Evaluating Implementation of NCHRP Products: Building on Successful Practices

FINAL REPORT

NCHRP Project 20-44(P)
Evaluating Implementation of NCHRP Products

Prepared for:
National Cooperative Highway Research Program

Prepared by:
Pat Casey, Brian Hirt, Kim Linsenmayer,
Wes Alwan, and Mark Linsenmayer

CTC & Associates LLC
4805 Goldfinch Dr.
Madison, Wisconsin 53714

December 29, 2014

The information contained in this report was prepared as part of NCHRP Project 20-44(P), National Cooperative Highway Research Program.

SPECIAL NOTE: This report IS NOT an official publication of the National Cooperative Highway Research Program, Transportation Research Board, National Research Council, or The National Academies.
Acknowledgments

Funding for this study was provided through the National Cooperative Highway Research Program (NCHRP) Project 20-44, Accelerating the Application of NCHRP Research Results. The NCHRP is supported by annual voluntary contributions from the state departments of transportation (DOTs). The report was prepared by Pat Casey and his team at CTC & Associates LLC. The work was managed by Crawford Jencks, former manager of NCHRP, Nanda Srinivasan, former NCHRP senior program officer, and Christopher Hedges, manager of NCHRP, with state transportation agency oversight from David Jared, Georgia DOT, and Michael Bonini, Pennsylvania DOT.

Disclaimer

The opinions and conclusions expressed or implied are those of the research agency that performed the research and are not necessarily those of the Transportation Research Board or its sponsoring agencies. This report has not been reviewed or accepted by the Transportation Research Board Executive Committee or the Governing Board of the National Research Council.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

 Background and Objectives ... 1
 Key Findings .. 2
 Recommendations .. 4
 Supplementary Documents ... 5

INTRODUCTION ... 6

SYNTHESIS OF FINDINGS AND RECOMMENDATIONS ... 8

Section 1. Elements of Implementation Success ... 8
 Implementation Leadership ... 8
 Buy-In for Implementation ... 9
 Structural Support and Resources .. 11
 Ready-to-Use Products .. 13

Section 2. Barriers to Successful Implementation .. 15
 Insufficient Implementation Leadership ... 15
 Lack of Buy-In and Readiness ... 16
 Insufficient or Ineffective Dissemination ... 17
 Lack of an Implementable Product .. 17

Section 3. Recommendations .. 18
 Clarify and Formalize Roles and Responsibilities .. 18
 Embed Implementation in the Research Process ... 19
 Enhance and Formalize Implementation Mechanisms .. 21
 Boost Communication Processes and Products .. 21
 Expand Implementation Resources .. 23

SUPPLEMENTARY DOCUMENTS ... 24

- 4-Page Folio: Implementing NCHRP Research ... 24
- 10 Implementation Case Studies: Paths to Practice .. 24
EXECUTIVE SUMMARY

Background and Objectives

The National Cooperative Highway Research Program (NCHRP) is the states’ research program—funded by State Planning and Research funds and driven by their needs. Each year the American Association of State Highway and Transportation Officials (AASHTO) Standing Committee on Research selects 40 to 50 new projects that reflect the changing priorities and challenges of states as they plan, design, construct, operate, or maintain the nation’s highway infrastructure. The program produces more than 60 products annually that are intended to help states improve the way they do business.

NCHRP surveys its project panelists and principal investigators on a four-year cycle to learn about project outcomes, successes, and challenges. The most recent survey, conducted in 2012 for projects completed between June 2004 and June 2009, revealed that NCHRP products are being used extensively. The results are being incorporated into state practices, support the development of AASHTO standards, and are being used as the basis for state-specific follow-up research.

However, NCHRP is committed to continuous process review and improvement. To identify ways to further facilitate the application of its products, NCHRP initiated this project with the following objectives:

- Identify the people, processes, and practices that have supported successful, effective, and efficient application of research results.
- Analyze the factors that promote—or prevent—NCHRP product implementation.
- Develop criteria to guide future activities that support implementation.
- Recommend process improvements by NCHRP and others to meet the criteria and overcome obstacles.

To meet these objectives, we gathered and analyzed information from three sources:

- Interviews with more than 60 NCHRP project panelists about implementation activities on specific projects.
- Interviews with representatives from the three national bodies that drive NCHRP—the Transportation Research Board (TRB), AASHTO, and the Federal Highway Administration (FHWA)—to learn how these organizations and their staffs work independently and in concert to help disseminate and implement NCHRP products.
- An online survey and follow-up interviews with state research directors to learn how states are making use of NCHRP products, and how they are systematically tracking or promoting the use of NCHRP.
Key Findings

Elements of Implementation Success

Implementation success is associated with planning ahead for implementation (what will change, who will make the change, what is needed to support the change); establishing organizational channels for carrying out the implementation; and providing strong leadership to see the process through. Specifically, the following key elements have contributed to successful application of NCHRP results.

Implementation Leadership

No one position or organization is responsible for implementing NCHRP research results. Implementation champions—individuals or groups who consider it their role to initiate and oversee the implementation and follow through with this commitment—are needed. As the owners and users of NCHRP research, state department of transportation (DOT) managers and practitioners take on especially strong roles in implementing research results—as participants on NCHRP project panels and AASHTO committees, and as leaders within their state organizations. Their efforts are supported, guided, and coordinated by individuals within TRB, AASHTO, and FHWA who are committed to seeing the research implemented.

Buy-In for Implementation

The interviewees for this project repeatedly mentioned the importance of getting support for implementation from the beginning of the project. Support needs to come from those who will lead the implementation efforts, those who will be affected by the research, and those who will provide the channels for presenting the findings. This means communicating the project goals and interim results to stakeholders in an understandable way, gaining and leveraging the support of AASHTO and FHWA for upcoming changes, and addressing stakeholder concerns before the project is complete. Even after the research has concluded, the application of findings must be promoted in a way that acknowledges potential reservations or challenges among the users. Implementation champions build confidence in the research products through webinars, pilot projects, workshops, and other information and demonstration initiatives.

Structural Support and Resources

Beyond having the necessary people to support implementation, the interviewees discussed a range of mechanisms and resources that have been used to share the research results with those who will apply them. The TRB, FHWA, and AASHTO committees, task forces, and working groups provide critical channels for disseminating the results to end users and offering technical support and guidance for effective application. State DOT technical teams and oversight committees also play key roles in facilitating implementation, initiating changes to policy and practice documents, and partnering with industry and universities to train staff on new approaches and techniques.
Research Products That Address a Real Need and are Ready to Use
Research results are not always “field-ready,” or easily understood and applied without additional assistance. Implementable deliverables go beyond final reports to include demonstration software, websites, policy guidance, and training manuals. The project investigator provides some of these products, but the TRB, FHWA, and AASHTO project panel members and implementation leaders also provide additional support and guidance to make these products possible.

Targeted Dissemination
The dissemination of NCHRP project results is a fundamental step toward successfully implementing research findings. However, communication efforts are most effective when they are targeted to those who can act on the new information. Dissemination activities should focus on getting the right information to the right people in the right format at the right time.

Barriers to Successful Implementation
Those elements that can help lead to success for some projects (strong leaders, formal structures, effective products) are typically lacking in cases where implementation is unsuccessful. In particular, interviewees for this project described the following challenges for effectively implementing NCHRP research results.

Insufficient Implementation Leadership
Effective implementation of NCHRP research results requires strong leadership by designated individuals at the national and state levels. The interviewees described two primary types of implementation challenges related to leadership: 1) limited time or influence of those in leadership roles (particularly because of the volunteer nature of serving on NCHRP project panels) and 2) lack of designated implementation champions with clearly defined roles.

Lack of Buy-In and Readiness
When support for the research is not achieved, there can be a backlash to implementation that prevents it from progressing. Ensuring that stakeholders are sufficiently informed and supportive of new or upcoming research results can be a challenge, especially if the channels for communicating with end users are not evident.

Interviewees also described the challenge of achieving “readiness” to apply research results. They spoke repeatedly about a range of institutional barriers to implementation within DOTs: resistance to change, distrust of the product, aversion to risk, fear of liability, agency priorities, concerns about public perception, and political issues.

Insufficient or Ineffective Dissemination
Although the interviewees frequently described the successful dissemination—and use—of research results, dissemination challenges were a recurring roadblock to implementation. Multiple interviewees said that it was difficult to extract information from the many NCHRP reports shared with them or to see how results were applicable within their states. They commented that some
research results needed to be better explained or translated for user audiences or that they needed assistance marketing the results within their department. Several also noted that it can be difficult to get the research results to the right people at the state and local levels. Simply raising awareness among potential users that the research products are available can be a significant challenge.

Lack of an Implementable Product

Several interviewees noted that the findings included in NCHRP research reports are not always sufficient for implementation. States may need to do a lot of their own work to expand on or customize the results for their use, which requires money and personnel that they may not have. In other cases, the findings may be sufficient, but the language used is too technical for end users to effectively digest or promote to their senior managers.

Recommendations

The interviewees recommended a number of improvements for implementing NCHRP research, and additional themes emerged through the analysis of the task findings. Although many practices that support application of NCHRP results are already in place, there are opportunities for expanding or formalizing these effective practices to benefit even more projects. Key recommendations follow.

Clarify and Formalize Roles and Responsibilities

Many of those interviewed for this project thought that it was up to the states to implement NCHRP research results. They described NCHRP as being the states’ research program, indicating that states should take responsibility for applying the results. Yet, interviewees repeatedly said that they thought NCHRP should be more focused on implementation, do more to share research findings and support implementation by the states, provide more implementation resources, and be a leader in coordinating efforts among national and state agencies.

In addition, there is a need to formalize the selection of implementation champions and their leadership responsibilities to ensure that more (if not all) projects get attention. This means clarifying the roles of TRB staff, FHWA staff, project panelists, and the investigator.

Embed Implementation in the Research Process

Although NCHRP requires an implementation plan for research projects, many interviewees saw a need for NCHRP to embrace a culture of implementation. In other words, NCHRP should more formally embed implementation in the entire research process—from project and panel selection to the handling of interim results, to the distribution and marketing of findings.

Enhance and Formalize Implementation Mechanisms

Implementation related to projects in well-defined technical areas, such as bridge design and highway materials, is relatively straightforward. Well-established channels (the AASHTO committees) exist for sharing research results, established guidance documents that the research feeds into, and established
processes for inviting feedback while the research is still underway. NCHRP should look for opportunities to replicate or modify these implementation mechanisms in other topic areas. In other words, NCHRP can play a key role in connecting NCHRP panel members with the national or regional committees, working groups, or other topically oriented entities in each research area. These groups can ensure the buy-in that is needed, help promote the research findings, and help refine the research products for optimal assimilation by end users.

Multiple interviewees also mentioned the need for improved coordination and collaboration with FHWA and AASHTO on implementation. Their involvement and support lend credibility to the findings, which support implementation, and they often have relationships with end users that can be used to promote research results.

Boost Communication Processes and Products

Interviewees described a critical role for NCHRP in disseminating research results and talked repeatedly about the need for NCHRP to enhance and expand the communication approaches used. They wanted NCHRP to be much more aggressive about sharing findings through ongoing, targeted communication products.

Expand Implementation Resources

The interviewees expressed the need for additional NCHRP resources to support effective implementation by the states. Even if the states are responsible for incorporating the findings into their practices, they are not always able to get the buy-in and resources they need to follow through. NCHRP already funds on a limited basis implementation projects that develop tools and guidance, demonstration projects with lead states, webinars to explain results, and other forms of technical assistance. However, there doesn’t appear to be a formal mechanism for evaluating the need for, and providing funding for, additional implementation resources on a project-by-project basis.

Supplementary Documents

In addition to synthesizing and documenting the task findings in this final report, NCHRP requested two companion deliverables, which are included at the end of this report:

4-Page Folio: Implementing NCHRP Research

This four-page summary of the project findings presents the key elements of successful NCHRP project implementation, the roles of state and national leaders in implementing results, and the implementation activities that should be incorporated into each step of the project life cycle.

10 Implementation Case Studies: Paths to Practice

CTC & Associates developed 10 two-page case studies of selected NCHRP products highlighting a range of effective approaches to implementation discussed with the interviewees for this project.
INTRODUCTION

The National Cooperative Highway Research Program (NCHRP) surveys its project panelists and principal investigators on a four-year cycle to learn about project outcomes, successes, and challenges. The most recent survey, conducted in 2012 for projects completed between June 2004 and June 2009, revealed that NCHRP products are being used extensively. The results are being incorporated into state practices, support the development of the American Association of State Highway and Transportation Officials (AASHTO) standards, and are being used as the basis for state-specific follow-up research.

However, there is room for improvement. To identify ways to further facilitate the application of its products, NCHRP initiated this project with the following objectives:

- Identify the people, processes, and practices that have supported successful, effective, and efficient application of research results.
- Analyze the factors that promote—or prevent—NCHRP product implementation.
- Develop criteria to guide future activities that support implementation.
- Recommend process improvements by NCHRP and others to meet the criteria and overcome obstacles.

To meet these objectives, NCHRP requested three tasks to gather information about implementation successes, barriers, and opportunities:
Task 1. Interviews with NCHRP project panelists to learn details about and characterize NCHRP projects that were implementable and implemented (and just as importantly, to gain similar insights about those that weren’t).

Task 2. Interviews with the three national bodies that drive NCHRP—the Transportation Research Board (TRB), AASHTO, and the Federal Highway Administration (FHWA)—to learn how these organizations and their staffs work independently and in concert to help disseminate and implement NCHRP products.

Task 3. An online survey and follow-up interviews with state research directors to learn how states are making use of NCHRP products, and how they are systematically tracking or promoting the use of NCHRP.

This final report documents the results of these tasks, synthesizes the findings, and provides recommendations for improving implementation of NCHRP projects going forward. The report also includes the following supplementary documents requested by NCHRP:

- **4-Page Folio: Implementing NCHRP Research**
 This four-page summary of the project findings presents the key elements of successful NCHRP project implementation, the roles of state and national leaders in implementing results, and the implementation activities that should be incorporated into each step of the project life cycle.

