COMPARISON OF PIANC, ANKUDINOV and CADET SHIP SQUAT PREDICTIONS

CMTS/TRB Conference
Irvine, CA

June 29 – July 1, 2010

Michael J. Briggs, Coastal and Hydraulics Laboratory, ERDC
Paul J. Kopp, NSWC, Carderock Division
Vladimir Ankudinov, TRANSAS USA Inc.
Wilbur Wiggins, U.S. Army Engineer District, Savannah
Outline

• Introduction
 – Squat major component of underkeel clearance (UKC)
 – Consists of underway sinkage (vertical motion of hull) and dynamic trim (rotation about center of rotation)
 – Increased interest in ship squat in deep-draft navigation community
 – Compare CADET predictions with Ankudinov & PIANC squat formulas

• PIANC Squat Formulas
 – Barrass
 – Eryuzlu et al
 – Huuska/Guliev
 – Römisch
 – Yoshimura

• Ankudinov Squat Formula

• CADET/BNT Squat Program

• Ship and Channel Parameters
 – Port of Savannah, Georgia
 – Susan Maersk Containership

• Comparisons
 – Unrestricted Channel (U)
 – Light and Fully-loaded
 – 3 Water Depths

• Summary and Conclusions
Introduction

- **PIANC ship squat formulas**
 - Empirical
 - Limited lab and field measurements
 - Developed for past generation ships
 - User friendly, but limited ship and channel parameters
 - 3 idealized channel cross-sections
 - Widely used and accepted
 - No one formula best for all scenarios

- **Ankudinov ship squat formula**
 - Recent revisions
 - Thorough and complicated
 - Ship & channel parameters
 - Mid-point sinkage & trim

- **CADET program**
 - Risk-based tool for predicting underkeel clearance (UKC)
 - Based on Navy’s tools for deep draft ships in shallow channels

- **CADET squat module**
 - Beck Newman Tuck (BNT)
 - Based on Beck Newman Tuck (BNT) slender body theory
 - Numerical modeling ship lines with potential flow theory
 - Validated with model tests
• Five of most user friendly and “popular”
 – Barrass
 – Eryuzlu et al
 – Huuska/Guliev
 – Römisch
 – Yoshimura

• All give bow squat

• Stern squat
 – Only Römisch predicts stern squat for all channels
 – Barrass stern only for unrestricted or open channels and other channels depending on C_B value

Photo Courtesy BAW
• Barrass

\[\frac{K C_B V_k^2}{100} = \begin{cases} S_b & C_B > 0.7 \\ S_S & C_B \leq 0.7 \end{cases} \]

• Eryuzlu et al.

\[S_b = 0.298 \frac{h^2}{T} \left(\frac{V_s}{\sqrt{gT}} \right)^{2.289} \left(\frac{h}{T} \right)^{-2.972} K_b \]

• Huuska/Guliev

\[S_b = C_s \frac{\nabla}{L_{pp}^2} \frac{F_{nh}^2}{\sqrt{1 - F_{nh}^2}} K_s \]

• Römisch

\[S_b, S_s = C_V C_F K_{\Delta T} T \]

• Yoshimura

\[S_b = \left[\left(0.7 + \frac{1.5T}{h} \right) \left(\frac{B C_B}{L_{pp}} \right) + 15T \left(\frac{B C_B}{L_{pp}} \right)^3 \right] \frac{V_e^2}{g} \]
• **Mid-ship sinkage** S_m
 – Ship propeller
 – Ship hull
 – Ship speed
 – Water depth
 – Channel

• **Trim** T_r
 – Ship propeller
 – Ship hull
 – Ship speed
 – Initial trim
 – Bulbous bow
 – Stern transom
• **Maximum squat** S_{Max}

$$S_{\text{Max}} = L_{pp}(S_m + 0.5T_r)$$

• **Mid-point sinkage** S_m

$$S_m = \left(1 + K_P^S\right)P_{Hu}P_{F_{nh}}P_{h/T}P_{Ch1}$$

• **Trim** T_r

$$T_r = -1.7P_{Hu}P_{F_{nh}}P_{h/T}K_{Tr}P_{Ch2}$$
CADET Organization

• Ship
 – Hull geometry and ship lines
 – Static draft and trim
 – Loading
 – Ship speeds
 – Control points
 – BNT ship squat
 – Heave, pitch and roll transfer functions

• Project
 – Channel reaches
 – Directional spectral waves and probabilities
 – Corresponding ships, BNT squat predictions, and loading conditions

