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Complexities compound (@)
transportation issues today A

Connectivity and automation (smartphones, CAVs, 5G)

Technology-enabled business models @

(TNCs, routing apps, micromobility) oL
Climate Change extreme weather, supply chain disruptions)

International affairs (trade disputes)



Critical Issues in Transportation 2019

9 of 12 critical issues exacerbated by growing
complexity of transportation systemes.

1. Transformational Technologies and Services:
Steering the Technology Revolution

Serving a Growing and Shifting Population 'y BH'"GM_ |SSUES
Energy and Sustainability: Protecting the Planet = .

Resilience and Security: Preparing for Threats
Safety and Public Health: Safeguarding the Public
Equity: Serving the Disadvantaged

Governance: Managing Our Systems

System Performance and Management: Improving
the Performance of Transportation Networks

9. Funding and Finance: Paying the Tab
10. Goods Movement: Moving Freight
11. Institutional and Workforce Capacity: Providing a

; The Natiora! Academies of
Capable and Diverse Workforce PR eprompicmmpomgy: S

12. Research and Innovation: Preparing for the Future FPeiis )
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Why Al and why now?

Al can help overcome complexity.

« Change is outpacing existing
methodology for reliable
transportation systems.

* Opportunity indata: all this
complexity is increasingly
captured (sensors, smartphones).

o Strength of Al, especially modern

deep learning: extracting useful
information out of a sea of data. ~ "meeaedreves
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Challenge: safety

Al to leverage the complexity to identify unsafe events

Application

Pedestrian safety systems
In-vehicle safety systems

Failures of infrastructure,
vehicles, equipment

Al solution

\\v

Predict potential accidents
Context-aware technology

Prediction of failures,
automated inspections



Challenge: congestion

Al to manage the complexity and coordinate supply and demand

Application Al solution

* Synchronized modalities  Demand prediction

(MoD, bus, train, subway, bike)
» MoD curb-side management - Activity recommendation
* Demand and mode shift e Personalization and

« Advanced load balancing, preference inference
scheduling, and vehicle right-
sizing based on preferences

. AVs for traffic smoothing o Automatically learn vehicle

controllers
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Emerging and cross-cutting sflifls

Al to transcend complexity and evolve the transportation system (Al ﬁ

Application

Impact assessment
(new modes, regulations and pricing
schemes, business models)

Coordination among city

functions

(transportation, maintenance/works,
energy, water, waste)

Freight + Al

Immobility solutions

(virtual presence, augmented/virtual
reality (AR/VR), telecommuting,
co-working)

Al solution & gairs W

| earned recommendations of
rules and regulations

Holistic prediction of city
demands

Predict what people want to buy
Synthetic avatars
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CAVs for congestion mitigation”™ .-

What is the potential impact on traffic congestion of
automating a fraction of vehicles?

Focus: impact of vehicle kinematics



Traffic jams

Sugiyama, et al.
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1955 900 papers on PDEs for traffic 2008
. papers on P 2008
Partial differential & &
equations (PDE) & =)
=
Setting: 22 human drivers £
Instructions: drive at 19 mph.
(=
No traffic lights, stop signs,
lane changes. a



Traffic jams

Sugiyama, et al.

—t - A
1955 900 papers qm PDEs for traffic 2008 2019
Partial differential '
equations (PDE)

Setting: 22 human drivers
Instructions: drive at 19 mph.

No traffic lights, stop signs,
lane changes.

Traffic jams still form.

Video credits: NewScientist.com




Mixed autonomy traffic

Sugiyama, et al.

1955 900 papers on PDEs for traffic 2008

Partial differential ' & &
equations (PDE) &= =)

= =
Setting: 22 human drivers £
Instructions: drive at 19 mph. Automated ]

. . Q

No traffic lights, stop signs, Observed
lane changes. a Unobserved a
Traffic jams still form.
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Deep reinforcement learning (RL)

state s
rewardrtl Agent l

St+1 .
T[ Environment ]<—
+1

Global rewards

Average velocity

Decisions in urban systems:

Vehicle accelerations

action a; | Goal: Tactical maneuvers
learn policy (decision rule) Transit schedules

to maximize long-term reward Q Traffic lights

Deep RL: methods to optimize a Land use

policy (a deep neural network) to Parking
maximize long-term reward in Tolling

complex sequential decision problems.