- **10 Implementation Case Studies: Paths to Practice**
 These two-page case studies of selected NCHRP products highlight a range of effective approaches to implementation discussed with the interviewees for this project.
SYNTHESIS OF FINDINGS AND RECOMMENDATIONS

The following sections present the findings from an analysis of all interview and survey responses across the three primary project tasks. These findings are organized to address the key objectives of the project: elements of implementation success, barriers to implementation, and recommendations for improving implementation in the future. For a detailed description of the interview and survey methodology, as well as the results by task, refer to the appendices of this report (available as a separate document).

Section 1. Elements of Implementation Success

This section describes the key people, products, and structures that have supported successful implementation of NCHRP research in the past. Not surprisingly, implementation success is related to planning for implementation (what will change, who will make the change, what is needed to support the change); establishing organizational channels for carrying out the implementation; and providing strong leadership to see the process through. Below is an overview of these key elements, organized into the following subsections:

- Implementation Leadership
- Buy-In for Implementation
- Structural Support and Resources
- Ready-to-Use Products

Implementation Leadership

No one position or organization is responsible for implementing NCHRP research results. Instead, implementation champions are needed—individuals or groups who consider it their role to initiate and oversee the implementation and follow through with this commitment. According to the interviewees, implementation champions may be project panel members, TRB or FHWA staff, investigators, or leaders from AASHTO or TRB committees.

As the owners and users of NCHRP research, state department of transportation (DOT) managers and practitioners take on especially strong roles in implementing research results—as participants on NCHRP project panels and AASHTO committees, and as leaders within their state organizations. Their efforts are supported, guided, and coordinated by individuals within TRB, AASHTO, and FHWA who are committed to seeing the research implemented.

Below are a few examples provided by interviewees of implementation leadership roles from past NCHRP projects:

- **TRB Staff:**
 - Formed a task force to support the development and publication of a new manual.
• Communicated project status, expected results, and implementation goals within TRB, with AASHTO, and with FHWA.

NCHRP Panel Members:
- Communicated the project findings to staff in their own DOTs, oversaw customization of final products, and shared their successes with other states.
- Distributed the final product via e-mail to all state DOTs and federal agency administrators.
- Shared the project findings at AASHTO and TRB committee meetings.

AASHTO Committee Members:
- Participated on project panels to provide input and prepare for updates to national specifications.
- Coordinated with TRB task groups to develop materials to support implementation.

FHWA Staff:
- Led a marketing effort to distribute new guides that resulted from NCHRP research.
- Hosted webinars to share research results.

Principal Investigators:
- Presented the research findings at TRB and AASHTO meetings.
- Drafted language for updating national specifications.

In some cases, the interviewees emphasized the critical role of a single individual in leading and promoting implementation of the results. In other cases, they viewed implementation as a collaborative effort among multiple individuals and groups.

Buy-In for Implementation

The interviewees for this project repeatedly mentioned the importance of getting support for implementation from the beginning of the project. The purpose is to ensure support for bringing the results into practice among those who will lead the implementation efforts, those who will be affected by the research, and those who will provide the channels for distributing the findings. Successful implementation efforts typically involve the following key steps to ensure that this needed buy-in occurs.

Involve the Right People—From the Beginning

The individual who will serve as the implementation champion should be involved in the research project itself, informing the research need, approving how the project is being conducted, and reviewing how the research product is being developed. As mentioned above, project panel members frequently take the lead on implementation, perhaps partly because they feel an obligation to see the projects through to completion, but also because their project involvement has fostered their own buy-in and support for using the results. Several of the AASHTO Research Advisory Committee members interviewed described their state DOTs’ efforts to get staff on as many project panels as possible. They know that their involvement in the projects improves awareness of the research results within their agencies. It prompts
them to share the research activities in progress and promote the findings enthusiastically within the DOTs. Ultimately, their involvement from the beginning of the project supports implementation at the end. Conversely, an implementation champion assigned later in the research process will not always be as effective as one involved early on.

The interviewees also described the importance of involving potential end users well before the project concludes. This means communicating the research need and value with DOT managers, sharing expectations and opportunities with subject area experts within DOTs, and inviting feedback from industry representatives about potential changes to practice. The goals are to address concerns, build support, and avoid roadblocks that can disrupt or halt implementation.

Finally, interviewees talked about preparing organizational implementation channels to ensure that research results are distributed and used. Examples of such channels include TRB committees, AASHTO committees, industry organizations, and FHWA expert task groups. These groups provide an important conduit of information to end users, and their support is often needed before implementation can proceed. Many national guidance documents and specifications produced by AASHTO and FHWA, for example, are informed by NCHRP research. However, changes to these documents won’t take place without organizational support for the change. Recognizing the roles that these groups play in implementation and effectively involving them early on in the research will help ensure broad implementation of the results.

Communicate Often

Effective involvement of all stakeholders is not possible without good communication. Interviewees described a range of communication approaches employed throughout the research process to effectively raise awareness and encourage support for the research. Examples include providing interim project updates at committee meetings, meeting with technical groups about potential implementation needs, and hosting webinars to explain and promote research results. These communications need to happen frequently, starting from the very beginning of the project, and with all relevant stakeholders.

The interviewees also described how communication approaches were tied to implementation goals. For example, frequently reaching out to technical committees and stakeholders who may be impacted by possible implementation helps to build relationships that make end users more receptive to the findings. Sharing interim research reports, when changes to the final products are still possible, fosters trust and helps avoid unexpected roadblocks. Assisting with the development of specifications that result from the research can help ensure the new guidance will be understood and accepted as a national standard. Producing webinars or research summaries puts usable information in the hands of practitioners.

Address Concerns

Several interviewees described successfully overcoming resistance to implementation by addressing stakeholder concerns during the research process. In some cases, educating stakeholders about the research and giving them a chance to raise questions and concerns is enough to get their buy-in. In other cases, it may be necessary to make course corrections to the research if there is no clear path forward to
implementation. Addressing concerns requires seeking feedback from stakeholders in the first place. It’s an extra step that requires a commitment of time and resources, but several interviewees for this project touted the benefits for implementation. The alternative can be that the research is questioned—or worse, attacked—based on its content or applicability to practice, and then doesn’t have a chance to get used.

NCHRP has focused considerable effort on this aspect of implementation, playing a strong communication and coordination role to ensure that there is buy-in among stakeholders. NCHRP staff is assigned to individual AASHTO committees, subcommittees, and technical groups, and works closely with them on an ongoing basis. One illustrative example is the interaction between TRB’s Waseem Dekelbab and the Subcommittee on Bridges and Structures (SCOBS). About 30 related NCHRP projects are underway at any one time and Dekelbab reports to SCOBS on the progress of each, providing interim results and asking for feedback for the principal investigators. Dekelbab attends as many of the 20 technical committees as he can during the annual and midyear SCOBS meetings.

TRB staff attends AASHTO committee meetings to hear research problems, recommend AASHTO committee members to serve on relevant NCHRP panels, and coordinate between TRB committees and the corresponding AASHTO committees. As both subject area experts and program leaders, TRB staff members are well-positioned to establish links with individuals and organizations that will make implementation possible and effective.

Structural Support and Resources

Beyond having the necessary people to support implementation, the interviewees discussed a range of mechanisms and resources that have been used to share research results with those who will apply them. Below is a brief overview of these implementation channels that have made real-world application of the research findings possible.

National Outreach

Most interviewees considered “getting the word out” an implementation activity in itself, even though additional steps are required beyond dissemination for the results to be incorporated into practice. Often interviewees assumed that if managers and practitioners had access to the results (new information, guidance, or tools), they would use these results to apply what was useful to them in their own agencies.

Research results and products are disseminated via topical automated mailing lists and websites; transportation libraries; National Highway Institute (NHI) training courses; presentations at TRB and AASHTO committee meetings or national conferences; and information sharing events, such as TRB or FHWA workshops and webinars. FHWA expert task groups and resource centers also help distribute research findings and encourage incorporation into practice. All of these formal and enduring structures support ongoing dissemination of research results among both government and industry stakeholders.

For some projects, implementation leaders have created subcommittees to develop educational materials that will support implementation at the state or local levels and working groups to connect end users with
new guidance and tools. Development of the *Highway Safety Manual* (NCHRP 17-27), for example, involved multiple projects and numerous stakeholders. The project panel formed a user liaison subcommittee to work with researchers and practitioners who would be adopting and using the manual. The subcommittee identified potential users of the manual and identified venues for improving understanding of the new research.

State Outreach

As members of NCHRP project panels, state DOT staff helps establish distribution channels and mechanisms for sharing NCHRP results at the state level. Several interviewees described working with their senior management, field staff, and FHWA to customize and apply NCHRP findings for their own needs. This commitment to implementing NCHRP research at the state level is critical; the state’s investment in NCHRP research is not realized until the research is implemented.

Several state DOTs have dedicated positions for implementation through their research programs. Iowa DOT has an implementation engineer, Minnesota DOT has a research and implementation program development engineer, and Pennsylvania DOT has 1.5 to 2 full-time employees working on implementation. Though none described activities solely focused on NCHRP implementation, there is a growing awareness and emphasis on the role that these employees can play in supporting NCHRP project implementation within their agencies. Additional DOT research managers described the established outreach and distribution channels they have in place for sharing NCHRP research reports to the applicable staff so they are aware of the information.

Funded Implementation Projects

NCHRP formally supports outreach and dissemination activities by providing some funding specifically for implementation. Sometimes this funding is built into the research project budget as a required component of the work. In other cases, NCHRP provides funding for separate projects to support implementation of the findings from research that has already been completed. This implementation funding supports a range of outreach and technical assistance activities that vary based on the information that needs to be shared and the intended audience. Below are just a few examples of NCHRP-funded implementation activities.

Lead States Initiative for Implementing the Highway Safety Manual. Through NCHRP Project 17-50, NCHRP helped to expedite implementation of the HSM around the country. The project funded pilot implementation projects using a lead state model, development of the *Highway Safety Manual User Guide* based on the experiences of the lead states, peer exchanges with support states, and webinars to further support the sharing of best practices.

Highway Capacity Manual Applications Guide (Project 03-64). The guide developed in this research encourages implementation of the *Highway Capacity Manual* by showing how to appropriately apply its methodologies to real-world problems and indicating when other methods may be more appropriate.
Training for Human Factors Guidelines (NCHRP Report 600). This implementation effort involved the development of training modules by the contractor. The activity used a lead states model, with six states leading outreach efforts. To fund this implementation, TRB took advantage of residual contract funds from the original research project.

Project 1-40 Research, Implementation of MEPDG (Project 1-37). This series of projects included a three-day workshop with two people from each state DOT on how MEPDG was developed and how to use it. Implementation funds also supported an independent review of the MEPDG guide, and another contract was used to repair the bugs in the MEPDG software.

E-learning Website for Mobile LiDAR Guide (NCHRP Report 748, Project 15-44). This website was developed with input from the project panel. NCHRP implementation funds were used to develop the site and host it for five years. The site will include a class and serve as a repository for information. In addition, the class content from the site will be shared with NHI for possible use.

Implementing Transportation Data Program Self-Assessment (NCHRP Project 08-92). This project, currently in progress, is designed to review and revise a methodology developed through previous NCHRP research, produce a guidebook for implementation of the methodology, and develop case studies for applying the revised methodology.

NCHRP U.S. Domestic Scan Program (NCHRP Project 20-68A). To accelerate implementation of leading practices, this program sponsors up to five scans per year on targeted topics to put state and federal DOT practitioners in touch with innovative peers around the country. Through traveling scans or peer exchange meetings, participants learn firsthand how a new technology or practice works in the real world and develop close professional relationships that remain readily available to them after the scan. A recent parallel effort funded under this project has focused on providing support and facilitation for post-scan information dissemination and implementation activities.

Webinars. About 10 of the webinars completed each year through TRB focus on recent NCHRP products. These webinars are requested by NCHRP staff or TRB committee chairs, and funding for them is often built into NCHRP project costs. Workshops and seminars have also been included in project funding for selected NCHRP projects.

Ready-to-Use Products

Multiple interviewees described the need for supplemental research products that can be shared through the distribution channels described above, beyond the final report required of all NCHRP projects. Research results may not be “field-ready,” or easily understood and applied without additional assistance. In several cases, the interviewees pointed to an implementable product that made the difference in their agencies’ willingness and ability to implement the findings.
Implementable deliverables have included demonstration software, websites, policy guidance, and training manuals. In some cases, the project investigator provides these additional products, but often the panel members and staff from FHWA, TRB, and AASHTO get involved in creating products that support implementation.

AASHTO Publications

The implementable product most frequently described as effective by the interviewees is a manual or guidance document produced through an AASHTO committee. NCHRP research projects feed into more than 100 different AASHTO publications overseen by AASHTO committees, such as the following:

- *Highway Safety Manual*
- *LRFD Bridge Design Specifications*
- *A Policy on Geometric Design of Highways and Streets*
- *Strategic Performance Measures*

The effectiveness of these products stems not only from their recognition as national standards but also from the formal processes that are in place to produce or update them. The interviewees described well-established mechanisms for coordinating with AASHTO committees on research needs and results related to guidance documents. Below is just one example of this implementation process, as described by an interviewee for this project:

> “The research was presented at the annual meeting for the AASHTO bridges subcommittee on culverts before the report was finalized. Any changes resulting from the research were discussed so that once the research was finished, the proposed changes could be taken back to the committee to get their buy-in. Once the subcommittee approved the changes, they were taken to the AASHTO bridges committee for a review and vote by all of the chief bridge engineers from the 50 states. Their approval means the changes get incorporated into the AASHTO guidance.”

As with other forms of results dissemination, the existence of a guidance document does not necessarily mean that people are using it or that the results have been applied. However, the interviewees repeatedly said they considered a project implemented if the findings had been incorporated into an AASHTO publication. Because so many DOTs use these documents, interviewees typically expected that states would incorporate any new information into their practices whenever practical to do so.

FHWA Publications and Programs

NCHRP projects often serve as foundational resources for FHWA guidance documents and programs as well, such as:

- Accident Modification Factors
- Safety Countermeasures
- Roundabouts
Implementation of NCHRP research is typically planned in advance for projects where FHWA has submitted a proposal or contributed funding. In these cases, the research topic may be part of an FHWA research roadmap or strategic plan.

