Future of AI in Transportation

Cathy Wu | Assistant Professor LIDS, CEE, IDSS

TRB Executive Committee, Policy Session on AI in Transportation, 2020

BLOOMING

Washington

GY BOTTOM

Outline

- Part 1: Why AI and why now?
- Part 2: What is AI good for?
- Part 3: Why AI instead of other methods?

Outline

- Part 1: Why AI and why now?
- Part 2: What is Al good for?
- Part 3: Why AI instead of other methods?

Complexities compound transportation issues today

- Connectivity and automation (smartphones, CAVs, 5G)
- Technology-enabled business models (TNCs, routing apps, micromobility)

• International affairs (trade disputes)

Critical Issues in Transportation 2019

9 of 12 critical issues **exacerbated by growing complexity** of transportation systems.

- 1. <u>Transformational Technologies and Services:</u> <u>Steering the Technology Revolution</u>
- 2. Serving a Growing and Shifting Population
- 3. Energy and Sustainability: Protecting the Planet
- 4. <u>Resilience and Security: Preparing for Threats</u>
- 5. <u>Safety and Public Health: Safeguarding the Public</u>
- 6. Equity: Serving the Disadvantaged
- 7. <u>Governance: Managing Our Systems</u>
- 8. <u>System Performance and Management: Improving</u> <u>the Performance of Transportation Networks</u>
- 9. Funding and Finance: Paying the Tab
- 10. Goods Movement: Moving Freight
- 11. Institutional and Workforce Capacity: Providing a Capable and Diverse Workforce
- 12. Research and Innovation: Preparing for the Future

The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD

Why AI and why now?

Al can help overcome complexity.

- Change is outpacing existing methodology for reliable transportation systems.
- Opportunity in data: all this complexity is increasingly captured (sensors, smartphones).
- Strength of AI, especially modern deep learning: extracting useful information out of a sea of data.

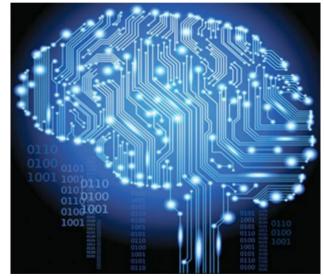


Image credit: PCMag

Outline

- Part 1: Why AI and why now?
- Part 2: What is AI good for?
- Part 3: Why AI instead of other methods?

Challenge: safety

Al to leverage the complexity to identify unsafe events

Application

- Pedestrian safety systems
- In-vehicle safety systems
- Failures of infrastructure, vehicles, equipment

afe events Al solution

- Predict potential accidents
- Context-aware technology
- Prediction of failures, automated inspections

Challenge: congestion

AI to manage the complexity and coordinate supply and demand

Application

- Synchronized modalities (MoD, bus, train, subway, bike)
- MoD curb-side management
- Demand and mode shift
- Advanced load balancing, scheduling, and vehicle rightsizing based on preferences
- AVs for traffic smoothing

Al solution

- Demand prediction
- Activity recommendation
- Personalization and preference inference
- Automatically learn vehicle controllers

Emerging and cross-cutting

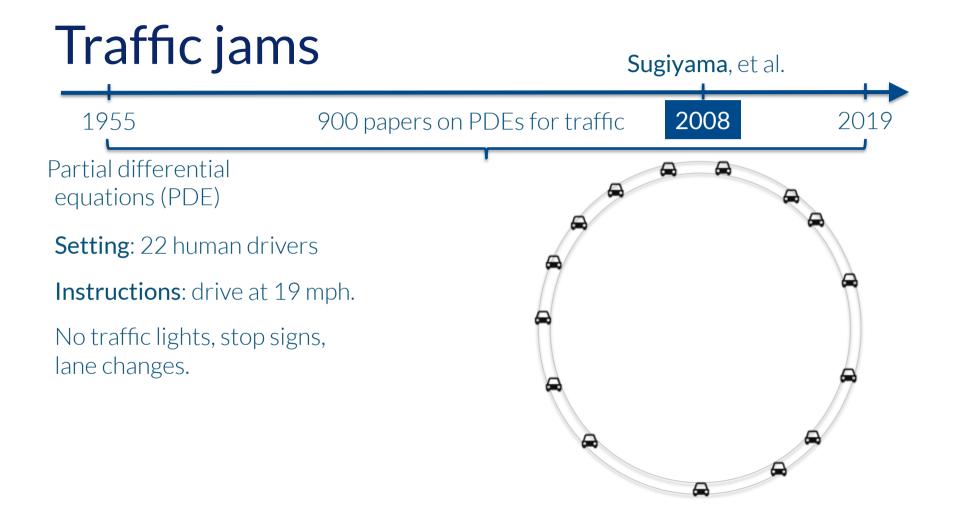
AI to transcend complexity and evolve the transportation system

