Monitoring Completed USACE Navigation Projects

Lyndell (Lyn) Hales US Army Engineer Research and Development Center Coastal and Hydraulics Laboratory Vicksburg, Mississippi

Transforming the Marine Transportation System *A Vision for Research and Development*

June 29 – July 1, 2010 The Beckman Center of the National Academies Irvine, California

US Army Corps of Engineers

USACE Support to the Marine Transportation System (MTS)

Resilience and Reliability

MTS includes ocean, coastal, and inland waterways, ports, and intermodal connections for commercial, military, and recreational craft.

Segments of the MTS are showing signs of strain which will intensify as projected cargo and passenger traffic increase.

Growth at containerized ports requires additional staging areas, expanded landside access, and logistics technologies.

Inland waterway systems are generally viewed as reliable, but face increasing operational and maintenance challenges as locks age, and repairs become more extensive and expensive.

US Army Corps of Engineers

Resilience

Increasing quantities of containerized goods and other commodities upon which our economy relies are moving through the ports. The Military's need to deliver troops, equipment, and supplies through U.S. ports to defense forces around the world emphasizes the importance of the MTS. The MTS must have the capability to respond quickly to disruptions.

<u>Reliability</u>

The USACE "Monitoring Completed Navigation Projects (MCNP)" program supports the Corps' Navigation Business Line by addressing Maintenance and Rehabilitation issues at both coastal and inland navigation structures.

US Army Corps of Engineers

Purpose of the MCNP Program

The Advancement of Coastal and Hydraulic Engineering Technology

To determine how well Coastal and Inland Navigation projects are accomplishing their purposes (how well they are resisting attacks by the physical environment)

- Create more accurate and economical engineering solutions
- Strengthen design criteria and methodology
- Improve construction practices and cost effectiveness
- Enhance Operation and Maintenance techniques
- Reduce O&M Cost

MCNP program identifies where current technology is inadequate. (Determines where additional research is required.)

US Army Corps of Engineers

MCNP Program is Field Driven, addressing real-world problems.

Nominations for New Monitoring Projects are solicited from Corps Divisions and Districts by HQ as funding becomes available.

Nominations are Evaluated and Prioritized by the Corps' Navigation Research Area Review Group.

Structures with Unique Features and/or Distinct Problems.

Site-specific monitoring is intended to produce Generic results with conclusions applicable on a regional and/or national basis.

US Army Corps of Engineers

Monitoring Completed USACE Navigation Projects <u>FY10 Program</u>

Periodic Inspections (coastal around the Nation)

US Army Corps of Engineers

Periodic Inspections, Coastal Nationwide

Problem

Lack of long-term structure performance data in a consistent format.

Need to gather, analyze, and archive detailed coastal structure condition, performance, and response data on a relatively small number of structures.

Benefits

Better performance knowledge translates to better designs and lower O&M costs.

Galveston Ship Channel, TX

US Army Corps of Engineers

Montgomery Point Lock and Dam, White River, AK

US Army Corps of Engineers

<u>Marmet Locks and Dam, Kanawha River, WVA</u>

US Army Corps of Engineers

John Day Lock and Dam, Columbia River

US Army Corps of Engineers

Kaumalapau Harbor Breakwater

Before

After

US Army Corps of Engineers

Great Lakes Breakwater Armor, Stone Testing Protocols and Durability

Product Delivery Team

Danny Harrelson (PI) and Joe Tom, GSL, ERDC; Mansour Zakikhani, EL, ERDC District Team Members: Joe Kissane, LRC; Michael Allis, LRE; Jon Kolber, LRB Ron Erickson, Consultant (formerly LRE District Geologist)

Problem

Specifications for armor stone for breakwaters and jetties include <u>objective criteria</u> from laboratory tests, and <u>subjective criteria</u> based on quarries and stockpiles. Issues related to stone durability. Variability of quality between and within quarries exceedingly problematic.

ASTM tests presently used were designed for small concrete aggregate and stone many orders of magnitude smaller than stone on breakwaters. These small-scale tests are not appropriate for stone weighing tens of tons.

US Army Corps of Engineers

Present Lab Test Criteria

 Specific Gravity **ASTM C 127 ASTM C 127** Absorption Los Angeles Abrasion **ASTM C 535** Freeze/Thaw **ASTM D 5312** Wetting/Drying **ASTM D 5313 Petrographic Examination ASTM C 295** \mathbf{O} **Field Examination ASTM D 4992**

US Army Corps of Engineers

Great Lakes Armor Stone Design

Field Monitoring and Observations

Laboratory Testing and Analyses

Numerical Modeling and Software Development

Innovative Technology Development

US Army Corps of Engineers

Index Stone on Keweenaw Waterway Structure, MI Lake Superior

US Army Corps of Engineers

<u>Concrete Armor Units, Ashtabula Harbor Breakwater, OH</u> <u>Lake Erie</u>

US Army Corps of Engineers

<u>Great Lakes Armor Stone Study</u> Field Monitoring and Observations

- Selected Sites (Index Stones):
- **Burns Harbor (10)**
- 2) Cleveland Harbor (10)
 3) Keweenaw Waterway (10)
- Conducted six rounds of monitoring at Keweenaw Waterway
- Conducted five rounds of monitoring at Cleveland Harbor
- Conducted four rounds of monitoring at Burns Harbor

US Army Corps of Engineers

<u>Great Lakes Armor Stone Study</u>

Laboratory Testing and Analysis

Laboratory Test Stones

- Granite 1)
- 2) 3) Quartzite
- **Valders Limestone**
- Indiana Limestone
- **Cleveland Sandstone**
- Laboratory Tests:
- Abrasion
- **Freeze-Thaw**
- 3) Wet-Dry
- Optimum Rock Size:

3 ft x 3 ft x 3 ft

US Army Corps of Engineers

<u>Great Lakes Armor Stone Study</u>

Numerical Modeling and Software Development

- Evaluation Models:
- **Degradation Model**
- 1) 2) 3) **Freeze-Thaw Model**
- **Heterogeneity Model**
- Other Options:
- **Optimization**
- 2) 3) Design
- Animation
- **Statistical**

US Army Corps of Engineers

	Wednesday Mon				
	UstpatStaffam	Results	(Degradation I	Aodel)	LICK)
	The assess	and it rough	A Real sold, force on service	on took amond its	(men)
	the line for the	La ra			x With Research at
	Bullar Wright	1.00			
	Tears in Service	3			1 (years)
		Sample	6.62	w	(unnes)
	Weight Reduction	an (%)	10	— x	
					10

Freeze-Thaw Intensity Model Assessment

Degradation Model

Assessment

Heterogeneity Assessingft Hydraulics Laboratory - ERDC

MCNP- Great Lakes Armor Stone Study

Innovative Technology Development

- Development of Advanced Field, Laboratory, and Numerical Techniques
- 1) Seismic
- 2) Magnetic Resonance Imaging3) Rock Heterogeneity & Design

US Army Corps of Engineers

Magnetic Resonance Images

ooastar an<mark>d Hydr</mark>

Armor Design Assessment

John T. Myers Locks and Dam, Ohio River

US Army Corps of Engineers

John T. Myers Lock and Dam, Ohio River

US Army Corps of Engineers

Upstream Entrance Innovative Repair Demonstration 2006

US Army Corps of Engineers

Downstream Entrance Innovative Repair Demonstration 2007

US Army Corps of Engineers

1,200-ft Guide Wall Innovative Repair Demonstration 2008

US Army Corps of Engineers

Questions?

US Army Corps of Engineers