Section 2. Barriers to Successful Implementation

Those elements that can help lead to success for some projects (strong leaders, formal structures, effective products) are typically lacking in cases where implementation is not successful. Below is an overview of the specific challenges that interviewees shared related to implementing NCHRP, organized into the following subsections:

- Insufficient Implementation Leadership
- Lack of Buy-In and Readiness
- Inconsistent Implementation Processes
- Lack of an Implementable Product

Insufficient Implementation Leadership

The interviewees described two primary types of implementation challenges related to leadership: 1) limited time or influence of those in leadership roles and 2) lack of designated implementation champions with clearly defined roles.

Limited Time or Influence

Not surprisingly, successful implementation can be limited by the reach of those taking on a leadership role. For example, implementation may happen in one state agency because of the leadership provided by a single panel member from that state. For implementation to happen in multiple states, it is often necessary for multiple individuals or groups to take on leadership roles. Research results often need to be customized for end users based on the unique environment of each state or agency. This means that leadership is needed to promote the findings at both the national level and the state or local levels.

As noted by a few of the interviewees, serving on an NCHRP project panel is a volunteer activity. It can be difficult for panel members or others charged with leading implementation to prioritize implementation efforts among their formal job duties. This can lead to delays in implementation and lost
enthusiasm for incorporating the results into practice. The interviewees also raised a number of concerns related to the makeup of project panels. For example, when there is not adequate representation from both the technical/research side of a problem and the practical/end user side, the final research product may not be well-suited for implementation. Also, not all panel members may be willing or able to take on a leadership role in promoting the research results.

No Clear Champion

As much as an implementation leader can drive successful implementation, the lack of a designated leader makes effective implementation very difficult. It was common for interviewees to cite the need for a champion when describing why results were not implemented as hoped or why implementation activities stalled. For example, one interviewee said that some findings have been “kicking around between committees” and nobody will take charge of them. Another said that implementation got off to a great start, but the ball was dropped after the project champion retired.

This lack of designated champions with defined implementation roles appears related to ambiguity surrounding implementation responsibilities at an organizational level. Some interviewees thought NCHRP should lead implementation efforts, while others thought it was up to AASHTO or the states. Even at the state level it is not always clear who should take the lead on implementing results. It could be the staff that serves on NCHRP project panels or national committees, DOT research office staff, leaders in local agencies, or others.

Lack of Buy-In and Readiness

Successful implementation relies on both the willingness and readiness of organizations and individuals to embrace and apply new ideas and practices. As described earlier in Elements of Implementation Success, the interviewees provided examples of proactive efforts to ensure buy-in or willingness among stakeholders. When buy-in is not achieved, however, there can be a backlash to implementation that prevents it from progressing. Ensuring that stakeholders are sufficiently informed and supportive of new or upcoming research results can be a challenge, especially if the channels for communicating with end users are not evident. For example, research that feeds into an AASHTO guidance document benefits from the AASHTO committee structure and publication development process when it comes to sharing information with the intended audience. However, it may be harder to achieve buy-in for subject areas that are more focused on policy or that are breaking into brand new territory in terms of national guidance.

A more significant challenge for implementation described by many of the interviewees is the readiness of organizations and individuals to apply research results. They spoke repeatedly about a range of institutional barriers to implementation within DOTs: resistance to change, distrust of the product, aversion to risk, fear of liability, agency priorities, concerns about public perception, and political issues.

Related to implementation readiness is the cost of using research results, both in terms of purchasing power and staff resources. Many interviewees said that they lacked the time to digest and apply new
research findings or lacked the funding to purchase software or equipment called for in implementation. They also described the challenge of keeping staff versed on the latest science and technologies when they have been out of school for years.

Although the interviewees shared many examples of effective implementation practices aimed at anticipating and avoiding challenges related to buy-in, efforts to anticipate readiness challenges were notably lacking.

Insufficient or Ineffective Dissemination

Dissemination of research results was described frequently as a successful implementation practice by the interviewees. Despite the successes mentioned, however, the interviewees repeatedly cited dissemination challenges as a recurring roadblock to implementation. Multiple interviewees said that it was difficult to extract information from the many NCHRP reports shared with them or to see how results were applicable within their states. They commented that some research results needed to be better explained or translated for user audiences or that they needed assistance marketing the results within their department.

Several also noted that it can be difficult to get the research results to the right people at the state and local levels. As one interviewee shared:

> “I’m only in charge of one part of the state; the districts are on their own. Implementation in my area was up to me, and I haven’t tried to expand it into other areas of the state. While one could find something like this on the web, that’s not generally how it works; district personnel are going to ask their central office staff, all of whom are too busy to develop new standards and practices to implement. A lot of projects, whether funded by NCHRP or not, don’t get rolled out statewide. There’s just one guy in the research office dealing with 60 projects; he doesn’t have time to promote them.”

Research results that feed into existing national guidance documents or specifications are typically implemented through formal processes within TRB or AASHTO committees. The processes used for other types of research results, however, are often developed on a case-by-case basis by those most interested in seeing the results applied. Therefore, projects with no clearly defined implementation champion or process may not receive the attention needed to ensure application of the findings.

Lack of an Implementable Product

Several interviewees noted that the findings included in NCHRP research reports are not always sufficient for implementation. States may need to do a lot of their own work to expand on or customize the results for their use, which requires money and personnel that they may not have. In other cases, the findings may be sufficient, but the language used is too technical for end users to effectively digest or promote to their senior managers. There are also times when more research is needed, either at the national or state level, to provide a complete understanding of a problem or guidance on the solution. Any of these challenges can cause implementation to pause or even halt.
Section 3. Recommendations

This section outlines recommendations for improving NCHRP research implementation. Many of these recommendations were suggested directly by the interviewees, but others arose through an analysis of findings. As described earlier in Elements of Implementation Success, there are already many practices in place that support application of NCHRP results. The recommendations below include opportunities for expanding or formalizing these effective practices to benefit even more projects. The recommendations are organized by the themes that emerged during analysis, focusing on those opportunities that repeatedly arose during conversations with interviewees:

- Clarify and Formalize Roles and Responsibilities
- Embed Implementation in the Research Process
- Enhance and Formalize Implementation Mechanisms
- Boost Communication Processes and Products
- Expand Implementation Resources

Clarify and Formalize Roles and Responsibilities

The Role of NCHRP

Many of those interviewed for this project thought that it was up to the states to implement NCHRP research results. They described NCHRP as being the states’ research program, indicating that states should take responsibility for applying the results. They also pointed out the need for customizing research findings to fit the unique needs and environments at the state and local levels, noting that this is best accomplished by the states. Yet, interviewees repeatedly said that they thought NCHRP should be more focused on implementation, should do much more to share research findings, should do more to support implementation by the states, should provide more implementation resources, and should be a leader in coordinating efforts among national and state agencies. This disconnect suggests a significant need for NCHRP to clarify the program’s role in implementation and how that role will affect allocation of resources, both in terms of staff and project funds.

Champion Selection and Responsibilities

There does not appear to be a formal process for selecting implementation champions and defining their responsibilities in leading implementation efforts. In some cases, panel members assume it is their responsibility to do as much as they can to share results, especially within their own agencies or at TRB or AASHTO meetings. In other cases, TRB or FHWA staff takes the lead in disseminating research results or developing products that support implementation by the states. There is enough enthusiasm and respect for the NCHRP research process and what comes out of it that many individuals and organizations do already step up to lead implementation efforts. However, implementation is too important to be left to the enthusiasm of the staff and volunteers involved. There is a need to formalize the selection of
implementation champions and their leadership responsibilities to ensure that more (if not all) projects get attention. This means clarifying the roles of TRB staff, FHWA staff, project panelists, and the investigator.

These leadership roles will likely vary by project, depending on subject area addressed, the expected end users, and the breadth of expected implementation. Given the size and impact of most NCHRP projects, multiple individuals need to be involved in leading these efforts. However, there should be a few clearly selected champions who know it is their role to lead implementation and know what this leadership involves. For example, all involved should know who is shepherding the implementation, who is coordinating with the TRB and AASHTO committees, who is working at the state and local levels, and who is reaching out to industry or other stakeholders. Agencies should also have a process in place for replacing an implementation champion when an individual retires or accepts a new position.

The interviewees shared varying opinions about the roles of investigators in implementation. Some described how investigators had played important roles in developing products that supported implementation (such as manuals, software, or specification language) or in promoting research findings at conferences and committee meetings. Others expressed concern about involving investigators, citing potential conflicts of interest. NCHRP should clarify the desired role of investigators; how project panelists should engage the investigators (formally or informally) to assist with implementation, if desired; and the expected limits of their involvement.

Embed Implementation in the Research Process

Although NCHRP requires an implementation plan for research projects, many interviewees saw a need for NCHRP to embrace a culture of implementation. In other words, NCHRP should more formally embed implementation in the entire research process, from project and panel selection to the handling of interim results, to the distribution of findings. Below is an overview of opportunities for improvement in this area identified by the interviewees.

Fund Projects That are in Demand

Interviewees saw an opportunity to improve implementation simply by ensuring that the projects selected for funding address a pressing need. Agencies should be eager to receive the research results and be clear about how the findings will be used. It may be worth evaluating the balloting process to ensure that practical, high-priority projects are being selected.

Plan for Implementation

Another opportunity to ensure that the project has an objective that supports implementation arises once a project is selected. Several interviewees noted that the quality of the work plan influences the likelihood of applying the results. The investigator and panel members should anticipate how the results will be used and what potential roadblocks will prevent implementation. End user readiness to apply results (such as having the ability to buy software coming out of the project or having the necessary technical
understanding to lead implementation) should also be considered when selecting research approaches. Once again, this planning is officially expected within the research development process, but it is not always taking place to the extent that is needed.

Refine Selection of NCHRP Project Panelists

Many of the interviewees commented on the importance of carefully selecting project panelists as a way to lay the groundwork for effective implementation. Knowledgeable, motivated panelists are integral to the successful conduct of research but also important for their role in leading implementation efforts.

The interviewees complimented NCHRP on including AASHTO technical committee representatives and for involving those who developed the problem statements. However, interviewees suggested more deliberately including industry representatives and consultants, those with strong connections to end users, and those who can understand and help translate technical findings for practical use. The overarching theme, as described by the interviewees, is to bring together those who identified the problem or will use the results and those who will carry out and guide the research. This will lead to stronger research projects and will help build acceptance of the findings, both of which will improve implementation. As one interviewee noted, “The key to implementation success is the practicality of the recommendations. Some research requires a lot of data analysis that jurisdictions don’t have the time or access to do. NCHRP panels have to have research folks on them to make the data relevant.”

NCHRP might consider revisiting the process for selecting (or modifying) project panelists to ensure that each member of the panel has a clear role in leading and guiding the research as well as a clear role in leading or supporting implementation. Such process changes would also help ensure that additional practitioners or experts would be added to the panel if the scope of the research changes significantly midproject.

Speed the Delivery of Results

Several interviewees commented that the lengthy process for completing NCHRP research contributed to implementation challenges. With so much time passing between the problem statement submittal and final report publication, the findings may have lost relevance, and key champions for the research may have moved on. Several interviewees wanted to see the results distributed sooner, with interim updates on progress and findings made readily available. Some also commented that the formal process for updating AASHTO publications prevented users from accessing and applying results in a timely fashion. For example, one interviewee described how city officials in his state created their own design manual based unofficially on NCHRP research because AASHTO was taking so long to update the *Green Book*.

Produce Supplemental Products

Multiple interviewees expressed the need for additional products resulting from NCHRP research that will support implementation. This could be a specification, a test method, training, design guidance, or software—anything that could be picked up at a DOT level and put to use. Such tangible products are built into some NCHRP projects, especially those that feed into existing national guidance documents or
established work areas within DOTs. However, NCHRP has an opportunity to include supplemental products in more research projects and should consider what marketing materials, websites, guidance documents, reference sheets, or Excel tools will help states promote and use the findings within their agencies.

Track Implementation

It’s hard to formalize implementation leadership roles and evaluate the effectiveness of implementation efforts without keeping track of implementation as it occurs. Many of the interviewees did not know the extent of implementation for the projects they were involved with or have a sense of the project implementation goals (beyond sharing the report). This, of course, relates to the ambiguity surrounding responsibility for implementation (NCHRP or the states). It is not possible or realistic for NCHRP to track all instances of implementation from research results, but there is an opportunity to establish broad goals with checkpoints to see progress toward those goals. One interviewee suggested involving FHWA resource centers in implementation tracking. Another suggested surveying the AASHTO committees that have submitted problem statements for information about adoption of the results. Another recommended asking states when they accept the report to explain how they will use the product in their own organization and what is needed for deployment.

Enhance and Formalize Implementation Mechanisms

As described by multiple interviewees, implementation related to projects in well-defined technical areas, such as bridge design and highway materials, is relatively straightforward. There are well-established channels (the AASHTO committees) for sharing research results, established guidance documents that the research feeds into, and established processes for inviting feedback while the research is still underway. NCHRP should look for opportunities to replicate or modify these implementation mechanisms in other areas of research. For each project, the panel should consider which stakeholders need to be involved (along with when and how), the existing policies or practices that will be affected by the research, and what channels (committees, national organizations, state organizations, etc.) can serve as the conduit for reaching end users with the new findings.

Multiple interviewees mentioned the need for improved coordination and collaboration with FHWA and AASHTO on implementation. Their involvement and support lend credibility to the findings, which supports implementation, and they often have relationships with end users that can be used to promote research results. In particular, interviewees mentioned the opportunity to coordinate more closely with FHWA resource centers on implementation.

Boost Communication Processes and Products

Overwhelmingly, the interviewees saw a critical role for NCHRP in disseminating research results and talked repeatedly about the need for NCHRP to enhance and expand the communication approaches used. They recognized the value of webinars for translating research results for practical use and wanted to see more of them. They also commented on the helpfulness of the existing communication products, such as
the *Impacts on Practice* series, which describes how states have applied specific research results. However, they wanted NCHRP to be much more aggressive about sharing findings through ongoing, targeted communication products.