Application

- Impact assessment (new modes, regulations and pricing schemes, business models)
- Coordination among city functions (transportation, maintenance/works, energy, water, waste)
- Freight + Al
- Immobility solutions (virtual presence, augmented/virtual reality (AR/VR), telecommuting, co-working)

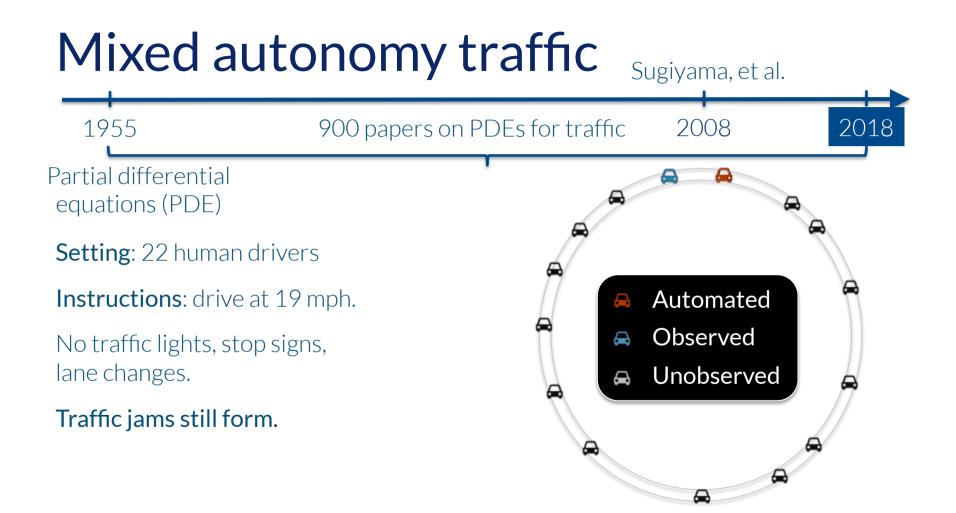
Al solution

- Learned recommendations of rules and regulations
- Holistic prediction of city demands
- Predict what people want to buy
- Synthetic avatars


Outline

- Part 1: Why AI and why now?
- Part 2: What is AI good for?
- Part 3: Why AI instead of other methods?

Cloud CAVs for congestion mitigation SPEED LIMIT


What is the potential impact on traffic congestion of automating a fraction of vehicles?

Focus: impact of vehicle kinematics

he Mathematical Societ

Deep reinforcement learning (RL)

Global rewards Average velocity Energy consumption Travel time Safety, comfort

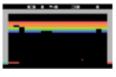
Agent

Environment

action a_t

state s_t

reward n


 s_{t+1}

 r_{t+1}

Goal: learn policy (decision rule)

to maximize long-term reward

Deep RL: methods to optimize a policy (a <u>deep</u> neural network) to maximize long-term reward in complex sequential decision problems.

DQN (2015)

TRPO (2015)

Decisions in urban systems:

Vehicle accelerations

AlphaGo (2016)

Tactical maneuvers Transit schedules Traffic lights Land use Parking Tolling

...

Wu, et al. Mixed autonomy traffic (Al solution) 2017 Sugiyama, et al. 2008 1955 2019 13 -Setting: 1 AV, 21 human **Experiment** AV off **Goal**: maximize average velocity **Observation**: relative vel and headway Action: acceleration **Policy**: multi-layer perceptron (MLP) Automated Learning algorithm: policy gradient Observed A Results Unobserved 1 AV: **+49%** average velocity G First near-optimal controller for single-lane Uniform flow at **near-optimal velocity**

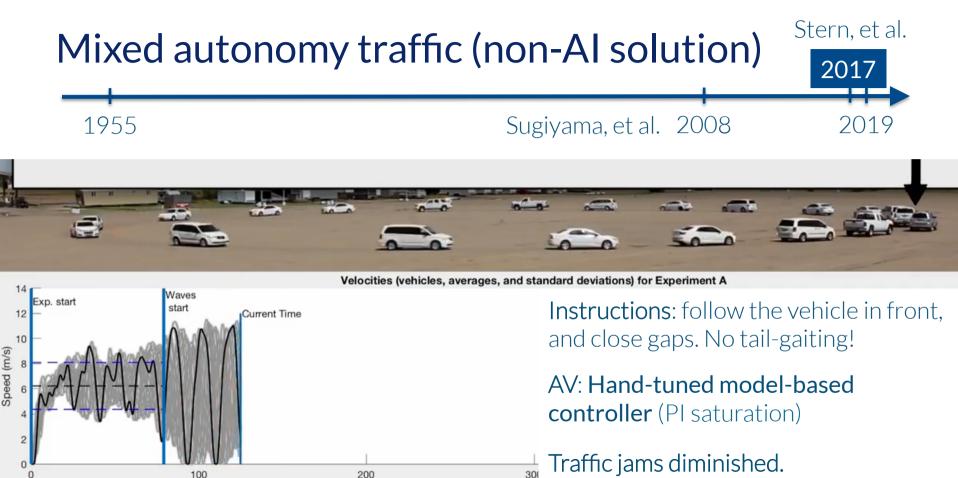
Generalizes to out-of-distribution densities .