Energy consumption

Travel time
Safety, comfort

.
.
® .
&334
o2, 138

DQN (2015) TRPO (2015)  AlphaGo (2016)



Wu, et al.

Mixed autonomy traffic (Al solution)
—_— $ m

1955 Sugiyama, et al. 2008 2019
Setting: 1 AV, 21 human ool _axg
Experiment

» Goal: maximize average velocity

* Observation: relative vel and headway
+ Action: acceleration g
* Policy: multi-layer perceptron (MLP) I"" ,«" Automated
» Learningalgorithm: policy gradient

Observed

e 1AV:+49% average velocity 2 Unobserved
* First near-optimal controller for single-lane

* Uniform flow at near-optimal velocity
* Generalizes to out-of-distribution densities

Results

Wou, et al. CoRL, 2017; Wu, et al. IEEE T-RO, in review.



) Stern, et al.

Mixed autonomy traffic (non-Al solution m

1955 Sugiyama, et al. 2008 2019

Velocities (vehicles, averages, and standard deviations) for Experiment A

14|
Exp. start
12

Gurrent Time Instructions: follow the vehicle in front,
and close gaps. No tail-gaiting!

AV: Hand-tuned model-based
controller (Pl saturation)

10

Speed (m/s)

o N 4 o ]

; i o . Traffic jams diminished.
ime 1 AV: +14% average velocity (vs. 49%)




Al + Traffic LEGO blocks Wu etal
Benchmarks for autonomy in transportation 5-10% AVs m

1955 Sugiyama,etal. 2008  ()2017

Single-lane Multi-lane On/off-ramp Intersection

NS O
CICICS NG

Straig?wt highway

e La» e ] Las Xal Jap Iak Ink Iae Xap Ca ae T a» e a» a» Lae Iak ap el a» ll ar a» s n Signalized

Bottl k | i '
ott ec 25% Grid network intersection

i |
Wu, et al. IEEE ITSC, 2017; Wu, et al. IEEE T-RO, in review;
Vinitsky, Kreidieh, ..., Wu, et al. CoRL, 2018.




RL + increasing complexity (currentwork)

Phenomenon: capacity drop JEEILE
* 25% improvement

Setting: No AVs, 100% IDM 1480 veh/hr « Avoids capacity drop

* Learned policy
transfers to different
inflow rates, number of
lanes, and percent of
autonomous vehicles

Zhongxia Yan

Setting: 10% AVs, 90% IDM 1800 veh/hr

Successful transfer: /
Network: 8 > 4 > 2 Bottleneck O

- - - - I - — 100
- smmpasaanat e ST = = = fooo 1250 1500 1750 2000 2250 2500 2750

nflow rate (veh/hr)

Scenario: varying inflow rates,vvarying % AVs.




Where we are, where next?

« Keyidea: Al has the Full-scale regional network
potential to keep pace with
iIncrease in complexity.

* Research challenge:
|s there a limit for the level s [
of complexity that Al Physical dep|0vm€ﬂt o

San Francisco Bay Bridge ' San Francisco Downtown

ﬂ

can handle? af_t‘,__. P m

« Relies on access to data, 3?; =

. .o . = b — — -
which is increasingly =

privatized.

100%

Insights for transportation planning
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New lab!
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cathywu@mit.edu
Future of Al in transportation

Main message:
» Critical issues in transportation are exacerbated by growing
complexity and increasing pace of change in the world.
* Therei ' h hall [
ORITICALISSUES ere is an opportunity to overcome these challenges by developing

; INTRANSPORTATION Al to leverage, manage, and transcend complexity and evolve our
2019 transportation systems.

Takeaways:
» Strong potential for Al in future solutions in safety, congestion, and

e Nl Academion of

R emerging and cross-cutting applications.

» Al-based solutions may have a chance at keeping up with the pace of
change in the world. Requires further investigation.

» Al-based solutions rely on access to increasingly privatized data.