Expand Dissemination Approaches

Below are some of the interviewees’ suggestions for expanding the reach of NCHRP communication efforts:

- Make sure all resources are available electronically and integrated into online transportation library collections.
- Offer workshops to roll out results to states.
- Translate the results of the research into something practitioners can use.
- Promote relevant NCHRP research findings during TRB state visits.
- Build in a process for communicating with states (and fund it) that includes regional workshops and a PowerPoint that DOTs can use to communicate with other agencies.
- Identify lead states that implement first and then share results, leading to a second phase of trainings and webinars.
- Include presentations at the TRB annual meeting and other key meetings in any implementation strategy.
- Provide searchable electronic versions of research results.
- Create two-page summaries for every report. Send them to all DOTs and local agencies.
- Share project updates while the research is in progress, for example, via a two-page whitepaper that could be produced when a project is 75 percent complete.
- Create brief, hard-hitting communication products targeted at senior leadership. Make them a required part of projects.
- Provide a way to sign up for notifications when anything of significance happens for research in various areas of interest.
- Increase the use of AASHTO committee automated mailing lists to share information.

Use Targeted, Strategic Communications

Interviewees also shared ideas for making communication efforts more effective:

- Focus on getting the results to the right people, whether senior managers, DOT safety engineers, or city personnel.
- Be strategic when moving forward with outreach to optimize the investment. Don't spend money on a costly workshop in a location where it won’t have the biggest impact.
- Plan upfront what you’re trying to communicate before holding a webinar or producing a digest. Select the communication tool that will get the biggest bang for the buck.
• Make sure the research report uses plain English so that it can be easily understood by those who will use it. Translate the findings into summary form for senior decision makers.

Expand Implementation Resources

The interviewees also expressed the need for additional NCHRP resources to support effective implementation by the states. Even if the states are responsible for incorporating the findings into their practices, they are not always able to get the buy-in and resources they need to follow through. In some cases, they need training or other forms of technical assistance to be able to understand and apply the results. In other cases they cannot afford the AASHTO publications or tools that resulted from the research. Many interviewees said that resistance to change within DOTs is a significant obstacle to implementing study findings. Without demonstrations of the research being used by other states, it can be difficult to convince DOT managers of implementation feasibility and benefits.

NCHRP already funds some implementation projects that develop tools and guidance, demonstration projects with lead states, webinars to explain results, and other forms of technical assistance. However, there doesn’t appear to be a formal mechanism for evaluating the need, and providing funding, for additional implementation resources on a project-by-project basis. Several interviewees pointed to models for implementation developed by the first and second Strategic Highway Research Programs, emphasizing the use of lead states, demonstration projects and partial financial assistance for state DOT implementation. In addition, the State Transportation Innovation Councils (http://www.fhwa.dot.gov/publications/publicroads/13julaug/02.cfm), a relatively new FHWA program that gives grants to states to implement innovations, may provide an implementation collaboration opportunity for NCHRP.

Several interviewees also said NCHRP should commit time and money to communicating research results via the expanded dissemination approaches suggested above. This funding could be built into the research project or handled separately. Such an investment could ease the reliance on volunteers to share the results, which makes it possible to have higher implementation expectations.
SUPPLEMENTARY DOCUMENTS

4-Page Folio: Implementing NCHRP Research

The four-page folio that follows provides an overview of the key project findings in three areas: elements of successful NCHRP project implementation, the roles of state and national leaders in implementing results, and the implementation activities that should be incorporated into each step of the project life cycle.

10 Implementation Case Studies: *Paths to Practice*

CTC & Associates developed 10 two-page case studies of selected NCHRP products highlighting a range of effective implementation approaches as discussed with this project’s interviewees. These case studies follow the four-page folio.
A 2012 survey of more than 500 NCHRP project panel members and investigators showed that research results from this state-driven program are being used extensively to improve practice around the country. However, there is still room for improvement in how results are shared and applied. To better understand the structures and processes that have led to current successes and opportunities to further stimulate the implementation of results, NCHRP conducted in-depth interviews with a cross section of more than 60 project panel members; TRB, AASHTO, and FHWA leaders; and state DOT research directors. This folio presents the high-level findings from NCHRP 20-44(P), Evaluating Implementation of NCHRP Products. The final report is available online, along with 10 Paths to Practice case studies that highlight a range of successful approaches to putting NCHRP research to use.

Elements of Successful Implementation

Implementation leaders have clear roles

Effective implementation of NCHRP research results requires strong leadership by designated individuals at the national and state levels. The roles and responsibilities for these leaders need to be clear, and their efforts need to be tracked and supported.

See pages 2 and 3 for a description of the implementation leadership provided by TRB staff, AASHTO committee members, NCHRP project panelists, FHWA technical experts, and state DOT practitioners.

Research products are ready to use

Research results are not always “field ready,” or easily understood and applied, without additional assistance. Implementable deliverables go beyond final reports to include demonstration software, websites, policy guidance, and training manuals.

The project investigator provides some of these products, but the project panel members and implementation leaders from TRB, FHWA, and AASHTO must provide additional support and guidance to make these products possible.

Research users are consulted before, during, and after the project

The interviewees for this project repeatedly mentioned the importance of getting support for implementation from the beginning of the project. Support needs to come from those who will lead the implementation efforts, those who will be affected by the research, and those who will provide the channels for presenting the findings.

This means communicating the project goals and interim results to stakeholders in an understandable way, gaining and leveraging the support of AASHTO and FHWA for upcoming changes, and addressing stakeholder concerns before the project is complete.

Institutional structures support rapid dissemination and assimilation of results

It’s not enough to produce a tool or specification. The research results need to be distributed broadly to those who can use them. The committees, task forces, and working groups of TRB, FHWA, and AASHTO provide critical channels for disseminating the results to end users and offering technical support and guidance for effective application.

State DOT technical teams and oversight committees also play key roles in facilitating implementation, initiating changes to policy and practice documents, and partnering with industry and universities to train staff on new approaches and techniques.
Distribute and promote research results to practitioners at the state and local levels.

Customize the findings and products from NCHRP projects for application within their own agencies and states. Develop guidance documents, conduct follow-up state research, and lead pilot implementation projects.

Monitor the progress and outcomes of NCHRP projects across topic areas. Prepare to make state practice and policy changes based on the research findings.

Initiate implementation projects through State Transportation Innovation Councils using competitive funding available through FHWA.
TRB Senior Staff

TRB senior staff play a critical role in coordinating the implementation of NCHRP research. As the facilitators for NCHRP project panels, they guide many of the key decisions that impact implementation success, from the selection of engaged project panelists to the scoping of relevant research plans. They serve as the go-to source for information on project goals and progress, making them key leaders in implementation planning and coordination:

- Work with the project panels to ensure that implementation planning is incorporated into the scoping of the research project.
- Communicate project status, expected results, and implementation goals within TRB, to AASHTO committees, and to relevant FHWA offices.
- Help task forces plan implementation support materials and follow-up activities.
- Ensure stakeholders are aware of implementation opportunities and pilot efforts underway at state agencies.
- Track the steps being taken to implement results, and monitor the need for assistance.
- Identify project funds or other resources to support dissemination and technology transfer efforts, such as communication materials, webinars, peer exchanges, training courses, and pilot projects.

FHWA Executives and Staff

FHWA representatives participate on most NCHRP project panels, providing both subject area guidance and national context for the work being done. Their visible and vocal support for the research, both while it is underway and when the findings are ready to be shared, is critical for state acceptance and confidence in going forward with implementation. Additional implementation leadership provided by FHWA should include:

- Submit problem statements for funding consideration by NCHRP, as inspired by FHWA research roadmaps and a keen understanding of state DOT obligations, challenges, and goals.
- Develop and update guidance documents using NCHRP research results.
- Encourage research-driven changes to practice among state DOT practitioners and FHWA staff.
- Use NCHRP research as the technical basis for national initiatives.
- Lead marketing efforts to promote new products and practices resulting from NCHRP research, leveraging state connections with FHWA resource centers and division offices.
- Document and share implementation successes through lead state and pilot initiatives.
- Provide resources for state adoption of innovations through the State Transportation Innovation Council Incentive Program.

AASHTO Committee Members

AASHTO standing committees, subcommittees, and technical committees are integral to the successful implementation of NCHRP research. State DOT members of these groups have a vested interest in seeing the results of research applied at their agencies, have the technical expertise to oversee the research, and often make the final recommendation for official AASHTO specifications and guidance documents. Their leadership roles in implementation should include:

- Submit NCHRP problem statements based on committee members’ experience and ongoing evaluation of current AASHTO specifications, standards, and guidance.
- Review interim and final project deliverables. Provide feedback to the NCHRP project panels and TRB staff liaisons.
- Plan ahead to incorporate NCHRP project findings into AASHTO documents. Work with NCHRP project panels to address potential challenges for state implementation.
- Work with TRB to develop implementation tools, such as websites and software, that will improve understanding of the research and use of the results.
IMPLEMENTATION ACTIVITIES SHOULD BE AN INTEGRAL part of every step in the life cycle of a research project. Coordinated efforts by multiple national and state leaders from the beginning to the end of the project will enhance the likelihood of successful application of NCHRP research results. These milestones are key checkpoints for tracking implementation progress and anticipating related resource needs.

Project selection

Fund projects that are in broad demand and ensure the research plans address pressing needs. States will be more eager to implement the results.

Panel formation

Select a mix of subject area experts—some to provide technical guidance and others to provide real-world grounding—to ensure the results are implementable. Make sure that panel members understand their leadership role in implementation and are willing and able to help disseminate the findings.

Scoping the work plan

Include deliverables that will support use of the results, such as specification language, software tools, training materials, and dissemination assistance. Identify potential institutional, financial, and technical challenges to implementing the findings and make plans to address them.

Research in progress

Involve potential end users well before the project concludes by sharing preliminary results with state DOT subject area experts and inviting feedback about potential changes to practice from industry representatives. Work with AASHTO and FHWA to plan for updates to national guidance documents. Establish user liaison groups and implementation task forces when needed.

Final deliverables

Develop an implementation plan for distributing final results, supporting state customization efforts, and responding to requests for technical assistance. Work with investigators to translate findings for use by state and national organizations. Develop a range of communication materials to promote the findings and educate end users.

Dissemination and technology transfer

Provide technical guidance and support for communicating project results and encouraging implementation at the state and local levels. Consider follow-up projects to aid technology transfer.

Paths to Practice Case Studies

These two-page case studies, available online, describe in detail a range of specific steps that NCHRP implementation leaders have taken to apply research results.

- National Partners Drive NCHRP Implementation
- States Spur Effective Use of NCHRP Products
- A Revolution in Highway Safety Planning
- Updating the Authoritative Guide on Capacity
- Standards and Training for Scour Prevention
- Optimizing AASHTO’s Bridge Software
- How to Minimize Deicing’s Environmental Impact
- Putting Flowable Fill Guidance to Work
- Research Makes the Case for Roundabouts
- Safer Intersections for Rural Highways

ACKNOWLEDGEMENT OF SPONSORSHIP Work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Academies.

DISCLAIMER The opinions and conclusions expressed or implied in reports are those of research agencies. They are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors.
National Partners Drive NCHRP Implementation

In 1962, the forerunners of the Transportation Research Board, the American Association of State Highway and Transportation Officials, and the Federal Highway Administration jointly founded the National Cooperative Highway Research Program. More than 50 years later, these partners are working together even more closely to accelerate the use of NCHRP research among all levels of government.

Realizing the States’ Investment

NCHRP is a program of the states, by the states, and for the states. Funded by federal state planning and research dollars, the program helps solve high-priority problems of shared concern among DOTs. NCHRP necessarily focuses its efforts on applied research, but as NCHRP Manager Chris Hedges notes, the research findings are just a step toward the ultimate goal. “The investment in NCHRP is not fully realized until the research is implemented,” he says.

Paths to Practice

Implementation starts at TRB with NCHRP itself. In some cases, NCHRP uses state-provided funds to implement research results directly. Examples include training classes and workshops for transportation agencies on topics as diverse as the Highway Safety Manual and the Mechanistic-Empirical Pavement Design Guide. Other examples are NCHRP Report 600 training modules for human factors guidelines and the e-learning website for mobile LiDAR developed from NCHRP Report 748.

Many aspects of the program are specifically designed to foster implementation, from the start of a research project (all project proposals must include an implementation plan) to its conclusion (NCHRP’s reporting and dissemination efforts have evolved with the needs of transportation managers and practitioners in mind).

The investment in NCHRP is not fully realized until the research is implemented.”

However, even with the clear goal of implementation, converting research results into practice is a large undertaking, and it requires dedicated effort from multiple fronts. The national partners involved with NCHRP’s administration (TRB), guidance (the state DOTs through AASHTO), and collaboration (FHWA) all play key roles in driving implementation. Through both formal and informal processes, these organizations create avenues for putting NCHRP products to work quickly and effectively.

Implementation Strategies

- Innovative Outreach: NCHRP staff members continue to develop innovative dissemination tools to circulate research findings; they welcome comments on what is most effective.
- Targeted Findings through NCHRP Panels: Encouraging appropriate AASHTO committee members to serve on NCHRP panels helps assure implementable findings.
- Building National Networks: Partnerships among NCHRP, AASHTO, and FHWA illustrate the importance of relationship building at the national level.

Examples include the NCHRP-hosted Bridges and Structures website; NCHRP’s “Impacts on Practice” publications, which highlight how NCHRP projects are making a difference on the transportation front lines; and TRB’s popular webinar program discussing topical NCHRP research results.
AASHTO standards. A few of the many widely used AASHTO publications that depend on NCHRP results are the Highway Safety Manual, the LRFD Bridge Design Specifications, and AASHTO’s “Green Book” on geometric design of highways and streets.

“Getting the appropriate AASHTO committee chair to serve on the NCHRP project panel ... helps assure that we’ll get usable results.”