Wu. et al. CoRL, 2017: Wu. et al. IEEE T-RO, in review.

•

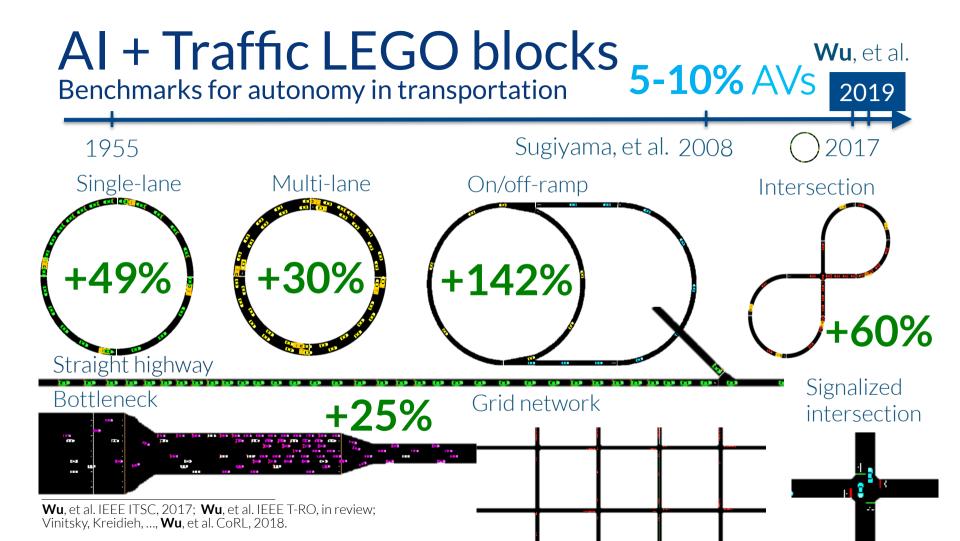
•

.

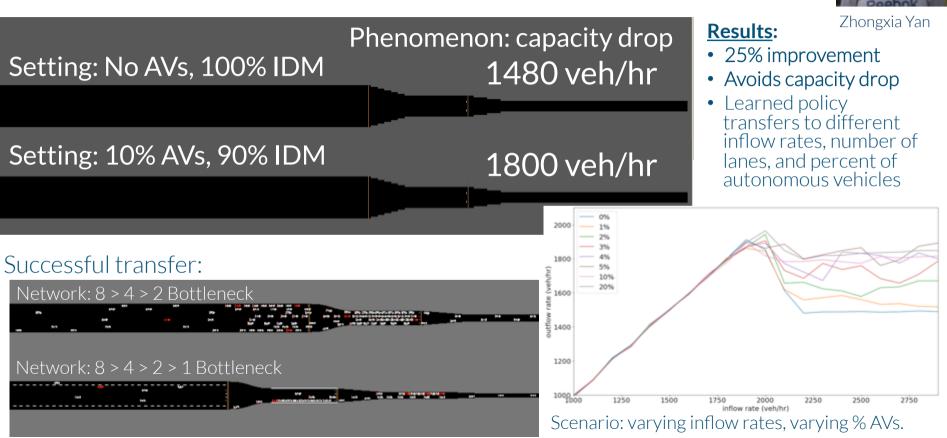

•

•

•


۰

•



Time

1 AV: **+14%** average velocity (vs. 49%)

RL + increasing complexity (current work)

Where we are, where next?

- *Key idea*: AI has the potential to keep pace with increase in complexity.
- Research challenge:

 Is there a limit for the level
 of complexity that AI Physical deployment
 can handle?
- Relies on access to data, which is increasingly privatized.

Full-scale regional network

Insights for transportation planning

Collaborators & Partners

Alexandre BayenEugene VinitskyAboudy KreidiehKanaad ParvateBerkeleyBerkeleyBerkeleyBerkeley

Zhonguja Van

Zhongxia Yan MIT

OpenAI

Kathy JangNishant KheterpalLeah DicksteinAnanth KuchibhotlaNathan MandiBerkeleyBerkeleyBerkeleyBerkeleyBerkeley

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Berkeley DeepDrive

New lab!

Weizi Li Postdoc

- Zhongxia Yan PhD student
- Vindula Jayawardana PhD student

cathywu@mit.edu

Future of AI in transportation

Main message:

- Critical issues in transportation are exacerbated by growing complexity and increasing pace of change in the world.
- There is an opportunity to overcome these challenges by developing Al to leverage, manage, and transcend complexity and evolve our transportation systems.

Takeaways:

- Strong potential for AI in future solutions in safety, congestion, and emerging and cross-cutting applications.
- Al-based solutions may have a chance at keeping up with the pace of change in the world. Requires further investigation.
- Al-based solutions rely on access to increasingly privatized data.