

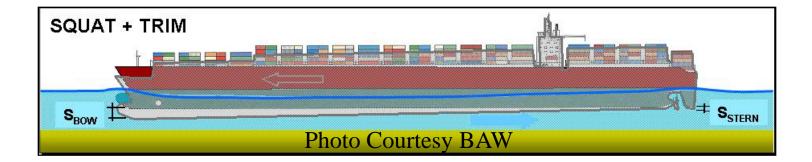
COMPARISON OF PIANC, ANKUDINOV and CADET SHIP SQUAT PREDICTIONS

CMTS/TRB Conference Irvine, CA

June 29 – July 1, 2010

Michael J. Briggs, Coastal and Hydraulics Laboratory, ERDC Paul J. Kopp, NSWC, Carderock Division Vladimir Ankudinov, TRANSAS USA Inc. Wilbur Wiggins, U.S. Army Engineer District, Savannah

- Introduction
 - Squat major component of underkeel clearance (UKC)
 - Consists of underway sinkage (vertical motion of hull) and dynamic trim (rotation about center of rotation)
 - Increased interest in ship squat in deep-draft navigation community
 - Compare CADET predictions with Ankudinov & PIANC squat formulas
- PIANC Squat Formulas
 - Barrass
 - Eryuzlu et al
 - Huuska/Guliev
 - Römisch
 - Yoshimura
- Ankudinov Squat Formula
- CADET/BNT Squat Program
- Ship and Channel Parameters
 - Port of Savannah, Georgia
 - Susan Maersk Containership
- Comparisons
 - Unrestricted Channel (U)
 - Light and Fully-loaded
 - 3 Water Depths
- Summary and Conclusions


Introduction

- PIANC ship squat formulas
 - Empirical
 - Limited lab and field measurements
 - Developed for past generation ships
 - User friendly, but limited ship and channel parameters
 - 3 idealized channel cross-sections
 - Widely used and accepted
 - No one formula best for all scenarios
- Ankudinov ship squat formula
 - Recent revisions
 - Thorough and complicated
 - Ship & channel parameters
 - Mid-point sinkage & trim

- CADET program
 - Risk-based tool for predicting underkeel clearance (UKC)
 - Based on Navy's tools for deep draft ships in shallow channels
- CADET squat module
 - Beck Newman Tuck (BNT)
 - Based on Beck Newman Tuck (BNT) slender body theory
 - Numerical modeling ship lines with potential flow theory
 - Validated with model tests

- Five of most user friendly and "popular"
 - Barrass
 - Eryuzlu et al
 - Huuska/Guliev
 - Römisch
 - Yoshimura
- All give bow squat
- Stern squat
 - Only Römisch predicts stern squat for all channels
 - Barrass stern only for unrestricted or open channels and other channels depending on C_B value

• Barrass

$$\frac{KC_B V_k^2}{100} = \begin{cases} S_b & C_B > 0.7 \\ S_S & C_B \le 0.7 \end{cases}$$

• Eryuzlu et al.

$$S_b = 0.298 \frac{h^2}{T} \left(\frac{V_s}{\sqrt{gT}}\right)^{2.289} \left(\frac{h}{T}\right)^{-2.972} K_b$$

• Huuska/Guliev

$$S_{b} = C_{S} \frac{\nabla}{L_{pp}^{2}} \frac{F_{nh}^{2}}{\sqrt{1 - F_{nh}^{2}}} K_{s}$$

Römisch

$$S_b, S_s = C_V C_F K_{\Delta T} T$$

Yoshimura

$$S_{b} = \left[\left(0.7 + \frac{1.5T}{h} \right) \left(\frac{BC_{B}}{L_{pp}} \right) + \frac{15T}{h} \left(\frac{BC_{B}}{L_{pp}} \right)^{3} \right] \frac{V_{e}^{2}}{g}$$

Ankudinov Squat I

- Mid-ship sinkage S_m
 - Ship propeller
 - Ship hull
 - Ship speed
 - Water depth
 - Channel
- Trim T_r
 - Ship propeller
 - Ship hull
 - Ship speed
 - Initial trim
 - Bulbous bow
 - Stern transom