• Analysis

• Results
BNT Ship Squat Predictions

- Based on early work of Tuck (1966 and 1967)
- Beck and Newman expanded to include typical dredged channel (1975)
- Sinkage and trim from dynamic pressure on hull
- Sorted by depth Froude Number and converted to squat
Savannah Entrance Channel, Georgia

- **14 nm Outer Channel**
 - Subject to waves
 - Existing depth of 44 ft MLLW
 - Plans to dredge to 50 ft
 - Tide range 8 ft
 - Offshore 5.8 nm segment like Unrestricted or open channel with Width = 600 ft
Susan Maersk Containership

- $L_{pp} = 1,088$ ft
- $B = 140.4$ ft
- Draft
 - Light load $T = 46$ ft
 - Full load $T = 47.5$ ft
- $C_B = 0.65$
- $V_K = 8$ to 14 kts
Light Load \(T=46 \text{ ft}, \ h=50 \text{ ft} \ (h/T=1.09) \)

- No tide
- Available UKC=4 ft
- Ankudinov & CADET general agreement with PIANC predictions
- Both conservative
- Ankudinov tracks OK
- CADET tracks OK to \(V_k=10 \text{ kt} \)
- Example @ \(V_k=10 \text{ kt} \)
 - PIANC Ave=1.7 ft
 - Ankudinov=2.3 ft
 - CADET=2.4 ft
- Grounding due to squat at \(V_k=12+ \text{ kt} \)
• Tide=4 ft, 4 hr/day, 365 days/yr
• Available UKC=8 ft
• Ankudinov & CADET general agreement with PIANC predictions
• Both conservative
• Ankudinov tracks OK
• CADET tracks OK to $V_k=12$ kt
• Example @ $V_k=10$ kt
 – PIANC Ave=1.6 ft
 – Ankudinov=2.1 ft
 – CADET=2.2 ft
• No grounding due to squat
- Tide=8 ft, 1 hr/day, 7 days/yr
- Available UKC=12 ft
- Ankudinov & CADET general agreement with PIANC predictions
- Both conservative
- Ankudinov tracks OK
- CADET tracks OK to $V_k=12+\text{ kt}$
- Example @ $V_k=10$ kt
 - PIANC Ave=1.6 ft
 - Ankudinov=1.9 ft
 - CADET=2.0 ft
- No grounding due to squat
Full Load $T=47.5\text{ ft}$, $h=58\text{ ft}$ ($h/T=1.22$)

- Tide=8 ft, 1 hr/day, 7 days/yr
- Available UKC=10.5 ft
- Ankudinov & CADET general agreement with PIANC predictions
- Both conservative
- Ankudinov tracks OK
- CADET tracks OK to $V_k=12+\text{ kt}$
- Example @ $V_k=10\text{ kt}$
 - PIANC Ave=1.6 ft
 - Ankudinov=2.0 ft
 - CADET=2.1 ft
- No grounding due to squat
Summary and Conclusions

• Comparisons of numerical CADET with PIANC and Ankudinov empirical squat prediction formulas

• Theory, advantages, and disadvantages of PIANC, Ankudinov, and CADET squat predictions presented and discussed

• Susan Maersk containership, 3 water depths, 5 ship speeds for unrestricted or open channel type

• CADET and Ankudinov reasonable agreement with PIANC predictions, conservative side

• Ankudinov and CADET squat predictions can be used with confidence in deep-draft channel design
Recent Interest in Ship Squat

- Capt. Stephen Best, Port of Vancouver, Canada
- Capt. Richard A. Hurt, Port of San Francisco, CA
- Albert Lavanne, Engineer, Port of Rouen Authority, France
- Karin Hellström, 2nd Officer, M/T Prospero, Donsotank, Sweden
- Papoulidis Panagiotis, Master Mariner, Greece
- Capt. Marco Rigo, Venice, Italy
- Capt. Michael Lloyd, Senior Advisor, Witherby Seamanship International Ltd, United Kingdom
- Anton Holtzhausen, Cape Town, South Africa
- Capt. Jonathon Pearce, Marico, United Kingdom
- Nisrine Alderf, PhD. Student, UTC University of Technology of Compiegne, France
Challenge Questions

- Near term and long term visions for MTS
- Drivers shaping MTS
 - Size of ships
 - Safety
- Near term and long term research required
 - Ship squat for larger ships
 - Vertical and horizontal ship motion prediction
 - Ship interaction with entrance channels, non-symmetrical channels, other ships during passing and overtaking
- Advantages of national CMTS R&D strategy
 - Consistent and proven design and guidance
 - Improved safety
- Challenges of national CMTS R&D strategy
 - Consensus among various parties
 - Research funding