Less formally, NCHRP technical experts work closely with corresponding AASHTO committees, subcommittees, and technical groups on an ongoing basis to advance NCHRP findings into practice. One example is in the area of bridges and structures, where about 30 NCHRP projects are underway at any time. TRB Senior Program Officer Waseem Dekelbab regularly reports to AASHTO’s Subcommittee on Bridges and Structures about research progress, providing interim results and seeking feedback for the principal investigators.

Dekelbab attends as many of the technical committees as he can. “By sitting down with AASHTO technical committees, NCHRP gains firsthand, up-to-date information on what practitioners need,” he says. Dekelbab also works to secure AASHTO input at the beginning of the NCHRP research process. “Getting the appropriate AASHTO committee chair to serve on the NCHRP project panel as the chair or member helps assure that we’ll get usable results.”

In another example of close partnership, TRB Senior Program Officer Ray Derr created TRB web pages to capture completed and in-progress NCHRP research that relates to the AASHTO committees on Traffic Engineering (trb.org/nchrp/Pages/719.aspx) and Geometric Design (trb.org/nchrp/Pages/721.aspx).

Implementation from a federal perspective

Where AASHTO represents the state transportation agencies, FHWA represents the U.S. DOT’s interest in seeing NCHRP results used. Monique Evans, director of FHWA Safety Research and Development, explains the unique working relationship between NCHRP and FHWA: “As a co-sponsor of NCHRP,” she says, “FHWA can submit problem statements, may contribute additional funding, and has a liaison on most—if not all—NCHRP project panels.”

FHWA implementation of NCHRP research is typically planned in advance, especially for projects where FHWA either submitted a proposal or contributed funding. “In these cases,” Evans says, “an NCHRP research topic may be part of an FHWA research roadmap or strategic plan.”

NCHRP projects serve as foundational resources for many FHWA projects and programs, such as Every Day Counts and Highways for LIFE. In some cases, FHWA has applied NCHRP results directly. A notable example is NCHRP Report 350: Recommended Procedures for the Safety Performance Evaluation of Highway Features, which was official federal policy for years. In another case, FHWA’s Manual on Uniform Traffic Control Devices was directly informed by NCHRP projects that were conducted specifically to update the manual.

FHWA also commonly offers guidance and encouragement to transportation agencies to use particular approaches based on NCHRP and other research programs, often through its resource centers and division offices.

“An NCHRP research topic may be part of an FHWA research roadmap or strategic plan.”

Hedges notes that the NCHRP report, Evaluating Implementation of NCHRP Products: Building on Successful Practices, will serve as guidance for practitioners, managers, and executives alike. “In addition,” he says, “AASHTO’s Standing Committee on Research will examine the report and consider the recommendations for improving and expanding implementation of NCHRP products in the future.”

This project is the latest in the NCHRP research series 20-44, “Accelerating the Application of NCHRP Research Results,” which has been seeking and developing improved implementation channels for years. For more information about the 20-44 series, see apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=588.
States Spur Effective Use of NCHRP Products

State DOT research offices have a unique relationship with NCHRP. Together with senior management, state research staff members help develop NCHRP’s research projects. They also lead efforts to implement NCHRP results and track and quantify the benefits. States’ NCHRP implementation strategies and successes are as diverse as the states themselves.

Part of a Larger Picture

NCHRP is one element of each state’s efforts to meet its transportation research needs. NCHRP complements the federally funded State Planning and Research Program, which is tailored to meet individual state needs, and the Transportation Pooled Fund Program, targeted at groups of states with shared interests.

As the states’ collaborative research program, NCHRP addresses key topics of common and pressing concern. It is the go-to place for conducting core research to develop or update national standards and to address the emerging issues affecting the transportation system from coast to coast.

However, while the program is national in scope, implementation of NCHRP products is largely a state activity. Reflecting their unique needs and perspectives, states have developed their own approaches for interfacing with NCHRP: how they implement NCHRP findings as part of their larger state research programs, and how they evaluate and demonstrate the difference NCHRP is making. The examples here—by no means exhaustive—illustrate some of the ways that states ensure maximum benefit from participating in the program.

"NCHRP is highly leveraged, and it makes sense to look there first."

Paths to Practice

Building NCHRP into the program

Transportation agencies that make the most of NCHRP products know that implementation doesn’t happen by accident. Instead, they establish processes to regularly consider NCHRP as a path to solving their transportation challenges.

For example, in Georgia, the state DOT instituted Research Technical Advisory Groups to consider research needs and funding options. The groups look at NCHRP first among possible channels to solve Georgia DOT’s research needs. “NCHRP is highly leveraged, and it makes sense to look there first,” says David Jared, chief of Georgia DOT’s Research and Development Branch. Jared notes that this must be for issues of shared national concern, not Georgia-specific problems.

States also have processes to look at completed NCHRP projects. Pennsylvania’s State Transportation Innovation Council formally brings together all state stakeholder groups—PennDOT, FHWA, contractors, universities, local public agencies, planning partners, state resource agencies, and consultants—to consider the full landscape of research solutions.

“As Pennsylvania’s State Transportation Innovation Council considers possible new technologies and practices for our state, we see NCHRP as a good source of nationally vetted research,” says Michael Bonini, manager of PennDOT’s Research Division. “The research need has gone through an exhaustive process through AASHTO’s Standing Committee on Research. We anticipate a lot of benefits for the department.”

PennDOT’s use of NCHRP safety research is one standout example of sustained implementation at the institutional level. Bonini notes that the agency relies on NCHRP results to dictate which safety countermeasures should be applied in the districts. He says that the agency is implementing about 90 percent of NCHRP safety recommendations in one way or another.

(continued)
Agencies work to implement NCHRP products on a daily basis. States like Iowa, Minnesota and Pennsylvania have research staff dedicated to implementation. These experts consider research products from all sources, including NCHRP, with an eye for solutions that may be relevant and valuable in their own state.

The value proposition

Quantifying the value of research—not just NCHRP research, but transportation research in general—is a stated goal (and a challenge) for many state programs. Cameron Kergaye, director of research for Utah DOT, explained the process in his state for enumerating the benefits of NCHRP research. It’s an extended process that starts with project balloting when the NCHRP problem statements are up for vote among all the states.

“We can see how many millions of dollars of high-priority research is being funded. It's a huge value.”

“UDOT involves subject experts in the annual voting process, asking them to provide numerical ratings for each proposed NCHRP project,” Kergaye says. This helps Utah prioritize which NCHRP projects are likely to provide the most value for the state. Beyond that, when AASHTO later approves the final slate of annual NCHRP projects, Utah turns back to its rankings to compare its high-priority projects to the funded program.

Survey of National Cooperative Highway Research Program Project Implementation in New Jersey

Please use the lists below to search the National Cooperative Highway Research Program (NCHRP) or Transit Cooperative Research Program (TCRP) study that you reviewed or were involved in the implementation of in New Jersey. (If you would like to rate additional study/studies, you will be able to do so later in the survey.)

<table>
<thead>
<tr>
<th>Search by Project Number:</th>
<th>----- OR -----</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search by Publication Number:</td>
<td>----- OR -----</td>
</tr>
<tr>
<td>Search by Title Keyword:</td>
<td>----- OR -----</td>
</tr>
<tr>
<td>Search by Program, Publication Type, Mode, and/or Subject Area</td>
<td></td>
</tr>
</tbody>
</table>

A survey of research consumers helped New Jersey DOT determine the extent of NCHRP use and value.

“This process allows UDOT to quantify how well it is leveraging its investment in NCHRP. “We can see how many millions of dollars of high-priority research is being funded given our state’s contribution to NCHRP,” Kergaye says. “It’s a huge value, and we share that information around our state. UDOT gets a lot of mileage out of this assessment.”

Documenting the benefits

The dollars, though, just tell part of the story. Georgia’s David Jared shared the thoughts of a retired colleague from another state: “He would often remark, ‘I’m investing $1 million per year in NCHRP and I’m getting $30 million of research.’ Yet it wasn’t clear if he knew what that $30 million meant in terms of value to his state.

State research directors like myself want to be able to say with confidence, ‘Here are the documented benefits.’”

Camille Crichton-Sumners, manager of New Jersey DOT’s Bureau of Research, attempted to answer that very question. Her office undertook a study to determine the extent of NCHRP research implementation in the state. NJDOT’s technical memorandum Review of NCHRP Study Implementation at the NJDOT describes the results of a survey of research consumers in the state that sought to learn how national cooperative research programs (NCHRP and others) met New Jersey’s practical needs.

Though the survey response pool was too small to draw firm conclusions, the study findings were encouraging: 67 percent of such projects were partially implemented, and 22 percent were fully implemented.

“This kind of information is not easy to capture,” Crichton-Sumners says. “People commonly don’t remember how they might have used NCHRP research.” Her office, like many other state research departments, passes along final NCHRP reports to subject matter experts in the agency. “Following up with DOT staff to find out if and how they have used NCHRP results would be informative and worthwhile,” Crichton-Sumners says, noting it would be difficult in practice.

The Implementation Culture

Even as states strive to show how—and how much—they use NCHRP, there remains a strong and pervasive sense among research staff that NCHRP research is extremely valuable. States continue to perfect the formula for putting NCHRP products to work.

States that successfully use NCHRP research share one thing in common: They have all made it a part of their culture. They encourage submission of NCHRP problem statements and staff participation on panels. Stakeholder and technical groups regularly consider NCHRP findings for local use. State DOT research staff passes along NCHRP findings to the right practitioners who know the needs on the ground—and who will recognize a solution.

“NCHRP panelists ultimately become champions for innovation, and they help market the results to the districts.”

Ideally, project panelists become advocates for the research findings as well. That has been a formula for success in Pennsylvania. “NCHRP panelists ultimately become champions for innovation, and they help market the results to the districts,” Bonini says.
A Revolution in Highway Safety Planning

The first edition of the Highway Safety Manual is the product of more than $3 million of NCHRP research over 10 years. Using quantitative methods, the manual gives practitioners state-of-the-art tools to predict and evaluate the safety-related impacts of transportation decisions throughout the project development process.

Making Safety a Science

The safety of the traveling public on the nation's roadways is a top priority among transportation agencies, both at the national and the state levels. Yet even as recently as 1999, planners, designers, and traffic engineers had no consistent and reliable way to predict the safety impacts of decisions made throughout the project development process. Without a standard, data-driven approach available for anticipating potential crashes, safety considerations often took a back seat to other planning and development considerations.

In 1999, a TRB joint task force was established to initiate the development of an authoritative guide for evaluating the safety performance of transportation projects. With strong support from AASHTO and FHWA, TRB spearheaded a 10-year research and development process that led to publication of the nation's first Highway Safety Manual (HSM) in 2010.

The HSM fundamentally changes the way transportation professionals develop projects by supporting a quantitative safety evaluation of specific treatments or programs and predictive modeling of the safety impacts from varying geometric or operational decisions. The HSM consists of four parts, all intended to support front-line decision making in transportation agencies:

- Part 2: Roadway Safety Management Process
- Part 3: Predictive Methods
- Part 4: Crash Modification Factors

NCHRP Projects 17-18(4), 17-26, 17-27, 17-29, 17-34, and 17-36 provided the foundational research and production coordination for this edition. Additional studies fed into the ultimate manual and are contributing to ongoing enhancements.

Paths to Practice

Building the foundation

It was clear from the start that developing the new manual would require extensive and sustained coordination among multiple organizations, not only to effectively conduct the research needed to develop the HSM content but also to provide the organizational channels needed to produce, distribute, and promote the results. The new TRB joint task force spearheaded development of the HSM and provided the necessary framework for ongoing collaboration among TRB, AASHTO, and FHWA.

“It was a formal and committed process,” says Geni Bahar, the investigator with NAVIGATS Inc. for HSM Parts 1 and 2. “Going from a report to a manual involved many years of work with volunteers from TRB and practitioners around the country.” Each step in the development process required extensive review and approval from the NCHRP project panels guiding the research, the TRB task force coordinating the overall effort, and the AASHTO committee that would ultimately publish the manual. “We had to get the trust as well as the confidence of the professionals and researchers together to encourage adoption of the HSM,” Bahar says.

Raising awareness, anticipating challenges

Getting support for the HSM at the national level was only the beginning, however. The TRB task force members knew that getting buy-in for the HSM among end users would (continued)
be critical for widespread implementation. The task force established a user liaison subcommittee to identify potential HSM users and effective approaches to promoting the new concepts in the manual.

Chaired by Bahar, the subcommittee began simply by spreading the word about HSM at TRB conferences and inviting technical feedback from TRB committees. The group’s work quickly became more formal, with systematic outreach efforts planned during frequent meetings and teleconferences. “We presented the science as it evolved to the TRB committees to make sure they were aware of what we were doing as we were doing it,” Bahar says. “We also invited state DOT engineering practitioners, through AASHTO, into the process throughout the HSM development. We worked with both sides—the TRB researchers as well as the practitioners who would be adopting and using the manual—so that when the manual was ready, there would be confidence and understanding.”

"We needed to create enough know-how to overcome the fears of change.”

The subcommittee members also worked hard to acknowledge and address the concerns and challenges standing in the way of implementation in the states. For example, the data-driven approaches to safety quantification in the HSM represented a huge shift in practice for most transportation agencies. “The practice was far away from what we were trying to bring forward,” Bahar says. “We needed to create enough know-how to overcome the fears of change.”

Some states also expressed concerns about potential liability in relying on the manual to estimate safety impacts. The task force involved planners and legal experts to address potential issues throughout the development process.

Providing tools and technical support

Since the Highway Safety Manual became ready for purchase and use by practitioners in 2010, TRB, AASHTO, and FHWA have made every effort to provide support and guidance for putting the HSM into practice. A comprehensive HSM online portal (www.highwaysafetymanual.org) developed by AASHTO provides a single place to access numerous HSM guidance and reference documents, case studies, protocols, brochures, and training materials. An HSM User Discussion Forum also promotes information sharing and problem-solving among practitioners.

Leanna Depue, highway safety director at the Missouri DOT, says that implementation on this scale is always a work in progress. “You can’t just produce a manual,” she says. “You have to develop implementation strategies and nurture implementation. It’s going to require updating for many years to come.”