Ankudinov Squat II

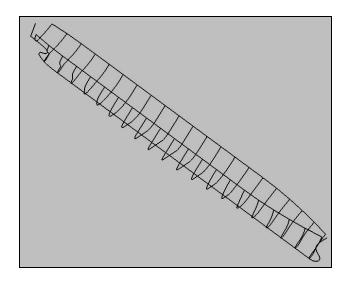
• Maximum squat S_{Max}

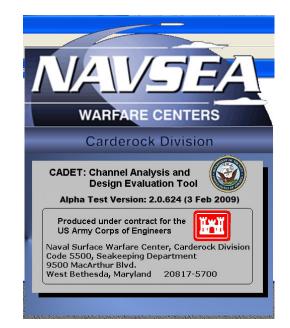
$$S_{Max} = L_{pp}(S_m \mp 0.5T_r)$$

• Mid-point sinkage S_m

$$S_m = \left(1 + K_P^S\right) P_{Hu} P_{F_{nh}} P_{+h/T} P_{Ch1}$$

• Trim T_r


$$T_r = -1.7 P_{Hu} P_{F_{nh}} P_{h/T} K_{Tr} P_{Ch2}$$



CADET Organization

• Ship

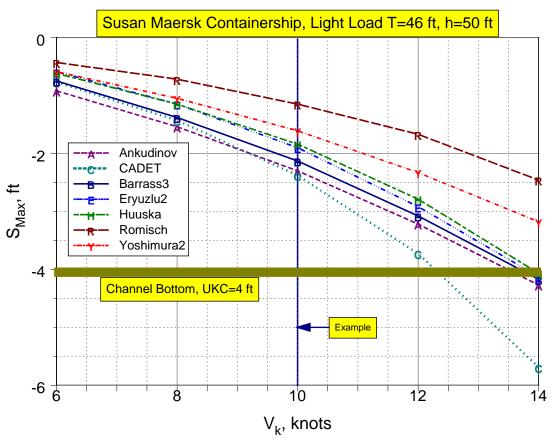
- Hull geometry and ship lines
- Static draft and trim
- Loading
- Ship speeds
- Control points
- BNT ship squat
- Heave, pitch and roll transfer functions
- Project
 - Čhannel reaches
 - Directional spectral waves and probabilities
 - Corresponding ships, BNT squat predictions, and loading conditions
- Analysis
- **Results**


- Based on early work of Tuck (1966 and 1967)
- Beck and Newman expanded to include typical dredged channel (1975)
- Sinkage and trim from dynamic pressure on hull
- Sorted by depth Froude Number and converted to squat

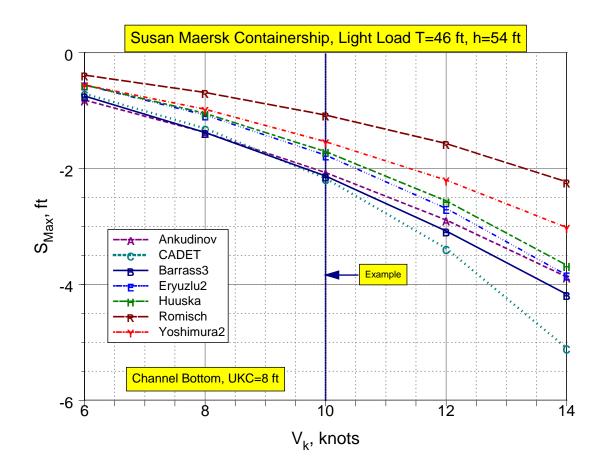
Savannah Entrance Channel, Georgia

- 14 nm Outer Channel
 - Subject to waves
 - Existing depth of 44 ft MLLW
 - Plans to dredge to 50 ft
 - Tide range 8 ft
 - Offshore 5.8 nm segment like Unrestricted or open channel with Width = 600 ft

