

Comparative Simulation Study of Intermodal Yard Operations in Automated Container Terminal

TRB CMTS Conference June 29th, 2010

Arnold and Mabel Beckman Center of the National Academies Irvine, California

moffatt & nichol

creative people, practical solutions.

Presentation Outline

- Background
- Simulation of the two proposed intermodal yard layout
- Results and conclusions

Moffatt & Nichol

• A consultant firm providing many engineering services.

- Expertise in maritime related infrastructures included planning and designing
- Port planning group
 - Mainly container terminal planning and design

Container Terminal Operation - Berth

Container Terminal Operation - Yard

Container Terminal Operation - Gate

Container Terminal Operation – Intermodal

Project Background

- US west coast automated container terminal
- 3 M+ TEU annual throughput capacity
- Large vessels
- Limited backland
- High percentage of Intermodal Yard (IY) throughput

Proposed Option – Wheeled Buffer

moffatt & nichol

Alternative Option – Grounded Buffer

Grounded Buffer

June 29th , 2010

moffatt & nicho

High Level Comparison of Two Options

Wheeled Buffer Grounded

Can proposed layouts finish given throughput? Equipment requirement? Which layout to recommend?

Operational Constraints

- Trains are double stacked
- 20' containers go to the bottom tier
- One trains assigned to two tracks
- Safety rule
 - Cranes cannot work on a train segment while wheel change is taking place
 - Cranes cannot move a container over a moving train engine
 - Cranes cannot move a container over workers or inspectors

Example Simulation Animation

Simulation Demo of Container Terminal Operation

Simulation Logic Flow – One Train

Train Strip-Inspect-Load Process

- 1. Unlock Cones
- 2. Unload Top Tier
- 3. Remove Cones
- 4. Unload Bottom Tier
- 5. Inspection & Repair
- 6. Load Bottom Tier
- 7. Place Cones
- 8. Load Top Tier
- 9. Lock Cones and Begin Exit Sequence

A Well Car

moffatt & nichol

Simulation Screen Captures

Simulation Experiments

• Scenarios

- Two layouts
- Different working shift assumptions
- Various equipment configurations
 - Number of RMGs
 - Number of trucks

Example Simulation Outputs

Wheeled Buffer Option Scenarios								
Number of Working Shifts	3	3	3	2	2	2	2	
Number of RMG's	3	3	3	5	5	5	4	
Number of Trucks	5	10	15	15	20	25	40	
Avg Train Turn Time (hr)	44.8	9.7	8.9	12.1	10.2	10.2	12.3	
Max Train Turn Time (hr)	58.3	10.4	9.5	24.2	13.5	13.2	23.9	
Avg Track Occupancy (%)	100	34.7	31.8	43.3	36.4	36.4	43.9	
RMG Net Prod (mph)	23.4	35.9	38.1	33.8	36.6	36.9	35.2	
RMG Utilization (%)	0.71	0.71	0.66	45.2	41.6	41.3	54.1	
Truck Turn Time at Buffer (min)	4.09	3.76	3.78	5.49	3.7	3.74	3.86	
Truck Utilization (%)	99.46	88.9	67.3	75.2	68.2	57.6	41.2	
RMG Blocked Time (%)	1.8	0.7	0.3	2	0.6	0.4	0.4	
Weekly Throughput (boxes)	8956	12763	12581	12788	12766	12766	12788	

Recommended Equipment Configuration

	Num Track RMGs	Num Buffer RMGs	Num Trucks
Wheeled Buffer	5	-	20
Grounded Buffer	4	6	25

Conclusions

- Both layouts can finish the given throughput
 - Number of tracks
 - Buffer size
- Safety rules appears not incur significant delays
- Perpendicular layout is recommended
 - Less RMG's & trucks
 - Less Space

 Simulation can help client make smart investment decisions in container terminal master planning

Thank you!

moffatt & nichol

moffatt & nicho