Implementation Success

The HSM has already been implemented in some form by more than half of the states, expedited through the participation of 21 DOTs as lead states or support states in the Lead States Initiative for Implementing the Highway Safety Manual (NCHRP 17-50). FHWA has also published case studies on HSM implementation in five states (Florida, Illinois, Idaho, New Hampshire, and Ohio), highlighting how transportation agencies are moving forward with enhancing their data collection efforts, developing new policies, assessing their skill gaps, and developing implementation plans to support HSM use.

The TRB Highway Safety Committee (ANB25) has taken the place of the joint task force to continue implementation coordination of the HSM with AASHTO and FHWA. These efforts include new research projects that will help enhance and expand agency capabilities when using the manual. Even as the methodology advances and evolves, the first edition of the HSM will remain a true milestone in science-based safety planning—the core of a fundamental shift in how transportation agencies plan for safety throughout the project development process.

“Y ou have to develop implementation strategies and nurture implementation. It’s going to require updating for many years to come.”
Updating the Authoritative Guide on Capacity

The Highway Capacity Manual is the go-to source for information about evaluating the capacity of transportation facilities. The latest edition provides practitioners with the most up-to-date analytical tools by incorporating more than $5 million in NCHRP research and drawing on a broad collaborative effort by the transportation community.

Responding to Evolving Practices

For more than 60 years, the Transportation Research Board’s Highway Capacity Manual (HCM) has provided engineers with state-of-the-art techniques for analyzing the capacity and level of service for transportation facilities, including roadways, intersections, and roundabouts. The HCM is the definitive guide for transportation engineers worldwide who wish to determine how much traffic a transportation facility can safely accommodate at a prescribed level of service, defined by such performance measures as average traffic speed and travel time.

However, as methods for evaluating capacity and level of service evolve, updates to the HCM are needed to provide transportation practitioners with the best available analytical tools. Since its first publication in 1950, the HCM has seen five editions, the most recent issued in 2010 (www.trb.org/Main/Blurbs/164718.aspx). TRB’s 2010 update to the HCM:

- For the first time, provides users with a method for an integrated multimodal analysis of urban streets.
- Addresses active traffic management such as managed lanes and smart lanes.
- Gives planners the tools to quickly determine the size of future facilities.
- Includes an electronic volume with comprehensive case studies.

Paths to Practice

Incorporating a broad range of NCHRP research findings

The 2010 HCM was a major undertaking, incorporating more than $5 million in research from 10 NCHRP projects and two FHWA projects.

One of these projects, NCHRP Project 03-82, improved default values for analyzing capacity and level of service. Engineers use default input values—pedestrian and vehicle flow rates, or road and signal geometries—when there is insufficient local field data for an analysis. The defaults in the previous edition of the HCM did not fully reflect the variety of traffic conditions across the United States and sometimes yielded analyses of limited usefulness.

“NCHRP 03-82 helped improve the accuracy of the most significant default values for the HCM by revising them based on field data from around the United States,” says John Zegeer, principal investigator for NCHRP 03-82, and senior principal engineer at Kittelson & Associates. “This makes analyses of capacity and level of service much more reliable.”

Creasey, transportation planning manager with Stantec. Creasey chaired the NCHRP 03-64 panel and is secretary of the TRB Highway Capacity and Quality of Service (HCQS) Committee, which oversees the HCM. “The companion guide educates users on how to use the HCM for complex problems that require more than plugging numbers into formulas,” Creasey says.

Creasey was also a member of the panel for NCHRP 03-70, which incorporated

(continued)
methods for the multimodal analysis of urban streets. “The HCM’s new multimodal analysis tools look at the urban environment from the point of view not just of traffic engineers but of travelers,” he says. “The mathematical models were created based on how drivers, pedestrians, bicyclists, and transit users rated their experience of trips.” The update will make the HCM far more useful to planners, helping them to evaluate the trade-offs involved in how various modes share an urban street.

“The manual is larger than any one committee.”

A collaborative effort by the transportation community

The HCM is a definitive guide that embodies decades of research. Updating it was an enormous effort that involved the cooperation of TRB, AASHTO, and FHWA over a number of years. “The manual is larger than any one committee,” says Ray Derr, TRB senior program officer on NCHRP 03-92, the umbrella project for updating the manual. “Updating it required extensive involvement from the transportation community as a whole.”

Part of that effort involved consulting transportation professionals to make sure the 2010 update would meet their needs. As part of project 03-92, researchers conducted focus groups with HCM users in Florida, Maryland, and Oregon. “These focus groups provided critical insights into the content and organization of the manual,” Derr says.

As it was completed, the HCM was also vetted in a yearlong review process by more than 300 TRB professionals and TRB HCQS Committee members. “The HCQS Committee reviewed results of each project and made an independent determination as to whether they were valid and should be included,” Zegeer says. “Their oversight was critical.” The HCQS also obtained feedback through joint summer meetings with the Institute of Transportation Engineers (ITE) as well as focus groups sponsored by the ITE.

The HCM has a wide reach

Derr, Creasey, and Zegeer agree that the impact of the HCM on transportation infrastructure in the United States cannot be emphasized enough. Its methods are used to determine everything from the number of lanes on streets to the timing of traffic signals. It is also highly influential on the content of capacity manuals worldwide.

“This manual has a huge amount of weight, setting the commonly accepted standards for level of service,” Derr says. “It’s widely used by both local agencies and state DOTs to determine how to keep traffic moving.”

Another major route for the impact of the HCM is companion software developed and maintained by the University of Florida’s McTrans Center. “The Highway Capacity Software is frequently updated and faithfully implements HCM procedures,” Derr says, “giving transportation professionals an important tool for applying HCM methodologies.”

Implementation Success

Because of its wide use and impact on transportation professionals worldwide, the HCM is a standout example of a successful implementation of NCHRP research. “It would be hard to think of a better implemented project than the HCM,” Creasey says. “Not only does it meet a demonstrated need, but it has met the challenge of accommodating more and more needs in response to feedback from the user community.”

The result is a manual that is increasingly useful to engineers with each update. “This latest edition significantly changes how engineers evaluate the possible effects of highway projects,” says Zegeer. “It gives them better tools than ever for evaluating capacity and quality of service.”

ACKNOWLEDGEMENT OF SPONSORSHIP Work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Academies.

DISCLAIMER The opinions and conclusions expressed or implied in reports are those of the research agencies. They are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors.
Standards and Training for Scour Prevention

Transportation agencies have long needed comprehensive guidance on riprap and other bridge scour countermeasures. Two NCHRP projects established this guidance and resolved a design dilemma concerning riprap that has long interested engineers. The projects’ principal investigators played a critical role in implementing the results, helping to author FHWA Hydraulic Engineering Circulars and communicate results to state DOTs.

Bridge Scour Countermeasures: A Need for Practical Guidance

The most common cause of highway bridge failures in the United States is bridge scour, a type of erosion in which moving water displaces sediments such as sand and rocks from around bridge piers and abutments. The gaps left by scour can weaken the support for bridges and lead to their collapse.

To prevent bridge scour, engineers use a variety of countermeasures, including piers in waterways to control flow, and riprap placed around piers and abutments to protect them from erosion. Because countermeasures are both necessary to bridge integrity and costly, their selection, design, and construction are important issues for transportation agencies. There has long been a need for practical guidance on the use of scour countermeasures for pier protection.

To address this need, NCHRP managed several research projects investigating the prediction, evaluation, monitoring, and prevention of bridge scour. In particular, the need for comprehensive design guidance on bridge scour countermeasures led to NCHRP Project 24-07(2) and the resulting product, NCHRP Report 593: Countermeasures to Protect Bridge Piers from Scour (www.trb.org/Main/Public/Blurbs/156796.aspx).

A related effort, NCHRP Project 24-23, addressed the design of riprap countermeasures in particular. At the time the project was initiated, existing techniques and procedures for design of riprap protection were confusing and difficult to apply, and there were inconsistencies in the literature as to the best methods for determining the size and extent of riprap installation, which can vary widely depending on the circumstances. Consequently, most states had differing specifications for classifying riprap size and gradation, and construction practices varied widely in effectiveness.

AASHTO and FHWA initiated research to develop standard specifications and construction practices to ensure proper placement and performance of riprap countermeasures, resulting in NCHRP Report 568: Riprap Design Criteria, Recommended Specifications, and Quality Control (www.trb.org/Main/Public/Blurbs/155703.aspx).

Implementation Strategies

Leveraging FHWA Channels to Communicate Results: Results were incorporated into widely used FHWA Hydraulic Engineering Circulars.

Tailoring Research to Practitioner Needs: Because scour is a leading cause of bridge failure, the results were quickly used to meet an urgent need.

Continued Research Team Involvement: PIs helped write circulars and conducted conference presentations and National Highway Institute training.

Improving Established Methods and Specifications: Panel members from Maryland, California, and Colorado led efforts to apply the scour countermeasures to their states’ practices and guidelines.
“There had been a question as to which methods for designing riprap countermeasures were most appropriate for bridges,” Davis says. “Everyone recognized that this was something we needed to know, and NCHRP Report 568 resolved this issue in favor of FHWA’s method after examining a number of other methods.” The study also provided helpful information about using the U.S. Army Corps of Engineers’ riprap design method for application at other locations.

Proactive principal investigators make a critical difference

Also critical to the successful implementation of NCHRP Reports 593 and 568 was the direct involvement of principal investigator Pete Lagasse, who helped to write HEC 18 and HEC 23. He and co-investigators were very active in disseminating project results.

It’s critical to successful implementation to pick principal investigators who will stick with a project and go the extra mile.

“Not only did the PIs for NCHRP 24-07(2) essentially implement the project results by authoring HEC 23,” Avila says, “but they also gave several conference presentations.”

They reached out to state DOTs as well. According to Arun Shirole, NCHRP 24-07(2) chair and former New York State DOT deputy chief engineer, the principal investigator conducted training courses in about a dozen states, via FHWA’s National Highway Institute. “Introducing the results of these projects to state DOTs is important for implementation to succeed,” Shirole says.

Selecting the right principal investigator is key to implementation. “You want a PI who’s well connected to the community, who you want to implement the results, and who is proactive about communicating these results,” Avila says. “In general, it’s critical to successful implementation to pick principal investigators who will stick with a project and go the extra mile.”

“NCHRP 24-23 is one of the most successful NCHRP projects I’ve been involved with because it resolved a specific dilemma about the preferred design method for riprap countermeasures for bridges.”

An Implementation Success

Ultimately, implementation is a matter of how state and local agencies use results. “Implementation really comes down to states trying out these countermeasures,” Avila says. “As they do so, they may find that some things work better than others.”

Avila herself has been involved in implementing the new riprap methods on a bridge in Chico, Calif., and knows of its use on a Colorado bridge. Maryland SHA is also actively using research results. “The Office of Structures incorporated this information into Maryland’s highway design manual,” Davis says, “and Maryland SHA has already adopted these methods.”

Overall, the interviewed panel members see NCHRP Projects 24-07(2) and 24-23 as exceptional examples of successful implementation.

“NCHRP 24-07(2) is one of NCHRP’s great success stories, and the most successful NCHRP project I’ve worked on,” Avila says.

Davis feels similarly about NCHRP 24-23. “NCHRP 24-23 is one of the most successful NCHRP projects I’ve been involved with,” Davis says, “because it resolved a specific dilemma about the preferred design method for riprap countermeasures for bridges.”
Optimizing AASHTO’s Bridge Software

Managing bridge inventories is a complex process that most DOTs undertake using AASHTOWare Bridge Management software. NCHRP research was critical to updating this software with new capabilities. The improved tool helps managers better prioritize funds and minimize risk when making decisions about bridge preservation, rehabilitation, and replacement.

Including Multiple Criteria for Bridge Management

To manage their inventory of bridges, transportation agencies must determine when and how to maintain bridges to keep them safe and performing well as they age. Bridge managers must establish performance measures and the most cost-effective use of limited funds to meet those measures.

The AASHTOWare Bridge Management software, formerly called Pontis, allows users to track and store bridge maintenance data; model the expected deterioration of bridges; and ultimately make more cost-effective decisions for bridge preservation, rehabilitation, and replacement. The tool also helps agencies comply with the highly detailed inspection regimen required by FHWA.

“The state of the practice in bridge management was based on bridge deterioration,” says Michael Johnson, chief of Caltrans Office of Specialty Investigations and Bridge Management, “yet 40 percent of the money I spend is on vulnerabilities. We needed a way to integrate condition-based objectives with vulnerability criteria.”

Todd Thompson, bridge management engineer for South Dakota DOT, commented further on the need. “Bridge management must consider performance measures beyond life-cycle costs,” Thompson says. “It must optimize multiple objectives to minimize risk.”

The AASHTOWare Bridge Management Task Force proposed a project to update the existing Pontis software. The resulting NCHRP Project 12-67 produced NCHRP Report 590: Multi-Objective Optimization for Bridge Management Systems (trb.org/Main/Public/Blurbs/159292.aspx).

Implementation Strategies

AT A GLANCE

- Collaboration with AASHTO: Close ties between research champions and the appropriate AASHTO committee ensured a highly useful research product.
- Communicating Results, Influencing Legislative Change: Dissemination of results played a role in the signing of MAP-21 legislation, which requires risk-based asset management by states.
- Addressing a Critical Need: The project was steered from the beginning to address a need that was important to practitioners.

Traditionally, this and similar software tools allowed users to make decisions based only on the objective of minimizing long-term costs as bridges deteriorate. However, other objectives are important to bridge agencies, including safety; traffic flow disruption; and vulnerability to scour, fatigue, and other hazards. Accounting for trade-offs between these various performance criteria allows more balanced bridge management decisions.

“Bridge management must consider performance measures beyond life-cycle costs.”

NCHRP — Transportation research that works

Objective national highway research since 1962 • Focused on practical problems of state DOTs • Contract researchers competitively selected • Overseen by balanced panels of technical experts • Reviewed by TRB highway specialists
This proactive approach to communicating results has had broad consequences. “Our dissemination of results for this project played a role in the signing of federal legislation,” Johnson says. Signed into law in 2012, the Moving Ahead for Progress in the 21st Century Act (MAP-21) requires risk-based asset management by states. “MAP-21 has very broad implications,” Johnson says. “It will change the way bridges are inspected.”