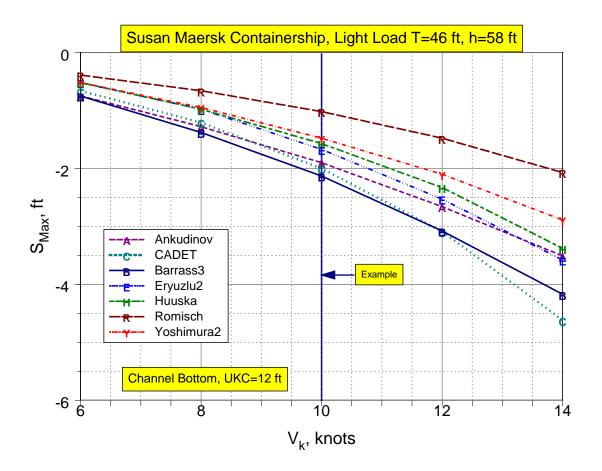
Susan Maersk Containership



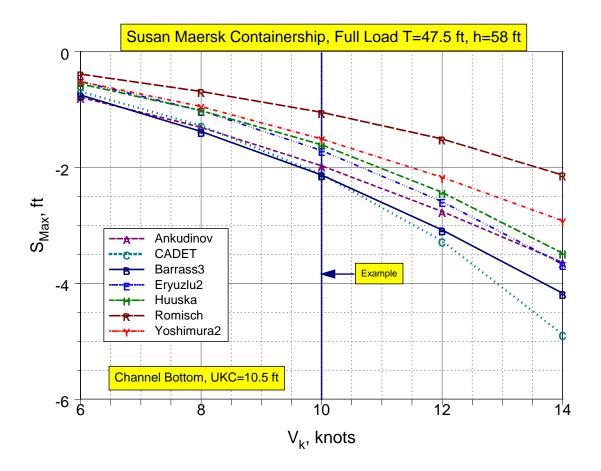
- $L_{pp} = 1,088$ ft
- B = 140.4 ft
- Draft
 - Light load T = 46 ft
 - Full load T = 47.5 ft
- $C_B = 0.65$
- $V_K = 8$ to 14 kts


Light Load T=46 ft, h=50 ft (h/T=1.09)

- No tide
- Available UKC=4 ft
- Ankudinov & CADET general agreement with PIANC predictions
- Both conservative
- Ankudinov tracks OK
- CADET tracks OK to V_k=10 kt
- Example @ $V_k=10$ kt
 - PIĀNC Ave=1.7 ft
 - Ankudinov=2.3 ft
 - CADET=2.4 ft
- Grounding due to squat at V_k=12+ kt


- Tide=4 ft, 4 hr/day, 365 days/yr
- Available UKC=8 ft
- Ankudinov & CADET general agreement with PIANC predictions
- Both conservative
- Ankudinov tracks OK
- CADET tracks OK to V_k=12 kt
- Example @ Vk=10 kt
 - PIANC Ave=1.6 ft
 - Ankudinov=2.1 ft
 - **CADET=2.2** ft
- No grounding due to squat

Light Load T=46 ft, h=58 ft (h/T=1.26)


- Tide=8 ft, 1 hr/day, 7 days/yr
- Available UKC=12 ft
- Ankudinov & CADET general agreement with PIANC predictions
- Both conservative
- Ankudinov tracks OK
- CADET tracks OK to V_k=12+ kt
- Example @ $V_k=10$ kt
 - PIANC Ave=1.6 ft
 - Ankudinov=1.9 ft
 - **CADET=2.0** ft
- No grounding due to squat

Full Load T=47.5 ft, h=58 ft (h/T=1.22)

- Tide=8 ft, 1 hr/day, 7 days/yr
- Available UKC=10.5 ft
- Ankudinov & CADET general agreement with PIANC predictions
- Both conservative
- Ankudinov tracks OK
- CADET tracks OK to V_k=12+ kt
- Example @ V_k=10 kt
 - PIANC Ave=1.6 ft
 - Ankudinov=2.0 ft
 - **CADET=2.1** ft
- No grounding due to squat

- Comparisons of numerical CADET with PIANC and Ankudinov empirical squat prediction formulas
- Theory, advantages, and disadvantages of PIANC, Ankudinov, and CADET squat predictions presented and discussed
- Susan Maersk containership, 3 water depths, 5 ship speeds for unrestricted or open channel type
- CADET and Ankudinov reasonable agreement with PIANC predictions, conservative side
- Ankudinov and CADET squat predictions can be used with confidence in deep-draft channel design

- Capt Stephen Best, Port of Vancouver, Canada
- Capt Richard A. Hurt, Port of San Francisco, CA
- Albert Lavanne, Engineer, Port of Rouen Authority, France
- Karin Hellström, 2nd Officer, M/T Prospero, Donsotank, Sweden
- Papoulidis Panagiotis, Master Mariner, Greece
- Capt. Marco Rigo, Venice, Italy
- Capt. Michael Lloyd, Senior Advisor, Witherby Seamanship International Ltd, United Kingdom
- Anton Holtzhausen, Cape Town, South Africa
- Capt Jonathon Pearce, Marico, United Kingdom
- Nisrine Alderf, PhD. Student, UTC University of Technology of Compiegne, France

- Near term and long term visions for MTS
- Drivers shaping MTS
 - Size of ships
 - Safety
- Near term and long term research required
 - Ship squat for larger ships
 - Vertical and horizontal ship motion prediction
 - Ship interaction with entrance channels, non-symmetrical channels, other ships during passing and overtaking
- Advantages of national CMTS R&D strategy
 - Consistent and proven design and guidance
 - Improved safety
- Challenges of national CMTS R&D strategy
 - Consensus among various parties
 - Research funding