fhwa.dot.gov/publications/ fhwahop16022/fhwahop16022.pdf

https://ops.fhwa.dot.gov/publications /fhwahop16023/fhwahop16023.pdf

https://www.planning.org/publications/ report/9107556/



UNIVERSITY OF CALIFORNIA Berkeley Transportation Sustainability RESEARCH CENTER

Shaheen, 2017

Disrupting Mobility (2017)

Available at:

https://www.amazon.com/Disrupting-Mobility-Impacts-Innovative-Transportation/dp/3319516019

Transportation Sustainability RESEARCH CENTER

Shaheen, 2017

Acknowledgements

- Shared mobility operators, experts, and industry associations
- Federal Highway Administration
- Mineta Transportation Institute, San Jose State
 University
- California Department of Transportation
- American Planning Association
- Adam Cohen, Rachel Finson, Elliot Martin, Hannah Totte, Adam Stocker, Mark Jaffee, TSRC, UC Berkeley

Transportation Sustainability RESEARCH CENTER