A proactive project panel addresses a critical need

The panel for this project was active not just in communicating results and facilitating the update of AASHTOWare Bridge Management software, but also in steering the project from the beginning to address a critical need. Thompson says the new software will be available in 2015.

Communicating results, influencing legislative change

Beyond their critical overlapping roles in AASHTO, panel members also made presentations at various bridge management conferences and annual meetings. “The whole project panel has been important,” Johnson says. “They have been positive advocates for a multi-objective approach.” Johnson himself made a presentation to FHWA, and others have gone before AASHTO and TRB committees and facilitated webinars.

Deciding when and how to repair bridges can be complex, and it requires prioritizing limited funds. DOTs must take into account not just life-cycle costs but other factors, such as safety, fatigue, and traffic flow disruption.

Thompson notes that 43 of 50 states use AASHTOWare Bridge Management software. “They contribute a license fee,” Thompson says, “so it was important to frame this project to address their needs.” Johnson adds, “This project was very timely. It addressed a real-life need that a lot of people were struggling with.”

Implementation Success

Ultimately, the improved software will help practitioners make asset management decisions in the most cost-effective ways.

“This project will dramatically improve our method for optimizing bridge projects,” Thompson says. Moreover, the benefits will go well beyond the transportation industry, according to Johnson.

“The concepts that we were researching in this project are broadly applicable methods for modeling and prioritizing needs,” he says. “The multi-objective optimization framework developed as part of this project has become the current state of the practice in asset management in general, and not just for bridges or the transportation industry.”

ACKNOWLEDGEMENT OF SPONSORSHIP Work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Academies.

DISCLAIMER The opinions and conclusions expressed or implied in reports are those of the research agencies. They are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors.
At the conclusion of the research, there was a need to communicate the guidelines and tools to practitioners at state and local transportation agencies.

“This project produced very useful results that needed to be implemented in state DOT training programs,” says project panelist Lee Smithson, coordinator for AASHTO’s Snow and Ice Pooled Fund Cooperative Program and former Iowa DOT state maintenance engineer. “Training needs included processes for field personnel to assess potential impacts to the natural environment along roadways in their maintenance area, as well as procedures for determining comparative material prices and writing material purchase specifications.”

Self-paced and accommodating multiple learning styles, the program’s eight modules can be accessed on maintenance garage computers or via the web. The web-based version was also made Shareable Content Object Reference Model-compliant, allowing integration with state DOT learning management systems.

The AASHTO computer-based training program is in use at nearly all state DOTs, the winter maintenance community is increasingly interested in minimizing the environmental impacts of deicing chemicals.

Establishing Guidelines to Minimize the Environmental Effects of Winter Maintenance

Every winter, transportation agencies apply large quantities of salt and other chemicals to roads to keep them clear of snow and ice. Rational decision-making guidelines were needed to help maintenance managers assess the properties of various materials and take steps to minimize their environmental effects.

To help meet this need, NCHRP conducted NCHRP Project 06-16 and produced NCHRP Report 577: Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts (www.trb.org/Main/Blurbs/158876.aspx). The report provides guidelines through an evaluation of cost, performance, and impacts on the environment and infrastructure.

The project also produced a decision tool for selecting snow and ice control materials to suit the specific needs of any given highway agency (www.trb.org/NotesDocs/NCHRP06-16_MaterialSelectionWizard.zip). The software serves as a purchasing specification and as a quality assurance monitoring program that includes evaluation procedures and standard test methods.

At the conclusion of the research, there was a need to communicate the guidelines and tools to practitioners at state and local transportation agencies.

“This project produced very useful results that needed to be implemented in state DOT training programs,” says project panelist Lee Smithson, coordinator for AASHTO’s Snow and Ice Pooled Fund Cooperative Program and former Iowa DOT state maintenance engineer. “Training needs included processes for field personnel to assess potential impacts to the natural environment along roadways in their maintenance area, as well as procedures for determining comparative material prices and writing material purchase specifications.”

Self-paced and accommodating multiple learning styles, the program’s eight modules can be accessed on maintenance garage computers or via the web. The web-based version was also made Shareable Content Object Reference Model-compliant, allowing integration with state DOT learning management systems.

The AASHTO computer-based training program is in use at nearly all state DOTs, the winter maintenance community is increasingly interested in minimizing the environmental impacts of deicing chemicals.

Establishing Guidelines to Minimize the Environmental Effects of Winter Maintenance

Every winter, transportation agencies apply large quantities of salt and other chemicals to roads to keep them clear of snow and ice. Rational decision-making guidelines were needed to help maintenance managers assess the properties of various materials and take steps to minimize their environmental effects.

To help meet this need, NCHRP conducted NCHRP Project 06-16 and produced NCHRP Report 577: Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts (www.trb.org/Main/Blurbs/158876.aspx). The report provides guidelines through an evaluation of cost, performance, and impacts on the environment and infrastructure.

The project also produced a decision tool for selecting snow and ice control materials to suit the specific needs of any given highway agency (www.trb.org/NotesDocs/NCHRP06-16_MaterialSelectionWizard.zip). The software serves as a purchasing specification and as a quality assurance monitoring program that includes evaluation procedures and standard test methods.
According to Smithson, the American Public Works Association (APWA) and the National Association of County Engineers (NACE) also include it in their recommended training programs.

"Implementing results often requires a willingness to accept risks—because sometimes there will be setbacks."

“Those modules are successfully teaching field and central office maintenance personnel how snow and ice control materials impact the receiving environment, and how to recognize and rank these impacts,” Smithson says.

Facilitating state and local implementation

While AASHTO took the lead in making the guidelines and tools available nationally, APWA and NACE led implementation efforts at the state and local levels.

Chlorides from deicing salts can cause leaf burn—discoloration and decay in plant tissues—and other environmental effects.

“There were many marketing champions from both APWA and NACE,” Smithson says. “APWA incorporated research results into its certification program, and some state DOTs made the guidelines a requirement in their training programs.”

Ultimately, implementation of research depends on state and local agencies being proactive, according to Smithson, and sometimes this requires a change in culture. Michael Fitch, project panel member and associate principal research scientist at the Virginia Center for Transportation Innovation and Research, agrees. “There are risks involved with changing the way you do things,” Fitch says. “Implementing results often requires a willingness to accept risks—because sometimes there will be setbacks.” Fitch advocates seeing such setbacks not as failures but as stepping stones to meaningful change.

Overcoming this resistance, according to Smithson, requires advocates within the agencies themselves to show that the potential benefits are worth the risks. “The money and support are out there,” Smithson says. “It’s just a matter of convincing people there are achievable outcomes that produce savings and improve customer service.”

Disseminating results

Disseminating results is critical to such advocacy and overcoming resistance at all levels—national, state, and local. “The more that agencies stay informed and key leaders stay current with research, the more likely implementation is to be successful,” Smithson says.

However, there’s still a risk, notes Fitch, that key decision makers won’t have the time to read lengthy reports. “NCHRP Report 577 is a big document.” Fitch says. “It’s crucial that this really important research be boiled down into summaries and highlights so it’s accessible to leaders who are pressed for time.”

Also critical is presenting findings to fellow practitioners. Smithson himself wrote technical papers about the computer-based training program and presented them at conferences and symposia, including Transportation Association of Canada Annual meetings, PIARC in Sweden, SIRWEC in Finland, AASHTO Highway Subcommittee on Maintenance summer meetings, and various regional snow conferences for APWA and state DOTs.

There is evidence that such efforts have led to NCHRP Report 577 having a significant reach within the transportation community. “The report is commonly referenced in other research designed to reduce the impacts of winter maintenance practices on the environment,” Fitch says. “It is also very commonly mentioned among DOT winter maintenance experts.”

“Disseminating results is critical to such advocacy and overcoming resistance at all levels—national, state, and local. “The more that agencies stay informed and key leaders stay current with research, the more likely implementation is to be successful,” Smithson says.

However, there’s still a risk, notes Fitch, that key decision makers won’t have the time to read lengthy reports. “NCHRP Report 577 is a big document.” Fitch says. “It’s crucial that this really important research be boiled down into summaries and highlights so it’s accessible to leaders who are pressed for time.”

Also critical is presenting findings to fellow practitioners. Smithson himself wrote technical papers about the computer-based training program and presented them at conferences and symposia, including Transportation Association of Canada Annual meetings, PIARC in Sweden, SIRWEC in Finland, AASHTO Highway Subcommittee on Maintenance summer meetings, and various regional snow conferences for APWA and state DOTs.

There is evidence that such efforts have led to NCHRP Report 577 having a significant reach within the transportation community. “The report is commonly referenced in other research designed to reduce the impacts of winter maintenance practices on the environment,” Fitch says. “It is also very commonly mentioned among DOT winter maintenance experts.”

“Disseminating results is critical to such advocacy and overcoming resistance at all levels—national, state, and local. “The more that agencies stay informed and key leaders stay current with research, the more likely implementation is to be successful,” Smithson says.

However, there’s still a risk, notes Fitch, that key decision makers won’t have the time to read lengthy reports. “NCHRP Report 577 is a big document.” Fitch says. “It’s crucial that this really important research be boiled down into summaries and highlights so it’s accessible to leaders who are pressed for time.”

Also critical is presenting findings to fellow practitioners. Smithson himself wrote technical papers about the computer-based training program and presented them at conferences and symposia, including Transportation Association of Canada Annual meetings, PIARC in Sweden, SIRWEC in Finland, AASHTO Highway Subcommittee on Maintenance summer meetings, and various regional snow conferences for APWA and state DOTs.

There is evidence that such efforts have led to NCHRP Report 577 having a significant reach within the transportation community. “The report is commonly referenced in other research designed to reduce the impacts of winter maintenance practices on the environment,” Fitch says. “It is also very commonly mentioned among DOT winter maintenance experts.”
Putting Flowable Fill Guidance to Work

National interest in an alternative fill material prompted NCHRP research to establish recommendations for its use. Two state transportation agencies—Texas and Indiana DOTs—describe how they turned those recommendations into state practices.

Addressing Gaps in Knowledge and Practice for Flowable Fill

Flowable fill (also called controlled low-strength material, or CLSM) resembles plastic concrete and shares many of the same components: water, cement, fine aggregate, and fly ash. Flowable fill is something altogether different, though. It is an innovative low-strength building material that can serve as an alternative to compacted granular fill on highway construction projects.

Many state transportation agencies see the advantages of flowable fill compared with traditional fill materials and techniques, including improved performance and marked reductions in labor costs. While some states have used flowable fill to a limited extent, its wide use nationally has been held back by knowledge gaps in design, construction, and expected performance.

Moreover, because flowable fill is not governed by AASHTO specifications, it has been left to each state to determine whether to use it, and if so, how. States shared a common need for better understanding of this construction material.

The job involved sharing his expertise with the right people in the state. As an active member on an Indiana DOT technical committee that addresses construction materials, Nantung was able to bring the NCHRP findings to the steering committee and discuss how to incorporate them in Indiana. “Having a process in place to share input and make recommendations really helped move implementation along,” Nantung says.

In the end, the state specifications were significantly different from the language in the NCHRP report. Those differences are

(continued)
all based on real-world field experiences and feedback from practitioners in the state.

Investigators go above and beyond

Another NCHRP project panelist was Texas DOT’s Mike Arellano, who was serving in the agency’s geotechnical section at the time this research was completed. Arellano points out that Texas DOT, like Indiana, did its own work on the NCHRP findings. “We used the NCHRP product as a jumping-off point for our own in-house research and development,” he says.

“NCHRP standard specifications are helpful in the early stages of implementation. The investigators sat down with the agency and provided assistance throughout the field investigations,” he says.

Texas DOT found the testing guidelines and material designs in the NCHRP report to be particularly helpful. From there, the agency adapted the material properties for the applications it had in mind for rapid set flow fill (Texas’ term for flowable fill).

As part of the specifications development process, Arellano pointed out a unique resource that Texas DOT was able to use to its advantage: the principal investigator for the original NCHRP research.

“With many NCHRP projects,” Arellano explains, “the researcher’s job is done when the report is accepted. In this case, though, we had the good fortune of having the principal investigator, Kevin Folliard of the University of Texas at Austin, right in our backyard.”

Folliard and his team provided extensive support to Texas DOT, which was helpful in the early phases of implementation. The investigators met with the agency and provided assistance throughout the field investigations.

Giving stakeholders the support to succeed

State agencies recognize that implementation cannot succeed through the efforts of central office staff alone. Ensuring buy-in from private industry and regional DOT staff alike is critical.

If a DOT were to write new flowable fill specifications but not secure industry support, then those specifications likely would not work. It is critical to reach out to the ready mix concrete industry to explain—and provide a rationale for—new procedures and policies.

At the same time, it is necessary to make sure that materials engineers who oversee fieldwork are fully prepared to meet the requirements of new specifications.

In Texas, Arellano conducted outreach efforts to ensure success in the field. He noted that one potential difficulty involved the supply of rapid set flow fill material. “In our field trials, we helped suppliers calibrate their gauges and provided the necessary materials,” Arellano says. At the same time, the agency did quite a bit of testing on its own to validate the results of this construction method.

Implementation Success: A New Tool in the Toolbox

The hard work toward full implementation has paid off. Texas DOT saw the success of a few pilot projects in San Antonio that made use of its new specifications. From that point on, rapid set flow fill became a standard option to repair bridge approaches in Texas. Arellano notes that the alternatives, reconstruction or full-depth repair, are heavy and contribute to consolidation. Flow fill is a lightweight alternative that can still handle the heavy bridge loads.

Arellano also cites the advantages of flow fill for accelerated construction. In one example in the Austin district, the agency had an intersection to rebuild over a weekend, and it used rapid set flow fill as an accelerated method. “It’s a very useful tool to have at our disposal,” Arellano says.

The technology has become standard procedure in Indiana as well. Nantung describes it as an iterative process. “We went from a special provision to a standard specification,” he says, “and then through 12 versions of the specs, tweaking it every step of the way. We finalized it a few years ago, and we’re happy with it now and with the results we’re seeing.”

