Two-fluid flow simulation using higher order methods

Ido Akkerman¹, Yuri Bazilevs² Chris Kees¹, Matthew Farthing¹

I) U.S. Army Engineering Research and Development Center (ERDC/CHL)
2) University of California San Diego (UCSD)

Transforming the Marine Transport System: A Vision for Research and Development June 29 - July 1, 2010 Irvine(CA)

Acknowledgement

- USACE Navigation Systems Research Program (Jim Clausner, Eddie Wiggins, Jeff Lillycrop)
- USACE Military Engineering 6.1 Research Program (David Horner)
- CHL Deep Draft Navigation Focus Area (Mike Briggs, Zeki Demirbilek, Jeff Melby)
- University of California, San Diego
- Texas Advanced Computing Center

Goal

High fidelity predictive simulation of dynamic 3D marine transport phenomena.

Build models that solve full the 3D Navier-Stokes equations with breaking waves and Fluid/vessel interaction

Outline

- Model hierarchy
- Simulation pipeline
- Geometry modeling/preparation
- Software framework
- Validation/capabilities
- Conclusion/outlook

Model hierarchy

Simulation pipeline

Meshing a vessel using GF-file

Result: faceted Surface

Meshing a vessel using IGS-File

Result

Isogeometric Analysis

- Hughes, Cottrell, and YB. First paper appeared in Fall 2005
- Based on technologies (e.g., NURBS) from computational geometry used in:
 - Design (CAD)
 - Animation (CG)
 - Visualization (CG)

- Same ("exact") functional description is used for geometry and simulation
- Includes standard FEA as a special case, but offers other possibilities:
 - Precise and efficient geometric modeling
 - Simplified mesh refinement
 - Superior approximation properties
 - Smooth and higher-order basis functions
 - Integration of design and analysis

Software framework

- ERDC in-house finite element simulation framework
- UCSD Isogeometric analyses research code
- Interface capturing
 - Level Set
 - Volume of Fluid (VOF)
- Turbulence modeling
 - Reynolds-Averaged Navier-Stokes
 - Residual-Based Large-Eddy Simulation
- Weak Dirichlet boundary conditions
- Basis function independent (PI,P2,QI,NURBS,...)

Dam break with obstacle

Pressure on obstacle

Iri

Water height in tank

ĨH

Wigley Hull

Waterline and Wave pattern

Vessel in shallow channel

Vessel in shallow channel

Conslusion

- Finite element based 3D Navier-Stokes
 - Complex geometry(description??)
 - High accuracy (high order)
 - Boundary conditions (Boundary layer/outflow)
- Interface capturing
 - Sharp interfaces (breaking/smooth waves)
 - Mass conservative

Outlook

- Release of tetrahedral 3D air/water/vessel capability in August 2010
- Integration of Isogeometric methods in ERDC in-house code
- Isogeometric tools for complex geometry
 - Vessels
 - Bathymetry
 - Structures
- Adjoint-based space-time adaptivity

