Technology to Improve Inland Waterway Operations

- Assess current waterways practices
- Identify technology applications that can improve
 - Productivity
 - Safety
 - Security

John Tabacchi
Richard Grace
Technology In Transportation

- Commercial aircraft
 - Highly advanced technological infrastructure
- Commercial highway vehicles
 - Rapidly growing technological infrastructure
- Commercial railroads
 - Rapidly growing technological infrastructure
- Inland Waterways
 - Slow ad hoc adoption of technology
Intermodal Freight Transportation

• Waterways - Advantages
 – Low cost
 – Low environmental cost
 – Safe (compare to 4000+ annual truck deaths)
 – Reduces highway congestion

• Waterways - Disadvantages
 – Slow (COC ½% to 1% per month)
 – Low predictability
Improving Productivity

- Each technological infusion should
 - Provide an immediate productivity benefit
 - Build towards improved predictability
Productivity Barriers

• Navigational uncertainties and bottle necks
 – Poor visibility can stop river traffic

 – Locks
 • Frequent small locks slow traffic
 • Outages severely limit traffic
Productivity Issues Within The Pittsburgh District

Table 1: Ohio River Locks within the Pittsburgh District

<table>
<thead>
<tr>
<th>Lock</th>
<th>Pool size</th>
<th>Land Side Lock (ft x ft)</th>
<th>River Side Lock (ft x ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hannibal</td>
<td>42.2</td>
<td>110 x 600</td>
<td>110 x 1200</td>
</tr>
<tr>
<td>2 Pike Island</td>
<td>30</td>
<td>110 x 600</td>
<td>110 x 1200</td>
</tr>
<tr>
<td>3 New Cumberland</td>
<td>23</td>
<td>110 x 600</td>
<td>110 x 1200</td>
</tr>
<tr>
<td>4 Montgomery</td>
<td>18.4</td>
<td>56 x 360</td>
<td>110 x 600</td>
</tr>
<tr>
<td>5 Dashields</td>
<td>7.1</td>
<td>56 x 360</td>
<td>110 x 600</td>
</tr>
<tr>
<td>6 Emsworth</td>
<td>-</td>
<td>56 x 360</td>
<td>110 x 600</td>
</tr>
</tbody>
</table>
Productivity
Advanced Navigation Technology

• Navigation in poor visibility
 – Vision Enhancement Technology (Infrared, RADAR, LIDAR)
 – Collision warning (RADAR, LIDAR, GPS)

• Improved Locking
 – Instrumented Locking System (ILS)
 – Barge lashing system
 – Predictive lock maintenance
Productivity
Instrumented Locking System

Pilot Display

Approach Error

25 ft
10 ft/sec.
Productivity
Instrumented Locking System

• Real-time measurement of tow location and speed.

• Infrastructure based sensors
 – Video camera
 – Infrared camera
 – Lidar
 – Radar
 – Differential GPS
Productivity
Real Time Shipment Tracking

• Barge location technology
 – Global Positioning System (GPS)
 – Radio Frequency Tags
 – Line – of – sight radio
 – Satellite Communications

• Tracking software
 – Provide current location of shipment
 – Prediction of delivery (Include truck and rail)
Improving Safety

• While on the river
 – Onboard collision warning
 – Pilot monitoring system

• Collisions while locking
 – (ILS - collision warning)

• Collisions while navigating in port
 – Onboard collision warning
 – Port navigation system (similar to ILS)
Safety
Pilot Monitoring System

- Video based pilot monitoring
 - Mature technology (truck and rail)

- Activity based pilot monitoring
 - Mature technology (military and rail)

- Performance based pilot monitoring
 - e.g. Deviation from planned route
Improving Security

• Port and Lock/Dam Security
 – Water attach (USS Cole)
 – Ground attack (Okalahoma City)

• Open river security
 – Tow hijack
 – Run away barges
Security
Use Limited Resources Wisely

• Asses threat and prioritize
 – Vulnerability assessment
 – Public health consequences
 – Economic consequences
 – National security consequences

• Identify **cost effective** countermeasures
Security
Automated Video Surveillance
Technology to Improve Inland Waterway Operations

• Words of Caution

 – Carefully asses business case
 • Must have full participation of Ports, Waterway Operators, and USACE

 – Human factors are important!
 • Must have complete buy in from users
 • User centered design practices