Indiana and Texas are two good examples of implementers, but they are not alone. Nantung points out other examples: “Colorado does a lot of flowable fill, as does Ohio. I think across the country, states are using flowable fill—or using it more—thanks to this NCHRP research.”

INDIANA
DEPARTMENT OF TRANSPORTATION
STANDARD SPECIFICATIONS FOR CONSTRUCTION AND MAINTENANCE OF HIGHWAYS, STREETS, AND BRIDGES
2014

States adapted the NCHRP flowable fill guidelines to meet their individual needs.

ACNOWLEDGEMENT OF SPONSORSHIP Work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Academies.

DISCLAIMER The opinions and conclusions expressed or implied in reports are those of the research agencies. They are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors.
Research Makes the Case for Roundabouts

Roundabouts clearly provide safety and mobility benefits, yet some transportation agencies in the United States have been slow to adopt them. NCHRP research established foundational knowledge on roundabout safety, operation, and design that has driven a surge in their use nationwide.

Roundabouts, which help increase safety and reduce congestion, are becoming more common in the United States through the implementation of NCHRP Project 03-65.

Roundabouts in the United States: A Need for Data

In the 1950s, traffic circles fell out of favor in the United States because they allowed for high-speed merging and weaving of vehicles. A remedy for this unsafe and inefficient design was developed overseas: The United Kingdom developed the modern roundabout design that slows entering vehicles and requires them to yield to circulating traffic.

This design is generally more efficient than traditional intersections, typically reducing congestion by keeping traffic flowing. It is safer as well, minimizing traffic conflict points and reducing the right-angle crashes that lead to more severe injuries and fatalities.

Because of these benefits, modern roundabouts are now widely used internationally. However, the United States has been slower to accept roundabouts because of questions about safety and operational capacity.

To help address such questions, NCHRP Project 03-65 was conducted, which resulted in NCHRP Report 572: Roundabouts in the United States (trb.org/news/blurb_detail.asp?id=7086). Researchers inspected several representative roundabout installations to gather data and compiled a comprehensive inventory of roundabouts in the United States.

The resulting report includes methods for estimating the safety and operational capacity of roundabouts as well as updated design criteria. Technical guidance is spelled out in detail in the companion appendices, NCHRP Web-Only Document 94 (trb.org/news/blurb_detail.asp?id=7274).

“Virtually everything that came out of NCHRP Report 572 worked its way into the roundabout guide.”

Paths to Practice

Incorporation into widely used tools

The results of NCHRP 03-65 have been incorporated into a number of widely used tools, including NCHRP Report 672: Roundabouts: An Informational Guide—Second Edition (trb.org/Publications/Blurbs/164470.aspx). This report is an update to an FHWA guide originally published in 2000, one based primarily on European and Australian guidelines.

“Virtually everything that came out of NCHRP Report 572 worked its way into the roundabout guide, NCHRP Report 672,” says Lee Rodegerdts, the principal investigator who authored both NCHRP Reports 572 and 672. “This is a go-to source nationally for information on roundabouts and is also being used outside of the United States.”

The roundabout capacity model and operational information developed in NCHRP Report 572 was also implemented into TRB’s 2010 Highway Capacity Manual (HCM). “The HCM is widely used by transportation agencies across the United States and can be drawn upon to aid roundabout implementation nationwide,” says Rodegerdts, who is also a former HCM committee member and part of the team that updated the 2010 edition. “It’s a cornerstone document with a huge audience.”

NCHRP—Transportation research that works

Objective national highway research since 1962 • Focused on practical problems of state DOTs • Contract researchers competitively selected • Overseen by balanced panels of technical experts • Reviewed by TRB highway specialists

Implementation Strategies

AT A GLANCE

• The Basis for National Guidance: Results were incorporated into a number of widely used manuals and specifications such as NCHRP Report 672, TRB’s Highway Capacity Manual, and AASHTO’s “Green Book.”

• Facts Drive Acceptance: Beyond demonstrating benefits, the research helped identify and dispel misconceptions that act as barriers to implementation.

• Identifying Additional Needs: Follow-up projects will improve crash prediction and capacity models, and will address accessibility for the visually impaired. The results will further accelerate implementation.
“This research is key for states that have challenges with implementation.”

Results were also incorporated into AASHTO’s A Policy on Geometric Design of Highways and Streets, or “Green Book,” as well as several state DOT roundabout guides, noted Mark Doctor, FHWA liaison to NCHRP 03-65. “The breadth of its influence is a testament to the wealth of useful information this project produced,” Doctor says.

Rodegerdts adds, “With the help of FHWA, TRB, and other agencies, we were able to get our results into key documents used nationally and internationally. That was a critical part of implementation.”

Demonstrating safety, increasing acceptance

Part of the importance of NCHRP Report 572 is how it continues to drive acceptance of roundabouts by clearly demonstrating their safety benefits. “This is the first large-scale national study to collect field data and make recommendations,” Rodegerdts says. “Our safety data are powerful and definitive.”

Doctor agrees. “Without a doubt, roundabouts are safer than traditional intersections,” he says.

Some of the reluctance to adopt roundabouts in the United States is predicated on public misconception. One common misconception is that a roundabout and a rotary are the same. Rotaries are higher speed facilities and can require changing lanes to exit, making them difficult for drivers to navigate during peak use. Other misconceptions about roundabouts are that they are always more expensive to build than signaled intersections and that they are difficult to learn to navigate. Tools to dispel such myths and provide facts to the public are important for acceptance.

“This research is key for states that have challenges with implementation,” Doctor says, “whether in design, or planning, or convincing the public and elected officials that roundabouts are indeed the safer and more cost-effective choice.”

Continued research to accelerate implementation

NCHRP Report 572 has also been the impetus for continued research focused on encouraging implementation. “We’re now 10 years removed from the data collected in 2003 for NCHRP Project 03-65,” Rodegerdts says. “There were about 300 roundabouts in the United States back then, while now there are closer to 3,000.”

“There were about 300 roundabouts in the United States [in 2003], while now there are closer to 3,000.”

With increasing use of roundabouts, there is also more data—data that can be used to develop more robust capacity and safety models. To that end, NCHRP Project 17-70 is underway to develop roundabout crash prediction models for AASHTO’s Highway Safety Manual. NCHRP Project 03-78B is addressing the accessibility of roundabouts to visually impaired pedestrians.

In addition, an FHWA-funded project (kittelson.com/projects/fhwa-topr-34-accelerating-roundabout-implementation-in-the-united-states) is focused directly on accelerating roundabout implementation in the United States by updating capacity and crash models with new data. This is an important project for the evolution of roundabout practice because some practitioners are concerned that current models based on NCHRP Report 572 data do not reflect the operations of roundabouts at full capacity.

“All of these projects are important descendants of NCHRP Project 03-65 that will help with implementation nationwide,” Rodegerdts says.

Implementation Success

With NCHRP Report 572’s broad and definitive influence, NCHRP 03-65 is a model for successful implementation. “The project has significantly improved roundabout design in the United States and made engineers more comfortable with selecting roundabouts as an alternative to other intersection controls,” says project panel member Richard Long, a professor at Western Michigan University with expertise in pedestrian safety. “It also brought to the forefront concerns about access for pedestrians, especially the visually impaired.”

“There was a lot of hunger for practical information. This led to a widely used report that put implementation at the forefront.”

Doctor noted that one key to the project’s success was a focus on implementation from the beginning. “This was a practitioner-oriented project with very useful results that were bound to change practice,” Doctor says.

Long agrees. “There was a lot of hunger for practical information,” he says. “This led to a widely used report that put implementation at the forefront.”
Safer Intersections for Rural Highways

Right-angle crashes are a problem on median-separated highways, but the most typical solutions for this problem—constructing an interchange or installing traffic signals—are not always the most effective. NCHRP managed research on safer median intersections that led to the expanded use of innovative designs by state transportation agencies. The effects on safety have been dramatic.

Intersections on Rural Highways: A Serious Safety Risk

Median-separated highways provide distinct advantages over undivided roadways by separating traffic, providing a recovery or stopping area for vehicles, and providing space for left-turn vehicles. In many cases, they also provide the same safety and travel time benefits as rural interstates at a lower cost. However, these safety benefits can be diminished by an increase in the frequency and severity of intersection crashes, especially right-angle crashes that occur while a vehicle from a minor road is making a left turn through the median and onto the highway.

J-turns significantly improve rural highway intersection safety by preventing drivers from directly crossing medians and requiring them instead to make a right turn followed by a U-turn.

Because interchanges and traffic lights are not always the most effective or cost-efficient solutions to these problems, transportation agencies are in need of innovative, low-cost designs that can be used to improve the safety of such intersections. To help establish design guidance and safety data for these treatments, NCHRP Project 15-30 was undertaken, resulting in NCHRP Report 650: Median Intersection Design for Rural Highways (www.trb.org/main/blurbs/163452.aspx).

The report includes 10 case studies illustrating how various intersection designs have been applied in the field and includes recommendations for updating guidance in the FHWA Manual on Uniform Traffic Control Devices and AASHTO’s A Policy on Geometric Design of Highways and Streets, or “Green Book.”

Paths to Practice

An expanded toolbox for state DOTs

NCHRP Report 650 showed that many of the intersection designs examined can significantly improve safety at a lower cost than constructing an interchange. In doing so, the report gives states an expanded set of options for dealing with problem intersections.

“In the past, options for improving safety at high-speed rural intersections were limited,” says Tom Welch, panel chair for NCHRP 15-30 and formerly a highway safety engineer for the Iowa DOT. “Options included a new interchange, which involves major new spending, or installing a traffic signal, which is not guaranteed to improve safety and may even worsen it.”

According to Welch, NCHRP Report 650 provides engineers with everything they need to make an informed decision about how to handle a problem intersection and how to approach the task of design. “With this report, we have a good toolbox,” Welch says. “There is no missing information.”

J-turns: States adopt a safer intersection design

One of the median treatments examined in NCHRP Report 650 is the J-turn intersection, which prevents a driver on a minor road from directly crossing the median. Instead, drivers are forced to make a right turn and subsequently a U-turn at some distance from the intersection. Because the J-turn reduces drivers’ exposure to oncoming traffic in the opposing lane, the distance of which can be difficult to judge, the safety benefits can be significant.

“Our case study showed that J-turns produced a 48 to 92 percent reduction in crashes.”

Implementation Strategies

Cost-Efficient Solutions: NCHRP Report 650 spells out rural intersection solutions that increase safety benefits and lower costs. This offers DOTs a fast track to implementation.

Addressing a High-Profile Research Need: DOTs have expressed keen interest in these solutions, and research-based guidance supports field trials and implementation.

Proof for the Public and Elected Officials: Research data and supporting materials help satisfy members of the public and lawmakers who need evidence that these new designs work.
crashes, and as much as a 100 percent reduction in more severe right-angle crashes,” says Joshua Hochstein, study co-investigator and Ph.D. candidate at Iowa State University.

With objective safety data, the report lessens the burden of explaining to the public why these treatments are necessary.

By the end of the study, state transportation agencies’ interest in J-turns was high. After sharing case studies with agencies during a multistate video conference, researchers had transportation agencies vote on how to prioritize further research into countermeasures. “They voted J-turns to be the highest priority,” Hochstein says.

The only states using J-turns when NCHRP Report 650 was written were Maryland, North Carolina, and Florida, Hochstein says. Since publication of the report, Wisconsin, Minnesota, Missouri, and Louisiana have started using J-turns, and Iowa is considering their use. Minnesota and Missouri are leaders in implementing the treatments, Welch says.

According to Missouri DOT traffic engineer John Miller, Missouri has already installed 12 J-turns with four more in the works. “The J-turn is the main tool we consider when we need to address right-angle crashes,” he says.

Minnesota has constructed about six J-turns and is planning six more, according to Brad Estochen, traffic engineer at Minnesota DOT. “For problem intersections with high-speed angle crashes, J-turns are something we can implement to improve the situation far more quickly and cost-effectively than overpasses,” Estochen says.

A tool for educating the public

However, implementation of J-turns can be a difficult task, often facing fierce public opposition. Minnesota, Missouri, and Iowa have all reported similar problems.

“Drivers want to know why they can’t make a left turn,” Estochen says. “This is something new and nontraditional, and the public can be reluctant to embrace change.”

“J-turns have initially not been well-received here in Missouri,” Miller says. One of the concerns, he notes, is how well agricultural equipment and other large vehicles can navigate the required U-turns. According to Welch, Iowa also encountered early resistance to its consideration of J-turns.

However, Estochen, Miller, and Welch agree that the safety data and case studies in NCHRP Report 650 can be a crucial resource for educating the public and overcoming such opposition. “We’ve used NCHRP 15-30 as a basis to start having a conversation with the locals about improving the safety and performance of potentially troublesome intersections,” Estochen says. “With objective safety data, the report lessens the burden of explaining to the public why these treatments are necessary. It shows that these treatments, while unfamiliar, have been successfully implemented before.”

This is one of the most successful NCHRP projects I’ve been involved with. I’m proud to be a part of something that has saved lives.”

Estochen notes that NCHRP Report 650 is a tool not just for educating the public, but also engineers—both new and seasoned—about alternatives to interchanges.

Miller and Welch agree. “This is a really important report,” Miller says. “It’s one I actively share with other staff.”

“Because of the public reaction, the NCHRP results are handy,” Miller says. “We can point to the large reduction in collisions—and it really helps us sell J-turns.”

Implementation Success

Once installed, the safety benefits of J-turns sell themselves. “We’ve seen a 90 percent reduction in angle crashes where we’ve installed J-turns,” Estochen says. Missouri has had similarly impressive safety results.

This is one of the most successful NCHRP projects I’ve been involved with.” Welch says. “It really identified a need that states had, and I’m proud to be a part of something that has saved lives.” Ultimately the results will be incorporated into AASHTO’s Green Book and the FHWA Manual on Uniform Traffic Control Devices, he says.

ACKNOWLEDGEMENT OF SPONSORSHIP Work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Academies.

DISCLAIMER The opinions and conclusions expressed or implied in reports are those of the research agencies. They are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors.