PRECISION ESTIMATES OF AASHTO T 324, "HAMBURG WHEELTRACK TESTING OFCOMPACTED HOT MIX ASPHALT (HMA)"

FINAL REPORT

Prepared for
National Cooperative Highway Research Program
Transportation Research Board
National Research Council
TRANSPORTATION RESEARCH BOARD
NAS-NRC
PRIVILEGED DOCUMENT

This report, not released for publication, is furnished only for review to members of or participants in the work of the National Cooperative Highway Research Program (NCHRP). It is to be regarded as fully privileged, and dissemination of information included herein must be approved by the NCHRP.

Dr. Haleh Azari
AASHTO Materials Reference Laboratory
Gaithersburg, Maryland
June, 2014

ACKNOWLEDGMENT OF SPONSORSHIP

This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Research Council.

DISCLAIMER

This is an uncorrected draft as submitted by the research agency. The opinions and conclusions expressed or implied in the report are those of the research agency. They are not necessarily those of the Transportation Research Board, the National Research Council, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, or the individual states participating in the National Cooperative Highway Research Program.

ACKNOWLEDGEMENTS

The research reported herein was performed under Task Order \#2 of NCHRP Project 10-87 by the AASHTO Materials Reference Laboratory (AMRL). Dr. Haleh Azari was the principal investigator on the study.

The author wishes to acknowledge the following laboratories that participated in this interlaboratory study. Their willingness to volunteer their time and conduct the testing under tight time constraints at no cost to the study is most appreciated.

Alliance Geotechnical Group
AMEC Earth \& Environmental
APAC TX, Inc.
California DOT, Sacramento, CA
Colorado DOT, Denver, CO
Florida DOT, Gainesville, FL
Iowa DOT Ames, IA
Jones Bros. Dirt \& Paving Contractors, Inc.
Kansas State University - Manhattan
Louisiana State University
Mathy Technology \& Engineering Services
Nactech
Oklahoma DOT - Oklahoma City
Pave Tex
Road Science LLC
Texas DOT - Austin
Texas DOT - Chico
Texas DOT - Childress District
Texas DOT - Paris
Texas DOT - San Marcos
Texas DOT - Uvalde Field Lab
University of Texas - El Paso
Utah DOT - Salt Lake City
Utah DOT - Ogden Lab
Vulcan Materials Co.
Wyoming DOT Cheyenne, Wyoming
Washington State DOT, Pullman
University of Texas - Austin
University of Massachusetts - Dartmouth
Texas A\&M University

TABLE OF CONTENTS

ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES
CHAPTER 1- INTRODUCTION AND RESEARCH APPROACH 13
1.1 Background 13
1.2 Problem Statement 13
1.3 Research Objectives 13
1.4 Scope of Study 14
CHAPTER 2- DESIGN AND CONDUCT OF THE STUDY 15
2.1 Materials Selection 15
2.2 Test Samples 15
2.3 Test Machine 16
2.4 Specimen Preparation 16
2.5 Selection of Laboratories for ILS 17
2.6 Specimen Shipment 17
2.7 Instructions for Interlaboratory Study 17
CHAPTER 3- INTERLABORATORY STUDY TEST RESULTS AND ANALYSIS 19
3.1 Test Properties 19
3.2 Number of Data Sets. 19
3.3 Results of the ILS 21
3.4 Bulk Specific Gravity Results 21
3.5 Deformation versus Number of Passes 25
3.6 Deformation versus Measurement Location 27
3.7 Difference in Deformation from Right and Left 28
3.8 Difference in Laboratory Results 29
3.9 Percent Error in Measurement Location Data 31
3.10 Comparison of Properties of Various Mixture/Specimen Types 33
3.10.1 Comparison of Properties of Gyratory and Slab Specimens of Field Mixture 33
3.10.1.1 Creep Slopes of Gyratory and Slab 34
3.10.1.2 Deformation of Gyratory and Slab Specimens at End 35
3.10.1.3 Deformation of Gyratory and Slab Specimens after Specified Number of Passes 36
3.10.2 Comparison of Properties of Gyratory and Slab Specimens of Wyoming Mixture 37
3.10.2.1 Creep Slopes of Gyratory and Slab of Wyoming Mixture 38
3.10.2.2 Number of Passes to 6 -mm Deformation 38
3.10.2.3 Number of Passes to $12-\mathrm{mm}$ Deformation 39
3.10.2.4 Number of Passes to Inflection Point. 40
3.10.2.5 Deformation at Inflection Point 40
3.10.2.6 Stripping Slopes of Gyratory and Slab of Wyoming Mixture 41
3.10.3 Measurement Locations of Maximum Deformation 42
3.10.4 Effect of Left and Right Wheels on Replicates' Variability 42
CHAPTER 4- PRECISION ESTIMATES 45
4.1 Method of Analysis of ILS Test Results 45
4.2 Statistical Comparisons 45
4.3 Results of Analysis 46
4.3.1 Well-Performing Field Mixture 46
4.3.1.1 Comparison of Statistics from Various Measurement Locations 46
4.3.1.2 Comparison of Statistics from Gyratory and Slab Specimens 52
4.3.2 Poorly-Performing Wyoming Mixture 58
4.3.2.1 Comparison of Statistics from Different Measurement Locations 59
4.3.2.2 Comparison of Statistics from Gyratory and Slab Specimens 66
4.3.3 Pooled Statistics 72
4.3.3.1 Well-Performing Mixture 72
4.3.3.2 Poorly-Performing Mixture 73
4.3.4 Comparison of COV of Creep Slopes of the Two Mixture Types 76
4.3.5 Precision Estimates of AASHTO T 324 76
CHAPTER 5- FINDINGS AND PROPOSED CHANGES TO AASHTO T 324 AND THE HWTT EQUIPMENT 78
5.1 Findings 78
5.2 Proposed Changes to AASHTO T 324 and the HWTT Equipment 78
REFERENCES. 80

LIST OF TABLES

Table 2-1- volumetric properties of Wyoming laboratory and Maryland field mixtures................. 15
Table 3-1- Mixture/specimen type associated with the results sent and the corresponding number of HWTT wheels for each participating laboratories20

Table 3-2- Air voids of Field and WY samples measured by AMRL and participating laboratories 22

Table 4-1- Summary of Statistics of rut depth (mm) and creep slope ($\mathrm{mm} / \mathrm{pass}$) of gyratory and slab specimens of Field material from average of all measurement locations, average of all except middle three measurement locations, and average of all except two measurement locations at each end 48

Table 4-2- Statistical t-test on the average rut depth (mm) after 10,000, 15,000, and 20,000 cycles and creep slope ($\mathbf{m m} /$ pass) of Field mixture for the comparison of measurements from various sets of measurement locations.

Table 4-3- Statistical F-test on repeatability coefficients of variation (COV) of rut depth (mm) after $10,000,15,000$, and 20,000 cycles and of creep slope ($\mathrm{mm} / \mathrm{pass}$) of Field mixture for the comparison of measurements from various sets of measurement locations 51

Table 4-4- Statistical F-test on reproducibility coefficients of variation (COV) of rut depth (mm)
after $10,000,15,000$, and 20,000 cycles and of creep slope ($\mathbf{m m} / \mathrm{pass}$) of Field mixture for
the comparison of measurements from various sets of measurement locations.............. 52
Table 4-5- Statistical t-test on averages of rut depth (mm) after $\mathbf{1 0 , 0 0 0}, \mathbf{1 5 , 0 0 0}$, and $\mathbf{2 0 , 0 0 0}$ passes and of creep slope (mm/pass) corresponding to gyratory and slab specimens of Field mixture

Table 4-6- Statistical F-test for comparison of the repeatability COV of rut depth (mm) after
$10,000,15,000$, and 20,000 passes and of creep slope ($\mathrm{mm} /$ pass) corresponding to
gyratory and slab specimens of the Field mixture. 57

Table 4-7- Statistical F-test on reproducibility COV of rut depth (mm) after $10,000,15,000$, and
$\mathbf{2 0 , 0 0 0}$ cycles and of creep slope ($\mathrm{mm} /$ pass) of gyratory and slab specimens of the Field
mixture

Table 4-8- Summary of Statistics of HWTT properties for gyratory and slab specimens of WY
mixture computed from all measurement locations, all except the middle three
measurement locations, and all except the end measurement locations. 58
Table 4-9- Statistical t-test for comparison of the average \# of cycles to $\mathbf{6 - m m}$ and $\mathbf{1 2 - m m}$ rut depths, creep and stripping slopes, and \# of cycles to inflection point of WY gyratory and slab specimens from various measurement location sets 61

Table 4-10- Statistical F-test on repeatability coefficients of variation of number of cycles to 6-mm
and 12-mm rut depth, and number of cycles to inflection point of gyratory and slab
specimens of Wyoming mixture measured using different measurement locations sets 64
Table 4-11- Statistical F-test on repeatability coefficients of variation of creep slope and stripping
slope of gyratory and slab specimens of Wyoming mixture measured using different
measurement locations sets ... 65
Table 4-12- Statistical F-test on reproducibility coefficients of variation of number of cycles to 6$\mathbf{m m}$ and $12-\mathrm{mm}$ rut depth and number of cycles to inflection point of gyratory specimens of Wyoming mixture measured using different measurement locations sets

Table 4-13- Statistical F-test on reproducibility coefficients of variation of number of creep slope
and stripping slope of gyratory specimens of Wyoming mixture measured using different
measurement locations sets ... 66
Table 4-14- Statistical t-test for comparison of average properties of gyratory and slab specimens of WY mixture using various measurement location sets.

Table 4-15- Statistical F-test for comparison of repeatability coefficients of variation (COV) of
number of cycles to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth and to the inflection point for gyratory
and slab specimens of WY mixture using various measurement location sets

Table 4-16- Statistical F-test for comparison of repeatability coefficient of variations of creep and
stripping slope of gyratory and slab specimens of WY mixture using various
measurement location sets.

Table 4-17- Statistical F-test for comparison of reproducibility coefficients of variation (COV) of
number of cycles to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth and to the inflection point for gyratory
and slab specimens of WY mixture using various measurement location sets
Table 4-18- Statistical F-test for comparison of reproducibility coefficient of variations (COV) of creep and stripping slope of gyratory and slab specimens of WY mixture using various measurement location sets 72
Table 4-19- Pooled COV of deformation after 10, 15, and 20 thousand number of passes and of creep slope for well-performing mixture 73
Table 4-20- Statistical comparison of the pooled COV of deformation after 10, 15, and 20 thousands number of passes for well-performing mixture. 73
Table 4-21- Pooled coefficients of variation (COV) of number of cycles to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth and to inflection point for gyratory and slab specimens of the poorly-performing mixture 74
Table 4-22- Pooled coefficients of variation (COV) of creep and stripping slopes of gyratory and slab specimens of the poorly-performing mixture. 74
Table 4-23- Results of statistical comparison of repeatability COVs of the properties of gyratory and slab specimens 75

Table 4-25- Pooled coefficients of variation (COV) of properties of poorly-performing mixture 75
Table 4-26- Statistical comparison of the pooled COV of number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ deformation and to the inflection point for poorly-performing mixture 76

Table 4-27- Statistical comparison of the COVs of creep slope of well-performing and poorlyperforming mixtures

Table 4-28- Precision estimates for AASHTO T 324.. 77

LIST OF FIGURES

Figure 2-1- Starting and stopping positions of HWTT wheel and the first and last measurement locations shown on the schematic of the HWTT mounting system from AASHTO T 324 [1] 16
Figure 3-1- Number of laboratories that provided results 21
Figure 3-2-Distribution of SSD air voids of WY samples (top) and Field samples (bottom) measured at AMRL 23
Figure 3-3-Air voids of WY samples using SSD and Corelok measured at AMRL 24
Figure 3-4-Air voids of WY Samples (top) and Field samples (bottom) using SSD and Corelok measured at participating laboratories 25
Figure 3-5- Deformation (mm) versus number of passes for (a) Field gyratory (b) Field slabs (c) WY gyratory (d) WY slabs (c) received from laboratories 27
Figure 3-6-Deformation profiles of (a) Field gyratory (b) Field slabs (c) WY gyratory (d) WY slabs received from laboratories. 28
Figure 3-7-Deformation versus measurement locations and versus number of passes for the gyratory specimens of WY reported by Laboratory R 29
Figure 3-8-Deformation profile and deformation history of the gyratory specimens of Field mixture; the left graph shows the laboratories with similar results and the right graph shows laboratories with different results from each other and from laboratories in the left graph 31
Figure 3-9. \% error in sensor data corresponding to the deformation measurements of the four material/specimen types 32
Figure 3-10- Deformation profiles and deformation history for gyratory specimens of WY, Laboratory \mathbf{F} 33
Figure 3-11- Comparison of average and standard deviation of creep slopes of gyratory and slab specimens of well-performing mixture 35
Figure 3-12- Average deformation of gyratory and slab specimens of the well-performing mixture at the end of the test 36
Figure 3-13- Average deformation of the Field mixture after various number of passes 37
Figure 3-14- Standard deviation of deformation of Field mixture after various number of passes 37
Figure 3-15- Comparison of average and standard deviation of creep slopes of gyratory and slab specimens of the poorly-performing mixture 38
Figure 3-16- Comparison of the number of passes to $\mathbf{6 - m m}$ deformation. 39
Figure 3-17- Comparison of Number of passes to 12 mm deformation in WY mixture 39
Figure 3-18- Number of passes to the inflection point for the WY mixture 40
Figure 3-19- Average deformation at the inflection point 41
Figure 3-20- Comparison of average and standard deviation of stripping slopes of the gyratory and slab of poorly-performing mixture 42
Figure 3-21- Number of maximum deformation at each measurement location 42
Figure 3-22- Average Impression of one-wheeler and two-wheeler HWTT for WY gyratory specimens 43
Figure 3-23- Standard Deviation of one-wheel and two-wheel HWTT for WY gyratory specimens 44
Figure 3-24- Standard Deviation of one-Wheel and Two-Wheel HWTT for Field gyratory specimen44
Figure 4-1-Graphical comparison of average properties of Field mixture measured using data fromall measurement locations, all except three middle measurement locations, and all excepttwo measurement locations at each end .. 49Figure 4-2-Graphical comparison of coefficients of variation ($\mathbf{C O V}$) of properties of Field mixturemeasured using data from all measurement locations, all except middle 3 measurementlocations, and all except two measurement locations at each end49
Figure 4-3- Graphical comparison of average of the properties of gyratory and slab specimens of the Field mixture measured using data from all measurement locations, all except middle 3 measurement locations, and all except 4 end measurement locations........................... 54
Figure 4-4- Graphical comparison of coefficients of variation (COV) of the properties of gyratory and slab specimens of the Field mixture measured using data from all measurement locations, all except middle 3 measurement locations, and all except 4 end measurement locations55
Figure 4-5-Comparison of the average properties measured using all measurement locations, all except middle three measurement locations, and all except the end measurement locations60
Figure 4-6- Comparison of the repeatability and reproducibility coefficients of variation of properties of the poorly-performing mixture using all measurement locations, all except middle three measurement locations, and all except the end measurement locations 63
Figure 4-7- Comparison of average properties of gyratory and slab specimens of WY mixture measured using all measurement locations, all except middle three measurement locations, and all except the end measurement locations 68

Figure 4-8- Comparison of coefficients of variation (COV) of properties of gyratory and slab specimens measured using all measurement locations, all except middle three measurement locations, and all except the end measurement locations.

CHAPTER 1- INTRODUCTION AND RESEARCH APPROACH

1.1 Background

The Hamburg wheel tracking test (HWTT) has been extensively used by the state departments of transportation and industry for identifying mixtures which are prone to rutting or moisture damage. AASHTO T 324, "Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)" describes the procedure for testing asphalt mixture samples using the HWTT device. The method specifies the testing of submerged, compacted asphalt mixture in a reciprocating rolling-wheel device [1]. The test results provide information about the rate of permanent deformation from a moving, concentrated load. The test accommodates both linearly kneaded slab and gyratory compacted specimens. Alternatively, field cores of $150-\mathrm{mm}, 250-\mathrm{mm}$, or $300-\mathrm{mm}$ in diameter or saw cut slab specimens may be tested.

1.2 Problem Statement

The accurate and precise measurement of asphalt mixture properties is an important aspect of designing and selecting appropriate mixtures for various pavement projects. AASHTO T 324 has been extensively used in the recent years for detecting rutting, moisture susceptibility, or both, of asphalt mixtures. However, there is no information on the precision of the test method including the allowable differences between two replicate measurements in one laboratory or measurements in two laboratories. In addition, there are important aspects of the test that are not sufficiently specified in the test method; these include factors such as position of the wheel with respect to specimen, verification of the location of the measurements, specimen preparation and assembly, and analysis and reporting of test data. These factors could have significant effect on the HWTT measurements and performance verification of asphalt mixtures. Therefore, it is important to identify the factors causing variability of measurements and further specify their limits in the test method.

1.3 Research Objectives

The objective of this study was to determine precision estimates for AASHTO T 324. To accomplish this objective, the research:

1. Determined the variability of (a) the deformation measurements after specified number of load passes and (b) the creep slope for well-performing mixtures.
2. Determined the variability of (a) the number of passes to threshold deformation, (b) creep slope, (b) stripping slope, and (d) number of passes to the stripping inflection point for poorly-performing mixtures.
3. Compared the mean and variance of the measured properties of gyratory and slab specimens.
4. Compared the mean and variance of properties measured using all measurement locations with those measured using (a) all except the three middle measurement locations and (b) all except two measurement locations at each end.
5. Identified causes of variability of the test results.
6. Proposed modifications to the test method for (a) optimum utilization of the deformation measurements, (b) improvement to the specimen preparation and assembly and (c) necessary adjustments to the machine components.

1.4 Scope of Study

The project encompassed the following major steps:
I. Select materials and mixture design for the interlaboratory study (ILS).
II. Design and conduct the ILS:
a. Prepare instructions for preparation and testing of the ILS specimens.
b. Identify the laboratories participating in the ILS.
c. Prepare gyratory and slab asphalt mixture samples.
d. Provide the compacted samples and instructions to the participating laboratories.
III. Develop precision estimates of AASHTO T 324:
a. Analyze data received from laboratories to determine variability of the HWTT measurements.
b. Statistically compare variability of gyratory and slab specimens.
c. Statistically compare variability of measurements from all measurement locations with those measured using (1) all except three middle measurement locations and (2) all except the two measurement locations at each end.
d. Determine which variances are not statistically different and therefore can be pooled together.
e. Prepare a precision statement for AASHTO T 324.
IV. Conduct a research study to identify the causes of variability of the AASHTO T 324 test results.
V. Identify measures for improving accuracy and precision of the test results.
VI. Prepare findings and proposed changes to AASHTO T 324 and the HWTT device based on the research results.

CHAPTER 2- DESIGN AND CONDUCT OF THE STUDY

The availability of precision estimates for AASHTO T 324 test method is essential for reliable laboratory determination of the rutting and moisture susceptibility of asphalt mixtures. In addition, there are aspects of the test method that are not yet standardized, which could be sources of variability. These sources need to be identified and further specified in the test method. In this respect, an interlaboratory study was designed and conducted in which variability of the test for two different types of mixtures and two methods of compaction was examined. The following sections present the details of the ILS.

2.1 Materials Selection

Since determining the level of rutting and moisture susceptibility of HMA is a main aspect of AASHTO T 324, two mixtures with different levels of rutting and moisture susceptibility were selected for the study. The rutting and moisture sensitive (WY) mixture, which was mixed and compacted in laboratory, consisted of 9.5 mm nominal maximum aggregate size (NMAS) gravel stones from Wyoming and PG64-22 asphalt binder. The rutting and moisture resistant (Field) mixture was produced at the Aggregate Industries plant in Maryland and consisted of 19.0 mm NMAS limestone aggregates and PG 64-22 asphalt binder. Table 2-1 provides the aggregate gradation and asphalt content of the two mixtures.

Table 2-1- volumetric properties of Wyoming laboratory and Maryland field mixtures

Sieve Opening $(\mathbf{m m})$	US Sieve Size	\% Passing Maryland (Field)	\% Passing Wyoming (WY)
25	1 "	100	100
19	$3 / 4^{\prime \prime}$	98	100
12.5	$1 / 2^{\prime \prime}$	87	97
9.5	$3 / 8^{\prime \prime}$	74	87
4.75	$\# 4$	37	51
2.36	$\# 8$	27	35
1.18	$\# 16$	20	25
0.60	$\# 30$	15	17
0.30	$\# 50$	10	13
0.15	$\# 100$	7	9
0.075	$\# 200$	5.1	6.2
Aggregate Water Absorption	0.8	0.6	
$\mathrm{P}_{\mathrm{b}}, \%$			
Gmm			

2.2 Test Samples

Given that AASHTO T 324 allows testing of both slab and gyratory compacted specimens, the effect of specimen type on the test results was also investigated. For this
purpose, both $150-\mathrm{mm} \times 60-\mathrm{mm}$ Superpave gyratory specimens and 265.5-x 331-x 60mm slab specimens were prepared for the study.

2.3 Test Machine

The wheel track testing machines included in the ILS were either one-wheel or twowheel Hamburg Wheel Track Testers manufactured by Precision Metal Works (PMW). Linear variable displacement transducers (LVDTs) measure deformation at eleven locations referred to as measurement locations along the specimen. The Location 1 is the furthest from the wheel gear and location 11 is the closest to the wheel gear as shown in Figure 2-1. Measurement location 6 is at the mid-point of the test specimen by design. In case of gyratory specimens, measurement location 6 should be at the joint of the two adjoining samples. The wheel makes 52 ± 2 passes across the specimen per minute. The maximum speed of the wheel $(0.305 \mathrm{~m} / \mathrm{s})$ is reached at the midpoint of the specimen.

Figure 2-1- Starting and stopping positions of HWTT wheel and the first and last measurement locations shown on the schematic of the HWTT mounting system from AASHTO T 324 [1]

2.4 Specimen Preparation

Preliminary work was conducted to determine the appropriate weight of the mixtures for compacting gyratory and slab specimens with $7.0 \% \pm 1.0 \%$ air voids based on the
original job mix formulas. The gyratory samples were prepared using an IPC gyratory compactor (Servopac) following AASHTO T 312 [2]. The slabs were compacted using a PMW linear kneading slab compactor. WY samples were mixed at $165^{\circ} \mathrm{C}$ and subsequently conditioned at $135^{\circ} \mathrm{C}$ for four hours according to AASHTO R 30 [3] before compaction. Field samples were reheated to $135^{\circ} \mathrm{C}$ before compaction. All samples were compacted to the height of 60 mm .

A total of 280 gyratory and 60 slab specimens were compacted for shipment to the participating laboratories. Since the percent water absorption of aggregates of both Field and WY mixtures were less than 1.5%, the maximum specific gravities (Gmm) of the both mixtures were determined according to the weighing in water method (Method A) described in Section 9 of AASHTO T 209 [4]. The Gmm of the Field and WY mixtures are provided in Table 2-1. The bulk specific gravity of the samples was measured according to AASHTO T 166 (SSD) [5] and AASHTO T 331 (Corelok) [6] prior to sending the specimens to the participating laboratories. The average absorption of Field samples was 1.49% and of WY samples was 1.89%. Since water absorption of the compacted samples was less than 2%, the target air voids of $7.0 \% \pm 1.0 \%$ was achieved based on the AASHTO T 166 procedure. The samples were dried using CoreDry ${ }^{\circledR}$ to a constant weight before they were packaged for shipment.

2.5 Selection of Laboratories for ILS

State DOT and industry laboratories operating the HWTT device on a regular basis were contacted to participate in the study. All participating laboratories were AASHTO accredited for test methods related to AASHTO T 324. Thirty five laboratories agreed to participate in the ILS from which 28 laboratories returned results on at least one specimen type (gyratory and slab).

2.6 Specimen Shipment

Each laboratory received four gyratory and two slab specimens from each of the WY and Field mixtures. Slab specimens were only sent to the 15 laboratories having the capability of testing slabs. The shipment of the two different mixture types was done at a 2-month interval to allow receipt of the results from the first set of materials before the second set of specimens were sent. The reason for sending the compacted samples, rather than raw materials, was to separate the variability in sample preparation from the variability associated with the test configuration and test equipment.

2.7 Instructions for Interlaboratory Study

Participants were provided with instructions and data sheets for performing the tests and collecting the data. Since preparation of gyratory and slab specimens is different, different sets of instructions were prepared for the two types of specimens. The preparation of gyratory specimens by the laboratories included cutting across the height of the specimens so that when the two cut specimens were adjoined, there would be a gap
of no more than 7.5 mm between the two polyethylene molds holding the specimens in place (Figure 2-1). The laboratories were also asked to measure the air voids of the gyratory specimens before preparing them for the wheel track test. The slab specimens were surrounded by plaster of Paris to form their holder. Air voids measurements were not requested for the slab specimens.

To reduce the size of data files collected during testing, the laboratories were asked to follow these data sampling intervals: every $20^{\text {th }}$ cycle for the first 1000 cycles, every $50^{\text {th }}$ cycle for the second 4000 cycles, and every $100^{\text {th }}$ for the remainder of the test (up to 20,000 cycles).

In addition to the output data file, the laboratories were asked to report back (a) the rut depths at pass counts of 5, 10, 15, and 20 thousands; (b) the creep slope, (c) the stripping slope, (d) the number of cycles to threshold deformation, and (e) the number of passes to stripping inflection point. A copy of each set of instructions for preparing and testing of gyratory and slab specimens and the data sheets for entering measurement results are provided in Appendix A.

CHAPTER 3- INTERLABORATORY STUDY TEST RESULTS AND ANALYSIS

Prior to determining the precision estimates of the measurements from the results of the ILS, graphical comparisons of the averages and standard deviations of the AASHTO T 324 test properties for different mixture types, specimen types, wheel side, pass number, deformation threshold level, and measurement locations were performed. The test properties, number of data sets, and observed results are explained in the following sections.

3.1 Test Properties

The following test properties were computed from the data received from the participating laboratories and compared for the two mixtures and the two specimen types.

- Deformation (rut depth) at 5000, 10,000, 15,000, and 20,000 wheel passes
- Number of wheel passes to 6 mm and 12 mm rut depth
- Creep slope
- Stripping slope
- Pass number and deformation at the Stripping Inflection Point

3.2 Number of Data Sets

The following number of laboratories provided completed data sets for the four specimen types (two mixtures x two specimen types):

- Nineteen laboratories sent complete sets of data on the properties of the gyratory compacted Field mixture.
- Seven laboratories sent complete sets of data on the properties of the slab compacted Field mixture.
- Twenty-two laboratories sent complete sets of data on the properties of the gyratory compacted WY mixture.
- Eleven laboratories sent complete set of data on the properties of the slab compacted WY mixture.

Table 3-1 and Figure 3-1 show the number of laboratories that provided results for each combination of material and specimen type. Also shown in Table 3-1, are the number of wheels (two or one) on the Hamburg wheel track tester in each participating laboratory.

Table 3-1-Mixture/specimen type associated with the results sent and the corresponding number of HWTT wheels for each participating laboratories

Laboratories	No. Of Wheels	Field- Gyratory	Field- Slab	WY- Gyratory	WY- Slab
Alliance Geotechnical Group	1	V	V	V	V
AM EC Earth \& Environmental	1	V		V	
APAC TX, Inc.	1	V		V	
California DOT, Sacramento, CA	2	V	V	V	V
Colorado DOT, Denver, CO	2			V	V
Florida DOT, Gainesville, FL	2	V		V	V
Iowa DOT Ames, IA	2		V		
Jones Bros. Dirt \& Paving Contractors,					
Inc.	1	V		V	
Louisiana State University	2	V		V	
M athy Technology \& Engineering	2	V		V	
Services	2		V	V	V
Nactech	2	V		V	
Oklahoma DOT - Oklahoma City	2	V		V	
Pave Tex	2	V	V	V	V
Road Science LLC	2			V	
Texas A\&M University	2			V	
Texas DOT - Childress District	2			V	
Texas DOT - Paris	1	V			
Texas DOT - San M arcos	2	V			
Texas DOT - Uvalde Field Lab	1	V		V	
Kansas State University - Manhattan	2	V		V	
U. of Massachusetts - Dartmouth	1	V		V	
University of Texas - Austin	2	V			
University of Texas - El Paso	2		V		
Vulcan M aterials Co.	1	V		V	V
Washington State DOT, Pullman	2			V	V
Wyoming DOT Cheyenne, Wyoming	2	V			
Utah DOT - Salt Lake City	2			V	V
Utah DOT - Ogden Lab	2				V

Figure 3-1- Number of laboratories that provided results

3.3 Results of the ILS

The results received from the participating laboratories include the measurements of the bulk specific gravity of gyratory specimens and HWTT properties of the gyratory and slab samples. These results are discussed in the following sections.

3.4 Bulk Specific Gravity Results

The statistics of the air voids measured prior to shipment of samples and the air voids measured by participating laboratories for both WY and Field mixtures using SSD and Corelok are shown in Table 3-2. The average water absorption of the WY and field mixtures were 1.89% and 1.49%, respectively, which were under 2%. Therefore, for both mixtures, the $7 \% \pm 1 \%$ air voids specified in AASHTO T 324 for the HWTT samples was achieved based on the SSD air voids. The measurement of air voids by AMRL were made 24 hrs after compaction; for the WY samples, they averaged 6.86% and ranged between 6.51% and 7.49%; for the Field samples, they averaged 6.94% and ranged between 6.48% and 7.52%. The air voids measured by participating laboratories averaged 6.44% for WY samples and ranged from 5.72% to 7.00%. For Field samples, the average air voids was 6.86%, ranging between 6.25% and 7.45%. Despite the difference between average SSD values of AMRL and the participating laboratories for the WY samples, the Corelok values were similar (averaged 7.73% and 7.54% respectively), which indicates that the difference in the SSD values may be due to the subjectivity in SSD determination. The distribution of SSD air voids for both mixtures, measured by AMRL, are shown in Figure 3-2.

Table 3-2- Air voids of Field and WY samples measured by AMRL and participating laboratories

Mixture	Lab	Test	Average	STD	M in	Max	N
WY	AM RL	SSD	6.86	0.24	6.51	7.49	51
		Corelok	7.73	0.17	7.42	8.15	51
	Participating Labs	SSD	6.44	0.32	5.72	7.00	62
		Corelok	7.54	0.36	6.95	8.32	22
Field	AM RL	SSD	6.94	0.19	6.48	7.52	95
		Corelok	-	-	-	-	-
	Participating Labs	SSD	6.86	0.27	6.25	7.45	63
		Corelok	8.05	0.37	7.60	8.70	19

Figure 3-2-Distribution of SSD air voids of WY samples (top) and Field samples (bottom) measured at AMRL

Evaluation of the difference between the SSD and Corelok values in Table 3-2 might indicate the method that is more reliable for measuring the air voids of HWTT samples. For the WY samples, at 7% SSD air voids, Corelok air voids were 0.8% higher (7.8%) as measured at AMRL. The difference was similar (0.9%) when measured by participating laboratories. The difference between Corelok and SSD air voids for Field samples conducted by participating laboratories was 1.1%. The Corelok air voids of the Field mixture were not measured at AMRL due to the press for time to send the samples within 48 hrs after the compaction. Figure 3-3 shows the Corelok and SSD air voids from measurements made at AMRL (only WY mixture) and Figure 3-4 shows the Corelok and

SSD air voids from measurements made by participating laboratories (both WY and Field mixtures). As indicated from the figures, the SSD and Corelok air voids are distinctly different for both mixtures. Considering the level of absorption of 1.89% and 1.49% of WY and Field mixtures, it is suggested that bulk specific gravity of samples with absorption level of above 1.0% to be measured using Corelok method.

It is important to note that the data shown in Figure 3-3 includes air voids of samples that were prepared for the study but were either not sent to the participating laboratories or sent but not tested by any laboratories. Examples of these samples are those with SSD air void values between 6.2% and 6.5% in Figure 3-3. On the other hand, Figure 3-4 includes only air voids of samples that have been measured by both SSD and Corelok methods. Not all laboratories measured bulk specific gravity of the samples according to both SSD and Corelok; therefore, less number of data points than the number of sent samples are included in Figure 3-4.

Figure 3-3-Air voids of WY samples using SSD and Corelok measured at AMRL

Figure 3-4-Air voids of WY Samples (top) and Field samples (bottom) using SSD and Corelok measured at participating laboratories

3.5 Deformation versus Number of Passes

Graphs of average deformation versus number of passes for the four material/specimen combinations from all laboratories are provided in Figure 3-5. Graphs of the individual
tests are provided in Appendix B. Some general observations can be made from the graphs:

1. The Field mixture has a small deformation versus number of passes (low creep slope).
2. Other than two outlier results, the Field mixture does not exhibit an inflection point. Loosening of the bolts holding specimens in test trays was reported by the laboratories as the reason for the outlier data.
3. The WY mixture clearly shows an stripping inflection point.
4. The inflection point of the WY mixture occurs after a greater number of passes in the slab specimens than in the gyratory specimens.
5. In each mixture, slab and gyratory specimens show similar trends, but the deformation curves of slabs seem less noisy than those of gyratory specimens.
6. For the WY mixture, the stripping slopes ($2^{\text {nd }}$ slope) are generally larger in gyratory specimens than in slab specimens.

Figure 3-5- Deformation (mm) versus number of passes for (a) Field gyratory (b) Field slabs (c) WY gyratory (d) WY slabs (c) received from laboratories

3.6 Deformation versus Measurement Location

Figure 3-6 shows the deformation profile from the last wheel pass at the measurement location 11 of the HWTT for the four mixture/specimen combinations. The x-axis shows the measurement locations and the y-axis shows the deformation measurements in mm . The top and bottom graphs for each combination show the measurements from the right and left wheels in a two-wheel machine or replicate measurements in a one-wheel machine. Several observations can be made from the profiles:

1. For the well-performing Field mixture, the deformation profiles of gyratory and slab specimens appear similar.
2. For the poorly-performing WY mixture, as indicated from the deformation profiles, the deformations from different measurement locations are more consistent for the slab specimens than for the gyratory specimens.
3. The maximum deformations for WY gyratory specimens mostly occur at measurement locations 7 and 8 , rather than measurement location 6 , which is the midpoint.
4. For the WY gyratory specimens, a maximum deformation typically occurs at or around the midpoint of the specimen (Measurement locations 6, 7 , or 8).
However, for the slabs only a few profiles show a maximum deformation around the center. This might indicate that the midpoint of gyratory specimens, where the two samples join, is the weakest part of the test specimen.

Figure 3-6-Deformation profiles of (a) Field gyratory (b) Field slabs (c) WY gyratory (d) WY slabs received from laboratories

3.7 Difference in Deformation from Right and Left

The top and bottom of Figure 3-7 show the measurement locations versus deformation (deformation profile) and number of passes versus deformation (deformation history) for the WY gyratory mixture reported by one of the laboratories. As indicated from the deformation profile (top), the magnitudes of the maximum deformations of the left and right wheels are the same; however, the maximum deformation occurred at measurement location 6 for the right wheel and measurement location 9 for the left wheel. This shows that either replicate samples do not always wear similarly or the measurement locations are not the same on the two sides of the machine. The deformation history from measurement location 7, shown at the bottom of the figure, indicates that the deformations from right and left wheels are very different. Similar problems can be
observed from deformation profiles and deformation history of the mixtures from individual laboratories in Appendix B.

Figure 3-7-Deformation versus measurement locations and versus number of passes for the gyratory specimens of WY reported by Laboratory R

3.8 Difference in Laboratory Results

Close examination of the deformation history (deformation versus number of passes) and deformation profiles (deformation versus measurement location) presented in the previous sections found that the results could be grouped into two categories: 1) a group of laboratories with very similar deformation profiles to each other and 2) a group of laboratories with different deformation

Figure 3-8Figure 3-8 shows the deformation measurements of gyratory specimens of the Field mixture. The left graph shows the deformation measurements from the laboratories with similar results and the right graph shows the deformation measurements from the laboratories with different results from each other and from those in the first group. The large spread in the deformation measurements of the laboratories in the second group suggests that there are problems with either the calibration or alignment of the HWTT device or the specimen-mold assembly in those laboratories. This finding emphasizes the need for regular calibration check of the machines and standardization of the specimenmold assembly to reduce variability of the data.

Figure 3-8-Deformation profile and deformation history of the gyratory specimens of Field mixture; the left graph shows the laboratories with similar results and the right graph shows laboratories with different results from each other and from laboratories in the left graph

3.9 Percent Error in Measurement Location Data

Figure 3-9 shows the \% error in deformation signals caused by electrical and mechanical interferences (noise) in HWTT, determined from laboratories' data. The percent error is the same as coefficient of variation, which is standard deviation of signal amplitude divided by the mean signal amplitude, times 100 . The Percent error is the reciprocal of Signal to Noise Ratio (SNR), which describes how much noise is in the output of a device, in relation to the signal level.

To evaluate the quality of the HWTT data, a threshold \% error needed to be established. From the analysis of the data, it was experienced that when percent error is less than 5%, the least amount of filtering and averaging was required for determining the properties of the test. In addition, several literatures show that a typical SNR threshold for an acceptable signal quality is $20[7,8,9]$, which is equivalent to 5% signal error (inverse of 20). Therefore, a threshold value of 5% was selected for evaluating the quality of the signal data.

The graphs in Figure 3-9 represent the average percent error from readings of measurement locations 4 through 8 of Passes 5,000 through 10,000 of the four mixture/specimen types. As indicated from the figure, the $\%$ error is as small as 1% in one laboratory and as large as 25% in another laboratory. Considering the acceptable percent error of 5%, this threshold has been exceeded in more than 30% of the laboratories, especially for the WY mixture.

The percent error in deformation signals could be a major source of measurement variability. When the noise level is low, the parameter of the test could be easily determined without major manipulation of the signal data. However, if the noise in the data is high, significant smoothing and averaging are required to determine the value of the parameters. This would result in estimated value of the property that is different from the actual value and therefore, causing high variability of the measured properties especially when measured in different laboratories. Reducing the \% error in the signal data is another step in reducing variability of the measurements. Figure 3-10 shows the data from laboratory F. While the deformation profiles and history of the right and left wheels are very similar; however, the \% error of the deformation signals from the two wheels is very high.

Figure 3-9- \% error in sensor data corresponding to the deformation measurements of the four material/specimen types

Figure 3-10- Deformation profiles and deformation history for gyratory specimens of WY, Laboratory \mathbf{F}

3.10 Comparison of Properties of Various Mixture/Specimen Types

The deformation curves in Figure 3-6 demonstrate that the preferred HWTT measurement parameters for the well-performing and the poorly-performing mixtures are likely to be different.

For well-performing mixtures, where the test could be continued for specified number of passes, the deformation at those passes is a meaningful test parameter as is the slope of the deformation curve before the end of the test, also known as creep slope.

For the poorly-performing mixtures, where deformation is large and the duration of the test is ultimately limited by the degree of deformation, the number of cycles to a specified threshold deformation is a meaningful test parameter. Additionally, since poorlyperforming mixtures have a clear inflection point, the slope of the deformation curve before and after the inflection point (the creep and striping slopes) and the number of cycles to the inflection point are also useful test parameters for poorly-performing mixtures.

It is important to note, however, that the choice of test parameters for a given mixture is not made a priori, but is based on the observed performance of the mixture in the HWTT.

3.10.1 Comparison of Properties of Gyratory and Slab Specimens of Field Mixture

The properties of the well-performing mixture include creep slope, deformation at specified number of passes, and deformation at the end of the test. The comparison of the properties of the gyratory and slab specimens is explained as follows.
3.10.1.1 Creep Slopes of Gyratory and Slab

Figure 3-11shows the average and standard deviation of the creep slope for the gyratory and slab specimens of the well-performing Field mixture. For this mixture, the creep slope represents the rate of deformation before the end of the test. As indicated from the figure, the average and standard deviation of creep slope of gyratory specimens is only slightly smaller than those of slab specimens. This suggests that for well-performing mixtures, gyratory specimens may provide a better estimate of rutting performance of the mixture than slab specimens.

Figure 3-11- Comparison of average and standard deviation of creep slopes of gyratory and slab specimens of well-performing mixture

3.10.1.2 Deformation of Gyratory and Slab Specimens at End

Figure 3-12 shows the average and standard deviation of deformation of the Field mixture at the end of the test. The criteria for the test termination are either 20,000 passes or 25 mm of deformation, whichever comes first. For the well-performing mixture, which experienced a small deformation, tests were ended after 20,000 passes. As indicated from the figure, the deformation of the gyratory specimens is an average 0.4 mm less than the deformation of slab specimens at the end of the test. This also indicates that gyratory specimens may provide a better estimate of rutting performance of well-performing mixtures than slab specimens.

Figure 3-12- Average deformation of gyratory and slab specimens of the well-performing mixture at the end of the test
3.10.1.3 Deformation of Gyratory and Slab Specimens after Specified Number of Passes

Figure 3-13 and Figure 3-14 show the average and standard deviation of deformation for the gyratory and slab specimens of the well-performing Field mixture after 1000, 2000, $5000,10,000$, and 20,000 passes. It is observed from the graph that after each set of passes, slab specimens have experienced slightly more deformation than the gyratory specimens. The standard deviations of the deformation of the slab specimens are shown to be larger than those of gyratory specimens after 5,000 passes. This indicates that for the well-performing mixtures, gyratory specimens are slightly more resistant to rutting and moisture and provide slightly less variable results than slab specimens.

Figure 3-13- Average deformation of the Field mixture after various number of passes

Figure 3-14- Standard deviation of deformation of Field mixture after various number of passes

3.10.2 Comparison of Properties of Gyratory and Slab Specimens of Wyoming Mixture

Test properties for the poorly-performing WY mixture include number of passes to threshold rut depth, creep and stripping slopes, and inflection point. Different state DOTs
specify different rut depth thresholds to define test failure. The more commonly used failure criteria are $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depths. Herein, the number of passes to these two failure criteria was compared for the gyratory and slab specimens of WY mixture.

3.10.2.1 Creep Slopes of Gyratory and Slab of Wyoming Mixture

Figure 3-15 shows the average and standard deviation of the creep slope for the gyratory and slab specimens of the WY mixture. The creep slopes represent the rate of deformation before the inflection point. As indicated from the figure, for the WY mixture, the average and standard deviation of the creep slope of gyratory specimens is larger than those of slab specimens. The fact that gyratory specimens are less resistant to rutting and moisture damage might indicate that the rate of deformation of the poorlyperforming mixture is underestimated using gyratory specimens.

Figure 3-15- Comparison of average and standard deviation of creep slopes of gyratory and slab specimens of the poorly-performing mixture

3.10.2.2 Number of Passes to 6-mm Deformation

Figure 3-16 shows the average and standard deviation of the number of passes to $6-\mathrm{mm}$ rut depth for gyratory and slab specimens of WY mixture. As indicated from the figure, a greater number of passes was needed to achieve the same amount of deformation in the slab than in gyratory specimens (12,000 versus 7,000 passes). Although the standard deviation of the number of passes is larger for the slab specimens, considering the larger number of passes, the coefficient of variation for the slab specimens would be smaller. This shows that a poorly-performing mixture is more vulnerable to rutting and moisture damage when tested in the form of gyratory specimens than slab specimens. The weaker performance of gyratory specimens of the poorly-performing mixture is speculated to be caused by the cut cross-sections of the jointed gyratory specimens.

Figure 3-16- Comparison of the number of passes to 6-mm deformation

3.10.2.3 Number of Passes to $12-\mathrm{mm}$ Deformation

Figure 3-17 shows the average and standard deviation of the number of passes to $12-\mathrm{mm}$ rut depth for the WY specimens. Similar to the observation above, more number of passes were needed to achieve $12-\mathrm{mm}$ rut depth in slabs than in gyratory specimens (17,000 versus 10,000), indicating more vulnerability of gyratory specimens to rutting and moisture damage. The standard deviation and consequently the coefficient of variation of number of passes to $12-\mathrm{mm}$ deformation are smaller for slab specimens than for the gyratory specimens.

Figure 3-17- Comparison of Number of passes to $\mathbf{1 2} \mathbf{~ m m}$ deformation in WY mixture

3.10.2.4 Number of Passes to Inflection Point

Figure 3-18 shows the average and standard deviation of the number of passes to the inflection point for the gyratory and slab specimens of the WY mixture. The graph indicates that the gyratory specimens exhibit an inflection point around 4000 passes while the slab specimens exhibit an inflection point around 7000 passes. The variability of this parameter for gyratory and slab specimens is comparable considering that the higher number of passes were required to develop the inflection point in the slab specimens. These results also indicate that for poorly-performing mixtures, gyratory specimens are more vulnerable to rutting and moisture damage than the slab specimens, probably due to the cut cross-sections of the jointed samples.

Figure 3-18- Number of passes to the inflection point for the WY mixture

3.10.2.5 Deformation at Inflection Point

Figure 3-19 provides the average and standard deviation of deformation at the inflection points of the WY specimens. As indicated from the figure, although inflection point occurs after different number of passes for gyratory and slab specimens, as was shown in the previous section, the average deformations at the inflection point are not very different (around 2.5 mm) for the two specimen types. This might indicate that slope of the deformation curve before the inflection point (creep slope) is a better test parameter than deformation and number of passes because creep slope explains how fast mixtures reach the same level of deformation.

Figure 3-19- Average deformation at the inflection point

3.10.2.6 Stripping Slopes of Gyratory and Slab of Wyoming Mixture

Figure 3-20 shows the average and standard deviation of the stripping slopes for the gyratory and slab specimens of WY mixture. The stripping slopes represent the rate of deformation after the inflection point. As shown in the figure, the average and standard deviation of the stripping slope of gyratory specimens is larger than that of slab specimens, indicating a faster degradation of the gyratory specimens of the poorlyperforming mixture after the inflection point.

Figure 3-20- Comparison of average and standard deviation of stripping slopes of the gyratory and slab of poorly-performing mixture

3.10.3 Measurement Locations of Maximum Deformation

Figure 3-21 shows the distribution of the maximum deformation at the measurement locations from all laboratories. As indicated from the figure, for the gyratory specimens, maximum deformation occurs most frequently at measurement locations 7 and 8 ; while for the slab specimens, frequency of maximum deformation is relatively equal at all measurement locations. This clearly shows that despite the maximum speed of the wheel at the midpoint, maximum deformation for gyratory specimens occur most frequently at or around the midpoint due to the weakness at the joint.

Another observation from Figure 3-21 is that the most frequent readings of maximum deformation occur at measurement locations 7 and 8 and not at measurement locations 6, which is the midpoint. This indicates that there is a possibility that the positions of the measurement locations and therefore the spacing between measurement locations are not consistent among different machines. An in-house investigation into this matter was conducted and the results are discussed in Appendix C.

Figure 3-21- Number of maximum deformation at each measurement location

3.10.4 Effect of Left and Right Wheels on Replicates' Variability

Figure 3-22 and Figure 3-23 show average and standard deviation of rut depth from onewheel and two-wheel HWTT machines for the WY gyratory specimens. Figure 3-22
shows that the two-wheel HWTT causes about a 10% greater average rut depth than onewheel HWTT. Figure 3-23 indicates lower variability for two-wheel HWTT below 10,000 cycles and similar variability at 10,000 cycles; however, the two-wheel HWTT's variability at the end of the test is twice as much as that from the one-wheel machine. This may be due to the dynamics of the wheels and the dynamic effect of one wheel on the other as the specimens' rut depth significantly increases. This was usually after 10,000 passes for the WY mixture.

Figure 3-24 shows the standard deviation of the rut depths for Field mixture specimens. Lower standard deviations for two-wheel than for one-wheel machines are seen throughout the test. The dynamic effect is less evidence from the Field mixture since this material does not rut significantly, even after 10,000 cycles.

It may be concluded that the two-wheel system produces more precise replicate measurements for well-performing mixtures with low rut depths; however, the variability between replicates increases significantly with the increased rut depth of the specimens, probably due to the dynamic effect of one wheel on another. If this hypothesis is true, then having separate mechanical systems for each wheel may be warranted.

Figure 3-22- Average Impression of one-wheeler and two-wheeler HWTT for WY gyratory specimens

Figure 3-23- Standard Deviation of one-wheel and two-wheel HWTT for WY gyratory specimens

Figure 3-24- Standard Deviation of one-Wheel and Two-Wheel HWTT for Field gyratory specimen

CHAPTER 4- PRECISION ESTIMATES

4.1 Method of Analysis of ILS Test Results

The ILS test results were analyzed for precision in accordance with ASTM E691, "Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method" [10]. Prior to the analysis, partial sets of data were eliminated by following the procedures described in E691 for determining repeatability $\left(\mathrm{S}_{\mathrm{r}}\right)$ and reproducibility $\left(\mathrm{S}_{\mathrm{R}}\right)$ estimates of precision. Data exceeding the critical h and k statistics, representing the threshold values for the within- and between-laboratory variability, were eliminated from the analysis. The h and k statistics are provided in Appendices D through H. The measured data and the computed statistics for each mixture and specimen type are also provided in the tables and displayed in the figures of Appendices D through H. The shaded cells in the tables indicate data eliminated from the analysis because they exceeded the critical h and k statistics. The graphical display of the data received from laboratories and their associated error bars are provided in the appendices. For each replicate data set, the bottom bar represents the minimum value, the top bar represents the maximum value, and middle point represents the median. The spacing between the median and the top and bottom values indicate the degree of dispersion. This is a useful technique for summarizing the data and determining how variable the data are in each laboratory and among various laboratories.

4.2 Statistical Comparisons

The measurements according to AASHTO T 324 were collected at 11 measurement locations on two different specimen types, gyratory and slab, of well-performing and poorly-performing asphalt mixtures. The analysis of the measured data is conducted with respect to different sets of measurement locations and specimen types. To prepare precision estimates of the properties, variability corresponding to the various measurement locations, specimen types, number of passes to various threshold rut depth criteria, and the rut depths after various numbers of wheel passes were compared statistically. Those variability values that were not statistically significantly different were pooled together to prepare the precision estimates. Statistical t- and F-tests were used to examine the significance of the following differences:

1. Difference between statistics of gyratory and slab specimens
2. Difference between statistics calculated from all measurement locations, all except the middle three measurement locations, and all except two measurement locations at each end
3. Difference between variability of rut depth after $10,000,15,000$, and 20,000 passes (for well-performing mixture)
4. Difference between variability of number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth and to the inflection point (for poorly-performing mixture)

The rejection probability of the computed t - and F - statistics would indicate if the differences from the above comparisons are significantly different. For a 5% level of significance, a rejection probability (p) of less than 0.05 is an indication of significant difference. In the preparation of the precision estimates, those standard deviations that are not significantly different $(\mathrm{P}>0.05)$ would be pooled together.

Since the parameters of the wheel track test are different for the well- and poorlyperforming mixtures, separate analyses were conducted for the well-performing Field mixture and the poorly-performing WY mixture. For the well-performing mixture, the parameters of the test are deformation after $10,000,15,000$, and 20,000 passes and the creep slope. For the poorly-performing mixture, the parameters of the test are number of passes to either $6-\mathrm{mm}$ or $12-\mathrm{mm}$ deformation, the creep and stripping slopes, and the number of passes to the inflection point.

4.3 Results of Analysis

4.3.1 Well-Performing Field Mixture

Table 4-1 provides the statistics of the rut depth after $10,000,15,000$, and 20,000 passes and the statistics of the creep slope for the gyratory and slab specimens of the wellperforming Field mixture. The statistics are calculated using data from all measurement locations, all except the three middle measurement locations (\#s 5, 6, and 7), and all except the two measurement locations at each end (\#s 1 and 2, and 10 and 11). The statistical tests were conducted to compare the averages and variability of the properties measured: 1) from different sets of measurement locations and 2) measured on gyratory and slab specimens.

4.3.1.1 Comparison of Statistics from Various Measurement Locations

A review of the statistics in Table 4-1 indicates that there are relationships between the averages and standard deviations. Therefore, comparison of variability is based on the coefficient of variation (COV). Figure 4-1 and Figure 4-2 show the averages and COV of the measurements from various measurement locations. Table 4-2 through Table 4-4 provide the results of statistical comparison of the averages and the repeatability/reproducibility COVs of the properties measured using different sets of measurement locations. In the figures and tables, the comparisons corresponding to the gyratory specimens come first followed by the comparisons corresponding to the slab specimens. The observations are as follows:

1. For the gyratory specimens, excluding the readings from the three middle measurement locations resulted in slight, but not statistically significant, decreases in average rut depth and creep slope. This is because the deformations at the locations of the middle measurement locations are larger than those at other
locations. There is no trend of change in repeatability COV; however, there is increase in reproducibility COV of the properties from excluding the readings of the middle three measurement locations. None of the differences are statistically significant.
2. For the gyratory specimens, excluding the readings of the end measurement locations resulted in slight, but not statistically significant, increases in average rut depths and creep slope. This is because the deformations at the location of the end measurements are smaller than the deformations at other measurement locations. There is an increase in repeatability and a decrease in reproducibility COV of the properties from excluding the readings of the end measurement locations; however, none of the differences are statistically significant.
3. For the slab specimens, excluding the readings from the three middle measurement locations resulted in slight, but not statistically significant, increases in average creep slope and average rut depth after $10,000,15,000$, or 20,000 passes. This could be because deformation at and around the midpoint of the slab, where the speed of the wheel is the highest, is the smallest. There is no trend of change in the repeatability and a slight, but not significant, decrease in the reproducibility COV of the properties from excluding the data from the middle three measurement locations of the slab specimens (Figure 4-2).
4. For the slab specimens of the well-performing mixture, excluding the readings of the end measurement locations resulted in slight, but not statistically significant, decreases in average rut depths and average creep slope. This indicates that in the slabs, contrary to gyratory specimens, the deformations at the ends are slightly larger than the deformation at other locations. There is no trend of change in the repeatability; however, there is a slight increase in the reproducibility coefficients of variation. None of the differences are statistically significant.

From the above it can be concluded that all measurement locations are equally important for measurement of properties of either gyratory and slab specimens of well-performing mixtures. Therefore, it is proposed that for well-performing mixtures, the readings from all measurement locations be averaged when analyzing the data from the HWTT.

Table 4-1- Summary of Statistics of rut depth (mm) and creep slope ($\mathrm{mm} / \mathrm{pass}$) of gyratory and slab specimens of Field material from average of all measurement locations, average of all except middle three measurement locations, and average of all except two measurement locations at each end

Condition	Property	$\begin{aligned} & \hline \hline \text { \#of } \\ & \text { Labs } \end{aligned}$	Average	Repeatability		Reproducibility		Sx
				STD	CV\%	STD	CV\%	
Field gyratory (all measurement locations)	Rut after 10,000 cycles	18	2.26	0.275	12.2	0.594	26.3	0.561
	Rut after 15,000 cycles	18	2.53	0.334	13.2	0.665	26.3	0.621
	Rut after 20,000 cycles	18	2.71	0.386	14.2	0.729	26.9	0.676
	Creep Slope	18	0.089	0.014	15.8	0.023	25.7	0.021
Field gyratory (except middle measurement locations)	Rut after 10,000 cycles	19	2.22	0.309	13.9	0.616	27.7	0.575
	Rut after 15,000 cycles	18	2.46	0.318	12.9	0.677	27.6	0.639
	Rut after 20,000 cycles	18	2.63	0.360	13.7	0.739	28.1	0.694
	Creep Slope	18	0.086	0.013	15.7	0.023	27.3	0.021
Field gyratory (except end measurement locations)	Rut after 10,000 cycles	18	2.36	0.328	13.9	0.601	25.5	0.554
	Rut after 15,000 cycles	18	2.65	0.392	14.8	0.669	25.3	0.609
	Rut after 20,000 cycles	18	2.85	0.459	16.1	0.744	26.1	0.669
	Creep Slope	18	0.095	0.017	18.0	0.024	25.5	0.021
Field Slab (all measurement locations)	Rut after 10,000 cycles	6	2.60	0.333	12.8	0.606	23.3	0.558
	Rut after 15,000 cycles	6	2.99	0.443	14.8	0.762	25.5	0.694
	Rut after 20,000 cycles	6	3.27	0.532	16.3	0.889	27.2	0.805
	Creep Slope	6	0.112	0.029	26.4	0.039	34.8	0.033
\qquad	Rut after 10,000 cycles	6	2.62	0.338	12.9	0.587	22.4	0.536
	Rut after 15,000 cycles	6	3.00	0.443	14.8	0.735	24.5	0.665
	Rut after 20,000 cycles	6	3.28	0.528	16.1	0.849	25.8	0.762
	Creep Slope	6	0.113	0.029	25.6	0.037	32.6	0.031
Field slab (except end measurement locations)	Rut after 10,000 cycles	6	2.56	0.312	12.2	0.613	24.0	0.573
	Rut after 15,000 cycles	6	2.94	0.414	14.1	0.780	26.6	0.723
	Rut after 20,000 cycles	6	3.23	0.517	16.0	0.924	28.6	0.848
	Creep Slope	6	0.109	0.029	26.9	0.041	37.6	0.035

Figure 4-1-Graphical comparison of average properties of Field mixture measured using data from all measurement locations, all except three middle measurement locations, and all except two measurement locations at each end

Figure 4-2-Graphical comparison of coefficients of variation (COV) of properties of Field mixture measured using data from all measurement locations, all except middle 3 measurement locations, and all except two measurement locations at each end

Table 4-2- Statistical t-test on the average rut depth (mm) after $\mathbf{1 0 , 0 0 0}, \mathbf{1 5 , 0 0 0}$, and 20,000 cycles and creep slope ($\mathbf{m m} /$ pass) of Field mixture for the comparison of measurements from various sets of measurement locations

Comparison	Property	Averages	S	T	df	Critical t	P	Decision
Field gyratory (all measurement locations) Vs. Field gyratory (except middle measurement locations)	Rut after 10,000 cycles	2.26 vs. 2.22	0.568	0.17	35	1.69	0.435	Accept
	Rut after 15,000 cycles	2.53 vs. 2.46	0.630	0.34	34	1.69	0.367	Accept
	Rut after 20,000 cycles	2.71 vs. 2.63	0.685	0.35	34	1.69	0.363	Accept
	Creep Slope	0.089 vs. 0.086	0.021	0.50	34	1.69	0.311	Accept
Field gyratory (all measurement locations) Vs. Field gyratory (except end measurement locations)	Rut after 10,000 cycles	2.26 vs. 2.36	0.558	-0.54	34	1.69	0.297	Accept
	Rut after 15,000 cycles	2.53 vs. 2.65	0.615	-0.58	34	1.69	0.284	Accept
	Rut after 20,000 cycles	2.71 vs. 2.85	0.672	-0.62	34	1.69	0.270	Accept
	Creep Slope	0.089 vs. 0.095	0.021	-0.81	34	1.69	0.211	Accept
Field slabs (all measurement locations) Vs. Field slab (except middle measurement locations)	Rut after 10,000 cycles	2.6 vs. 2.62	0.547	-0.07	10	1.81	0.473	Accept
	Rut after 15,000 cycles	2.99 vs. 3	0.680	-0.03	10	1.81	0.490	Accept
	Rut after 20,000 cycles	3.27 vs. 3.28	0.784	-0.04	10	1.81	0.485	Accept
	Creep Slope	0.112 vs. 0.113	0.032	-0.08	10	1.81	0.468	Accept
Field slabs (all measurement locations) Vs. Field slab(except end measurement locations)	Rut after 10,000 cycles	2.6 vs. 2.56	0.565	0.13	10	1.81	0.451	Accept
	Rut after 15,000 cycles	2.99 vs. 2.94	0.709	0.13	10	1.81	0.451	Accept
	Rut after 20,000 cycles	3.27 vs. 3.23	0.827	0.07	10	1.81	0.473	Accept
	Creep Slope	0.112 vs. 0.109	0.034	0.13	10	1.81	0.451	Accept

Table 4-3- Statistical F-test on repeatability coefficients of variation (COV) of rut depth (mm) after $\mathbf{1 0 , 0 0 0}, \mathbf{1 5 , 0 0 0}$, and $\mathbf{2 0 , 0 0 0}$ cycles and of creep slope ($\mathrm{mm} / \mathrm{pass}$) of Field mixture for the comparison of measurements from various sets of measurement locations

Comparison	Property	COV, \%	F	$\begin{gathered} \hline \text { Critical } \\ \mathrm{F} \\ \hline \end{gathered}$	df1	df2	P	Decision
Field gyratory (all measurement locations) vs. Field gyratory (except middle measurement locations)	Rut after 10,000 cycles	12.2 vs. 13.9	1.29	2.26	18	17	0.300	Accept
	Rut after 15,000 cycles	13.2 vs. 12.9	1.04	2.27	17	17	0.467	Accept
	Rut after 20,000 cycles	14.2 vs. 13.7	1.08	2.27	17	17	0.440	Accept
	Creep slope	15.8 vs. 15.7	1.02	2.27	17	17	0.485	Accept
Field gyratory (all measurement locations) vs. Field gyratory (except end measurement locations)	Rut after 10,000 cycles	12.2 vs. 13.9	1.30	2.27	17	17	0.295	Accept
	Rut after 15,000 cycles	13.2 vs. 14.8	1.26	2.27	17	17	0.319	Accept
	Rut after 20,000 cycles	14.2 vs. 16.1	1.28	2.27	17	17	0.306	Accept
	Creep Slope	15.8 vs. 18	1.29	2.27	17	17	0.303	Accept
Field Slab (all measurement locations) vs. Field slab (except middle measurement locations)	Rut after 10,000 cycles	12.8 vs. 12.9	1.01	5.05	5	5	0.494	Accept
	Rut after 15,000 cycles	14.8 vs. 14.8	1.01	5.05	5	5	0.497	Accept
	Rut after 20,000 cycles	16.3 vs. 16.1	1.03	5.05	5	5	0.489	Accept
	Creep Slope	26.4 vs. 25.6	1.06	5.05	5	5	0.474	Accept
Field Slab (all measurement locations) vs. Field slab (except end measurement locations)	Rut after 10,000 cycles	12.8 vs. 12.2	1.11	5.05	5	5	0.456	Accept
	Rut after 15,000 cycles	14.8 vs. 14.1	1.10	5.05	5	5	0.458	Accept
	Rut after 20,000 cycles	16.3 vs. 16.0	1.04	5.05	5	5	0.485	Accept
	Creep Slope	26.4 vs. 26.9	1.04	5.05	5	5	0.481	Accept

Table 4-4- Statistical F-test on reproducibility coefficients of variation (COV) of rut depth (mm) after $\mathbf{1 0 , 0 0 0}, \mathbf{1 5 , 0 0 0}$, and $\mathbf{2 0 , 0 0 0}$ cycles and of creep slope ($\mathbf{m m} /$ pass) of Field mixture for the comparison of measurements from various sets of measurement locations

Comparison	Property	COV, \%	F	Critical F	df1	df2	P	Decision
Field gyratory (all measurement locations) vs. Field gyratory (except middle measurement locations)	Rut after 10,000 cycles	26.3 vs. 27.7	1.10	2.26	18	17	0.420	Accept
	Rut after 15,000 cycles	26.3 vs. 27.6	1.10	2.27	17	17	0.423	Accept
	Rut after 20,000 cycles	26.9 vs. 28.1	1.09	2.27	17	17	0.428	Accept
	Creep Slope	25.7 vs. 27.3	1.12	2.27	17	17	0.406	Accept
Field gyratory (all measurement locations) vs. Field gyratory (except end measurement locations)	Rut after 10,000 cycles	26.3 vs. 25.5	1.06	2.27	17	17	0.450	Accept
	Rut after 15,000 cycles	26.3 vs. 25.3	1.08	2.27	17	17	0.437	Accept
	Rut after 20,000 cycles	26.9 vs. 26.1	1.06	2.27	17	17	0.452	Accept
	Creep Slope	25.7 vs. 25.5	1.02	2.27	17	17	0.484	Accept
Field Slab (all measurement locations) vs. Field slab (except middle measurement locations)	Rut after 10,000 cycles	23.3 vs. 22.4	1.08	5.05	5	5	0.466	Accept
	Rut after 15,000 cycles	25.5 vs. 24.5	1.08	5.05	5	5	0.467	Accept
	Rut after 20,000 cycles	27.2 vs. 25.8	1.11	5.05	5	5	0.456	Accept
	Creep Slope	34.8 vs. 32.6	1.14	5.05	5	5	0.444	Accept
Field Slab (all measurement locations) vs. Field slab (except end measurement locations)	Rut after 10,000 cycles	23.3 vs. 24	1.06	5.05	5	5	0.476	Accept
	Rut after 15,000 cycles	25.5 vs. 26.6	1.09	5.05	5	5	0.464	Accept
	Rut after 20,000 cycles	27.2 vs. 28.6	1.10	5.05	5	5	0.459	Accept
	Creep Slope	34.8 vs. 37.6	1.16	5.05	5	5	0.436	Accept

4.3.1.2 Comparison of Statistics from Gyratory and Slab Specimens

Figure 4-3 and Figure 4-4 show the comparison of the averages and the COVs of the measurements from slab and gyratory specimens. Table 4-5 through Table 4-7 provide the results of statistical comparison of the averages and repeatability/reproducibility COVs of deformation and creep slope from gyratory and slab specimens. In the figures and tables, the first comparison corresponds to all measurement locations, the second comparison corresponds to all except the middle three measurement locations, and the third comparison corresponds to all except the two measurement locations at each end. The following are observed from the tables:

1. Regardless of the sets of measurement locations used, the average deformation and creep slope of the slab specimens of the well-performing mixture are always larger than those of the gyratory specimens. This indicates that gyratory
specimens of well-performing mixtures are more resistant to rut and moisture damage than slab specimens.
2. When all measurement locations are used, the average creep slope of slab specimens is significantly larger than that of gyratory specimens (Table 4-5).
3. When the middle three measurement locations are excluded, the average rut depths after 15,000 and 20,000 passes and the average creep slope of slab specimens are statistically larger than those of gyratory specimens. The significant differences are shown as the shaded cells in Table 4-5.
4. When the four end measurement locations are excluded, the differences between rut depth and creep slope of gyratory and slab specimens become smaller. This is because by excluding the end measurement locations, the average deformation of gyratory specimens slightly increases and average deformation of slab specimens slightly decreases resulting in smaller differences between properties of the two specimen types. However, as indicated from Table 4-5, none of the differences are statistically significant.
5. Regardless of the sets of measurement locations used, both the repeatability and reproducibility COV of the creep slope from the slab specimens is larger than that of the gyratory specimens. However, the differences are not statistically significant.
6. There appears to be a relationship among the differences between the COV of rut depths from gyratory and slab specimens, number of passes, and the measurement locations. As indicated from Table 4-6 and Table 4-7, prior to 10,000 passes, slab specimens provide either the same or lower repeatability/reproducibility COVs than gyratory specimens. However, variability of rut depth corresponding to the slab specimens increases as the number of passes increases. On the other hand, the difference between the variability of measurements corresponding to gyratory and slab specimens decreases when the data from the end measurement locations are excluded from the analysis. However, none of the differences between variability of gyratory and slab specimens are statistically significant.

From the above observations it can be concluded that the type of specimens used for the HWTT should be recorded along with the test results, since the average of one or more properties could be significantly different depending on which measurement location data are used in the analysis. However, if the end measurement locations are excluded from the analysis, the estimate of mixture performance from the gyratory and slab specimens would not be different.

Since the differences in variability of measurements using gyratory and slab specimens are not statically significant, the precision estimates for the properties of well-performing mixtures were prepared by pooling together the COV of the properties of gyratory and slab specimens.

Figure 4-3- Graphical comparison of average of the properties of gyratory and slab specimens of the Field mixture measured using data from all measurement locations, all except middle $\mathbf{3}$ measurement locations, and all except 4 end measurement locations

Figure 4-4- Graphical comparison of coefficients of variation (COV) of the properties of gyratory and slab specimens of the Field mixture measured using data from all measurement locations, all except middle 3 measurement locations, and all except 4 end measurement locations

Table 4-5- Statistical t-test on averages of rut depth (mm) after $\mathbf{1 0 , 0 0 0}, \mathbf{1 5 , 0 0 0}$, and $\mathbf{2 0 , 0 0 0}$ passes and of creep slope ($\mathrm{mm} /$ pass) corresponding to gyratory and slab specimens of Field mixture

Comparison	Property	Averages	S	T	df	Critical t	P	Decision
Field gyratory (all measurement locations) vs. Field slabs (all measurement locations)	Rut after 10,000 cycles	2.26 vs. 2.6	0.56	-1.30	22	1.72	0.103	Accept
	Rut after 15,000 cycles	2.53 vs. 2.99	0.64	-1.53	22	1.72	0.070	Accept
	Rut after 20,000 cycles	2.71 vs. 3.27	0.71	-1.67	22	1.72	0.055	Accept
	Creep Slope	0.089 vs. 0.112	0.02	-2.02	22	1.72	0.028	Reject
Field gyratory (except middle measurement locations) vs. Field slab (except middle measurement locations)	Rut after 10,000 cycles	2.22 vs. 2.62	0.57	-1.49	23	1.71	0.074	Accept
	Rut after 15,000 cycles	2.46 vs. 3	0.64	-1.79	22	1.72	0.043	Reject
	Rut after 20,000 cycles	2.63 vs. 3.28	0.71	-1.95	22	1.72	0.032	Reject
	Creep Slope	0.086 vs. 0.113	0.02	-2.49	22	1.72	0.011	Reject
Field gyratory (except end measurement locations) vs. Field slab (except end measurement locations)	Rut after 10,000 cycles	2.36 vs. 2.56	0.56	-0.77	22	1.72	0.225	Accept
	Rut after 15,000 cycles	2.65 vs. 2.94	0.64	-0.97	22	1.72	0.171	Accept
	Rut after 20,000 cycles	2.85 vs. 3.23	0.71	-1.14	22	1.72	0.133	Accept
	Creep Slope	0.095 vs. 0.109	0.02	-1.25	22	1.72	0.111	Accept

Table 4-6- Statistical F-test for comparison of the repeatability COV of rut depth (mm) after $\mathbf{1 0 , 0 0 0}$, 15,000 , and 20,000 passes and of creep slope ($\mathrm{mm} / \mathrm{pass}$) corresponding to gyratory and slab specimens of the Field mixture

Comparison	\#of Passes	COV, \%	F	Critical F	df 1	$\begin{gathered} \hline \mathrm{df} \\ 2 \end{gathered}$	P	Decision
Field gyratory (all measurement locations) vs. Field Slab (all measurement locations)	Rut after 10,000 cycles	12.2 vs. 12.8	1.10	2.81	5	17	0.395	Accept
	Rut after 15,000 cycles	13.2 vs. 14.8	1.26	2.81	5	17	0.326	Accept
	Rut after 20,000 cycles	14.2 vs. 16.3	1.31	2.81	5	17	0.305	Accept
	Creep Slope	15.8 vs. 26.4	2.77	2.81	5	17	0.052	Accept
Field gyratory (except middle measurement locations) vs. Field slab (except middle measurement locations)	Rut after 10,000 cycles	13.9 vs. 12.9	1.16	4.58	18	5	0.477	Accept
	Rut after 15,000 cycles	12.9 vs. 14.8	1.30	2.81	5	17	0.308	Accept
	Rut after 20,000 cycles	13.7 vs. 16.1	1.38	2.81	5	17	0.282	Accept
	Creep Slope	15.7 vs. 25.6	2.65	2.81	5	17	0.060	Accept
Field gyratory (except end measurement locations) vs. Field slab (except end measurement locations)	Rut after 10,000 cycles	13.9 vs. 12.2	1.31	4.59	17	5	0.411	Accept
	Rut after 15,000 cycles	14.8 vs. 14.1	1.10	4.59	17	5	0.500	Accept
	Rut after 20,000 cycles	16.1 vs. 16	1.02	4.59	17	5	0.545	Accept
	Creep Slope	18 vs. 26.9	2.24	2.81	5	17	0.097	Accept

Table 4-7- Statistical F-test on reproducibility COV of rut depth (mm) after $\mathbf{1 0 , 0 0 0}, \mathbf{1 5 , 0 0 0}$, and $\mathbf{2 0 , 0 0 0}$ cycles and of creep slope ($\mathbf{m m} /$ pass) of gyratory and slab specimens of the Field mixture

Comparison	\# of Passes	COV, \%	F	$\begin{gathered} \hline \hline \text { Critical } \\ \mathrm{F} \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{df} \\ 1 \end{gathered}$	$\begin{aligned} & \hline \mathrm{df} \\ & \hline \end{aligned}$	P	Decision
Field gyratory (all measurement locations) vs. Field Slab (all measurement locations)	Rut after 10,000 cycles	26.3 vs. 23.3	1.28	4.59	17	5	0.425	Accept
	Rut after 15,000 cycles	26.3 vs. 25.5	1.06	4.59	17	5	0.519	Accept
	Rut after 20,000 cycles	26.9 vs. 27.2	1.02	2.81	5	17	0.434	Accept
	Creep Slope	25.7 vs. 34.8	1.83	2.81	5	17	0.160	Accept
Field gyratory (except middle measurement locations) vs. Field slab (except middle measurement locations)	Rut after 10,000 cycles	27.7 vs. 22.4	1.53	4.58	18	5	0.338	Accept
	Rut after 15,000 cycles	27.6 vs. 24.5	1.27	4.59	17	5	0.428	Accept
	Rut after 20,000 cycles	28.1 vs. 25.8	1.18	4.59	17	5	0.463	Accept
	Creep Slope	27.3 vs. 32.6	1.43	2.81	5	17	0.265	Accept
Field gyratory (except end measurement locations) vs. Field slab (except end measurement locations)	Rut after 10,000 cycles	25.5 vs. 24	1.13	4.59	17	5	0.486	Accept
	Rut after 15,000 cycles	25.3 vs. 26.6	1.10	2.81	5	17	0.394	Accept
	Rut after 20,000 cycles	26.1 vs. 28.6	1.20	2.81	5	17	0.351	Accept
	Creep Slope	25.5 vs. 37.6	2.17	2.81	5	17	0.105	Accept

4.3.2 Poorly-Performing Wyoming Mixture

Table 4-8 provides statistics of the properties of gyratory and slab specimens of the poorly-performing Wyoming mixture. The properties include number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ threshold rut depths, creep slope, stripping slope, and the number of cycles to the inflection point. The comparison of statistics from various measurement locations and from gyratory and slab specimens are discussed in the following sections. A review of the data in Table 4-8 indicates that there is a strong relationship between averages and the standard deviations. Therefore, the statistical comparison has been performed on the averages and repeatability/reproducibility coefficients of variation.

Table 4-8- Summary of Statistics of HWTT properties for gyratory and slab specimens of WY mixture computed from all measurement locations, all except the middle three measurement locations, and all except the end measurement locations

Specimens Type/ M easurement locations Set	Property	\#of labs	Average	Repeatability		Reproducibility		Sx
				STD	COV, \%	STD	COV, \%	
```WY gyratory (all measurement locations)```	Cycles to 6 mm	25	7619	1180	15.5	1928	25.3	1738
	Cycles to 12 mm	25	11879	2030	17.1	2686	22.6	2270
	Creep Slope	24	0.36	0.057	16.0	0.116	32.4	0.106
	Stripping Slope	24	1.09	0.186	17.1	0.229	21.0	0.172
	Cycles to Inflection Point	24	4605	1091	23.7	1510	32.8	1219
WY gyratory (except middle measurement locations)	Cycles to 6 mm	25	8193	1262	15.4	2022	24.7	1815
	Cycles to 12 mm	19	12919	2225	17.2	2902	22.5	2438
	Creep Slope	24	0.32	0.063	19.6	0.100	30.9	0.089
	Stripping Slope	24	0.91	0.151	16.5	0.177	19.4	0.141
	Cycles to Inflection Point	25	4756	1093	23.0	1469	30.9	1250
WY gyratory (except end measurement locations)	Cycles to 6 mm	25	7041	1138	16.2	1843	26.2	1659
	Cycles to 12 mm	25	10517	1883	17.9	2492	23.7	2106
	Creep Slope	24	0.38	0.054	14.1	0.106	27.8	0.099
	Stripping Slope	24	1.36	0.250	18.4	0.274	20.2	0.210
	Cycles to Inflection Point	24	4290	1161	27.1	1525	35.5	1285
WY Slab (all measurement locations)	Cycles to 6 mm	10	11870	1620	13.6	2385	20.1	2092
	Cycles to 12 mm	5	16540	858	5.2	1478	8.9	1347
	Creep Slope	10	0.21	0.031	14.7	0.048	22.4	0.040
	Stripping Slope	10	0.69	0.120	17.4	0.163	23.7	0.131
	Cycles to Inflection Point	10	7540	1555	20.6	2214	29.4	1814
WY slab (except middle measurement locations)	Cycles to 6 mm	9	11544	1414	12.3	1713	14.8	1391
	Cycles to 12 mm	5	17460	728	4.2	1793	10.3	1717
	Creep Slope	10	0.22	0.026	12.3	0.047	21.9	0.043
	Stripping Slope	9	0.59	0.085	14.5	0.096	16.3	0.075
	Cycles to Inflection Point	10	7495	1478	19.7	2181	29.1	1914
WY slab (except end measurement locations)	Cycles to 6 mm	10	11480	1795	15.6	2292	20.0	1908
	Cycles to 12 mm	6	16017	1244	7.8	1794	11.2	1563
	Creep Slope	9	0.20	0.046	23.6	0.043	21.8	0.027
	Stripping Slope	10	0.79	0.175	22.0	0.190	23.9	0.144
	Cycles to Inflection Point	10	7160	1809	25.3	2506	35.0	2156

### 4.3.2.1 Comparison of Statistics from Different Measurement Locations

Figure 4-5 and Figure 4-6 show the averages and COV of the properties from various measurement locations. The results of statistical comparisons are provided in Table 4-9 through Table 4-13. Discussion of the results follows.

## STATISTICAL COMPARISON OF AVERAGE VALUES

Figure 4-5 provides graphical comparison of the average values using different measurement locations. Table 4-9 provides the results of statistical comparison of the averages of various properties of gyratory and slab specimens using different measurement locations: all measurement locations, all except three middle measurement locations, and all except two measurement locations at each end. In each table, the first two comparisons correspond to gyratory specimens and the third and fourth comparisons correspond to the slab specimens. The following are observed from Figure 4-5 and Table 4-9.

1. For the gyratory specimens, excluding the data from the three middle measurement locations resulted in an increase in the average number of cycles to both $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth, decreases in the creep and stripping slopes, and an increase in the number of cycles to the inflection point. This is because the deformations at the location of three middle measurement locations are larger than those at other measurement locations and, therefore, excluding them would result in an estimate of greater resistance of the mixture to deformation. The effect of excluding the readings from the three middle measurement locations is statistically significant for the stripping slope (Table 4-9).
2. For the gyratory specimens, excluding the data from the end measurement locations resulted in decreases in the average number of cycles to $6-\mathrm{mm}$ and $12-$ mm rut depth and the inflection point and an increase in the creep and stripping slopes. This is because the deformations at the ends are smaller than those at other locations and excluding them yields an estimate of less resistance of the mixture to deformation. Among the comparisons, the differences between numbers of passes to $12-\mathrm{mm}$ rut depth and between the stripping slopes are statistically significant.
3. For the slab specimens, excluding the data from the three middle measurement locations or the four end measurement locations does not show any consistent trend of decrease or increase in the average properties. This might be because the deformation of slabs is more uniform among various measurement locations than those of gyratory specimens. The stripping slope is shown to be significantly decreased by excluding the three middle measurement locations. However, the physical significance of this difference is not clear, since an increase in stripping slope is expected when the smaller deformation at the location of the three middle measurement locations are excluded from the analysis.


Figure 4-5-Comparison of the average properties measured using all measurement locations, all except middle three measurement locations, and all except the end measurement locations

Table 4-9- Statistical t-test for comparison of the average \# of cycles to $\mathbf{6 - m m}$ and $12-\mathrm{mm}$ rut depths, creep and stripping slopes, and \# of cycles to inflection point of WY gyratory and slab specimens from various measurement location sets

Comparison	Property	Averages	S	T	df	Critical   t	P	Decision
WY gyratory (all measurement locations) Vs.   WY gyratory (except middle measurement locations)	Cycles to 6 mm	7619 vs. 8193	1777	-1.14	48	1.68	0.130	Accept
	Cycles to 12 mm	11879 vs. 12919	2344	-1.46	42	1.68	0.076	Accept
	Creep Slope	0.36 vs. 0.32	0.098	1.24	46	1.68	0.111	Accept
	Stripping Slope	1.09 vs. 0.91	0.157	3.86	46	1.68	0.000	Reject
	Cycles to Inflection Point	4605 vs. 4756	1235	-0.43	47	1.68	0.335	Accept
WY gyratory (all measurement locations) Vs. WY gyratory (except end measurement locations)	Cycles to 6 mm	7619 vs. 7041	1699	1.20	48	1.68	0.117	Accept
	Cycles to 12 mm	11879 vs. 10517	2190	2.20	48	1.68	0.016	Reject
	Creep Slope	0.36 vs. 0.38	0.102	-0.72	46	1.68	0.237	Accept
	Stripping Slope	1.09 vs. 1.36	0.192	-4.84	46	1.68	0.000	Reject
	Cycles to Inflection Point	4605 vs. 4290	1252	0.87	46	1.68	0.194	Accept
WY Slab (all measurement locations) Vs.   WY slab (except middle measurement locations)	Cycles to 6 mm	11870 vs. 11544	1796	0.39	17	1.74	0.349	Accept
	Cycles to 12 mm	16540 vs. 17460	1543	-0.94	8	1.86	0.187	Accept
	Creep Slope	0.21 vs. 0.22	0.042	-0.15	18	1.73	0.442	Accept
	Stripping Slope	0.69 vs. 0.59	0.108	2.03	17	1.74	0.029	Reject
	Cycles to Inflection Point	7540 vs. 7495	1865	0.05	18	1.73	0.479	Accept
WY Slab (all measurement locations) Vs.   WY Slab (except end measurement locations)	Cycles to 6 mm	11870 vs. 11480	2002	0.44	18	1.73	0.334	Accept
	Cycles to 12 mm	16540 vs. 16017	1471	0.59	9	a1.83	0.286	Accept
	Creep Slope	0.21 vs. 0.2	0.035	1.04	17	1.74	0.157	Accept
	Stripping Slope	0.69 vs. 0.79	0.138	-1.70	18	1.73	0.053	Accept
	Cycles to Inflection Point	7540 vs. 7160	1992	0.43	18	1.73	0.337	Accept

## STATISTICAL COMPARISON OF VARIABILITY

Table 4-10 through Table 4-13 provide the results of statistical comparison of the repeatability and reproducibility COV of the number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth, creep slope, stripping slope, and number of cycles to inflection point using different measurement locations: all, all except middle three, and all except two at each end. The COV values are shown in Figure 4-6. As indicated by Table 4-10 through Table $4-13$, there are no specific trends of decrease or increase in variability by excluding data from any measurement location sets. Moreover, none of the differences between the COVs corresponding to different measurement locations are statistically significant.

In summary, for the gyratory specimens of the poorly-performing mixture, excluding the data from the four end measurement locations provides significantly smaller average number of passes to $12-\mathrm{mm}$ rut depth and larger average stripping slope, which are a more conservative estimate of mixture performance. On the other hand, excluding the data from the three middle measurement locations provided a significantly smaller stripping slope, which is a less conservative estimate of the mixture's performance. In terms of variability, excluding the measurements from the end or the middle measurement locations did not significantly improve the variability of the properties. The variation of the deformation along various measurement locations can be improved by reducing the confinement at the ends and increasing the confinement around the midpoint of gyratory specimens, as discussed in Appendix C.

Thus, it can be concluded that the precision estimates of AASHTO T 324 should be prepared by pooling the statistics from all sets of measurement locations. Considering that at various measurement locations the deformations are interdependent, excluding the deformation from any measurement location is not recommended. An average deformation from all measurement locations would provide a more comprehensive representation of the entire deformation basin.


Figure 4-6- Comparison of the repeatability and reproducibility coefficients of variation of properties of the poorly-performing mixture using all measurement locations, all except middle three measurement locations, and all except the end measurement locations

Table 4-10- Statistical F-test on repeatability coefficients of variation of number of cycles to $\mathbf{6 - m m}$ and $12-\mathrm{mm}$ rut depth, and number of cycles to inflection point of gyratory and slab specimens of Wyoming mixture measured using different measurement locations sets

Comparison	Property	COV,\%	F	Critical F	df1	df2	P	Decision
WY gyratory (all measurement locations) Vs. WY gyratory (except middle measurement locations)	Cycles to 6 mm	15.5 vs. 15.4	1.01	1.98	24	24	0.490	Accept
	Cycles to 12 mm	17.1 vs. 17.2	1.02	2.05	18	24	0.478	Accept
	Cycles to Inflection Point	23.7 vs. 23	1.06	1.99	23	24	0.441	Accept
WY gyratory (all measurement locations) Vs. WY gyratory (except end measurement locations)	Cycles to 6 mm	15.5 vs. 16.2	1.09	1.98	24	24	0.418	Accept
	Cycles to 12 mm	17.1 vs. 17.9	1.10	1.98	24	24	0.411	Accept
	Cycles to Inflection Point	23.7 vs. 27.1	1.31	2.01	23	23	0.263	Accept
WY slab (all measurement locations) Vs. WY slab (except middle measurement locations)	Cycles to 6 mm	13.6 vs. 12.3	1.24	3.39	9	8	0.386	Accept
	Cycles to 12 mm	5.2 vs. 4.2	1.55	6.39	4	4	0.341	Accept
	Cycles to Inflection Point	20.6 vs. 19.7	1.09	3.18	9	9	0.449	Accept
WY slab (all measurement locations) Vs. WY slab (except end measurement locations)	Cycles to 6 mm	13.6 vs. 15.6	1.31	3.18	9	9	0.346	Accept
	Cycles to 12 mm	5.2 vs. 7.8	2.24	6.26	5	4	0.227	Accept
	Cycles to Inflection Point	20.6 vs. 25.3	1.50	3.18	9	9	0.278	Accept

Table 4-11- Statistical F-test on repeatability coefficients of variation of creep slope and stripping slope of gyratory and slab specimens of Wyoming mixture measured using different measurement locations sets

Comparison	Property	COV, \%	F	Critical F	df1	df2	P	Decision
WY gyratory (all measurement locations) Vs. WY gyratory (except middle measurement locations)	Creep Slope	16 vs. 19.6	1.50	2.01	23	23	0.170	Accept
	Stripping Slope	17.1 vs. 16.5	1.07	2.01	23	23	0.437	Accept
WY gyratory (all measurement locations) Vs. WY gyratory (except end measurement locations)	Creep Slope	16 vs. 14.1	1.28	2.01	23	23	0.278	Accept
	Stripping Slope	17.1 vs. 18.4	1.17	2.01	23	23	0.357	Accept
WY slab (all measurement locations) Vs. WY slab (except middle measurement locations)	Creep Slope	14.7 vs. 12.3	1.43	3.18	9	9	0.303	Accept
	Stripping Slope	17.4 vs. 14.5	1.45	3.39	9	8	0.306	Accept
WY slab (all measurement locations) Vs. WY slab (except end measurement locations)	Creep Slope	14.7 vs. 23.6	2.58	3.23	8	9	0.090	Accept
	Stripping Slope	17.4 vs. 22	1.60	3.18	9	9	0.247	Accept

Table 4-12- Statistical F-test on reproducibility coefficients of variation of number of cycles to 6-mm and $12-\mathrm{mm}$ rut depth and number of cycles to inflection point of gyratory specimens of Wyoming mixture measured using different measurement locations sets

Comparison	Property	COV, \#of Cycles	F	$\begin{gathered} \hline \hline \text { Critical } \\ \mathrm{F} \\ \hline \end{gathered}$	df1	df2	P	Decision
WY gyratory (all measurement locations) Vs. WY gyratory (except middle measurement locations)	Cycles to 6 mm	25.3 vs. 24.7	1.05	1.98	24	24	0.452	Accept
	Cycles to 12 mm	22.6 vs. 22.5	1.01	2.15	24	18	0.496	Accept
	Cycles to Inflection Point	32.8 vs. 30.9	1.13	1.99	23	24	0.387	Accept
WY gyratory (all measurement locations) Vs. WY gyratory (except end measurement locations)	Cycles to 6 mm	24.7 vs. 26.2	1.12	1.98	24	24	0.388	Accept
	Cycles to 12 mm	22.6 vs. 23.7	1.10	1.98	24	24	0.410	Accept
	Cycles to Inflection Point	32.8 vs. 35.5	1.17	2.01	23	23	0.351	Accept
WY Slab (all measurement locations) Vs. WY slab (except middle measurement locations)	Cycles to 6 mm	20.1 vs. 14.8	1.83	3.39	9	8	0.203	Accept
	Cycles to 12 mm	8.9 vs. 10.3	1.32	6.39	4	4	0.397	Accept
	Cycles to Inflection Point	29.4 vs. 29.1	1.02	3.18	9	9	0.490	Accept
WY Slab (all measurement locations) Vs. WY slab (except end measurement locations)	Cycles to 6 mm	20.1 vs. 20	1.01	3.18	9	9	0.493	Accept
	Cycles to 12 mm	8.9 vs. 11.2	1.57	6.26	5	4	0.341	Accept
	Cycles to Inflection Point	29.4 vs. 35	1.42	3.18	9	9	0.304	Accept

Table 4-13- Statistical F-test on reproducibility coefficients of variation of number of creep slope and stripping slope of gyratory specimens of Wyoming mixture measured using different measurement locations sets

Comparison	Property	COV, \%	F	Critical F	df1	df2	P	Decision
WY gyratory (all measurement locations) Vs. WY gyratory (except middle measurement locations)	Creep Slope	32.4 vs. 30.9	1.10	2.01	23	23	0.410	Accept
	Stripping Slope	21 vs. 19.4	1.18	2.01	23	23	0.347	Accept
WY gyratory (all measurement locations) Vs. WY gyratory (except end measurement locations)	Creep Slope	32.4 vs. 27.8	1.36	2.01	23	23	0.235	Accept
	Stripping Slope	21 vs. 20.2	1.08	2.01	23	23	0.425	Accept
WY Slab (all measurement locations) Vs. WY slab (except middle measurement locations)	Creep Slope	22.4 vs. 21.9	1.04	3.18	9	9	0.476	Accept
	Stripping Slope	23.7 vs. 16.3	2.12	3.39	9	8	0.152	Accept
WY Slab (all measurement locations) Vs. WY slab (except end measurement locations)	Creep Slope	22.4 vs. 21.8	1.06	3.39	9	8	0.475	Accept
	Stripping Slope	23.7 vs. 23.9	1.02	3.18	9	9	0.489	Accept

### 4.3.2.2 Comparison of Statistics from Gyratory and Slab Specimens

Figure 4-7 and Figure 4-8 provide the graphical representations of the averages and repeatability/reproducibility statistics of the properties of the gyratory and slab specimens. Table 4-14 through Table 4-18 provide the results of statistical comparison of the averages and variability of the properties of gyratory and slab specimens. The COV values are the basis of repeatability/reproducibility precision estimates since there are strong relationships between the averages and standard deviations. In each table, the first comparison corresponds to all measurement locations, the second comparison corresponds to all except three middle measurement locations, and the third comparison corresponds to all except two measurement locations at each end. The following are observed from the graphs and tables:

1. The comparison of the average properties of gyratory and slab specimens in Table 4-14 and Figure 4-7 indicates that regardless of the measurement locations used, the slab specimens of the poorly-performing mixture are more resistance to rutting and moisture damage than the gyratory specimens. The difference between average properties of slab and gyratory specimens become statically significant when the three middle measurement locations or the four end measurement locations are excluded from the analysis. This suggests that for the poorlyperforming mixtures, unlike well-performing mixture, gyratory specimens are less
resistant to rut and moisture damage. This is because for the well-performing mixture, the mold for gyratory specimens provides confinement higher than the confinement for slabs; so gyratory specimens perform better. However, for the poorly-performing mixture, the high confinement of gyratory specimens causes increased differential deformation between the mid-point and the ends. This is because the material is not allowed to move laterally at the ends but free to move at the center. When deformation increases beyond a certain level, the wheels' dynamic for gyratory specimens intensifies resulting in more deformation and poorer performance of gyratory than slab specimens.
2. The comparison of variability of properties of gyratory and slab specimens in Table 4-15 through Table 4-18 indicate that the COVs of the majority of the properties of slab specimens are significantly smaller than those of gyratory specimens. However, this could be attributed to the significantly smaller degrees of freedom (the number of values in the final calculation of $F$ statistics) of slab specimens than those of gyratory specimens.

In summary, since depending on the measurement locations used, the average of the properties measured using gyratory and slab specimens could be significantly different, the type of specimens used should be recorded along with the wheel track test results of poorly-performing mixtures. The differences between properties of gyratory and slab specimens can be reduced by decreasing the confinement at the ends and increasing the confinement around the midpoint of gyratory specimens.

The significantly smaller COV of the number of passes to $12-\mathrm{mm}$ rut depth for the slab specimens than for the gyratory specimens is most probably due to the significantly smaller number of slab specimens compared to gyratory specimens. Therefore, in preparing the precision estimates of the number of passes to $12-\mathrm{mm}$ rut depth, the COV corresponding to gyratory specimens were used. For other properties, where the COVs associated with the gyratory and slab specimens are not significantly different, they were pooled together.


Figure 4-7- Comparison of average properties of gyratory and slab specimens of WY mixture measured using all measurement locations, all except middle three measurement locations, and all except the end measurement locations


Figure 4-8- Comparison of coefficients of variation (COV) of properties of gyratory and slab specimens measured using all measurement locations, all except middle three measurement locations, and all except the end measurement locations

Table 4-14- Statistical t-test for comparison of average properties of gyratory and slab specimens of WY mixture using various measurement location sets

Comparison	Property	Averages	S	T	df	$\begin{gathered} \hline \hline \text { Critical } \\ \mathrm{t} \\ \hline \end{gathered}$	P	Decision
WY gyratory (all measurement locations) Vs. WY Slab (all measurement locations)	Cycles to 6 mm	7619 vs. 11870	1841	-1.10	33	1.69	0.139	Accept
	Cycles to 12 mm	11879 vs. 16540	2163	-1.58	28	1.70	0.063	Accept
	Creep Slope	0.358 vs. 0.213	0.093	1.31	32	1.69	0.100	Accept
	Stripping Slope	1.09 vs. 0.69	0.161	3.77	32	1.69	0.000	Reject
	Cycles to Inflection Point	4605 vs. 7540	1412	-0.37	32	1.69	0.355	Accept
WY gyratory (except middle measurement locations) Vs. WY slab (except middle measurement locations)	Cycles to 6 mm	8193 vs. 11544	1719	-5.02	32	1.69	0.000	Reject
	Cycles to 12 mm	12919 vs. 17460	2324	-3.89	22	1.72	0.000	Reject
	Creep Slope	0.323 vs. 0.215	0.079	3.62	32	1.69	0.000	Reject
	Stripping Slope	0.914 vs. 0.589	0.127	6.53	31	1.70	0.000	Reject
	Cycles to Inflection Point	4756 vs. 7495	1461	-5.01	33	1.69	0.000	Reject
WY gyratory (except 2 ends) Vs. WY Slab (except 2 ends)	Cycles to 6 mm	7041 vs. 11480	1730	-6.86	33	1.69	0.000	Reject
	Cycles to 12 mm	10517 vs. 16017	2023	-5.98	29	1.70	0.000	Reject
	Creep Slope	0.38 vs. 0.196	0.086	5.46	31	1.70	0.000	Reject
	Stripping Slope	1.357 vs. 0.794	0.193	7.73	32	1.69	0.000	Reject
	Cycles to Inflection Point	4290 vs. 7160	1579	-4.83	32	1.69	0.000	Reject

Table 4-15- Statistical F-test for comparison of repeatability coefficients of variation (COV) of number of cycles to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth and to the inflection point for gyratory and slab specimens of WY mixture using various measurement location sets

Comparison	Property	COV of \#of Cycles	F	$\begin{gathered} \hline \hline \text { Critical } \\ F \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{df} \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{df} \\ 2 \end{gathered}$	P	Decision
WY gyratory (all measurement locations) Vs. WY Slab (all measurement locations)	Cycles to 6 mm	15.5 vs. 13.6	1.29	2.90	24	9	0.361	Accept
	Cycles to 12 mm	17.1 vs. 5.2	10.85	5.77	24	4	0.016	Reject
	Cycles to Inflection Point	23.7 vs. 20.6	1.32	2.91	23	9	0.345	Accept
WY gyratory (except middle measurement locations) Vs. WY slab (except middle measurement locations)	Cycles to 6 mm	15.4 vs. 12.3	1.58	3.12	24	8	0.257	Accept
	Cycles to 12 mm	17.2 vs. 4.2	17.06	5.82	18	4	0.007	Reject
	Cycles to Inflection Point	23 vs. 19.7	1.36	2.90	24	9	0.328	Accept
WY gyratory (except end measurement locations) Vs. WY slab (except end measurement locations)	Cycles to 6 mm	16.2 vs. 15.6	1.07	2.90	24	9	0.487	Accept
	Cycles to 12 mm	17.9 vs. 7.8	5.31	4.53	24	5	0.036	Reject
	Cycles to Inflection Point	27.1 vs. 25.3	1.15	2.91	23	9	0.436	Accept

Table 4-16- Statistical F-test for comparison of repeatability coefficient of variations of creep and stripping slope of gyratory and slab specimens of WY mixture using various measurement location sets

Comparison	Property	COV (\%) of Slope	F	Critical F	df 1	df 2	P	Decision
WY gyratory (all measurement locations) Vs. WY Slab (all measurement locations	Creep Slope	16 vs. 14.7	1.19	2.91	23	9	0.414	Accept
	Stripping Slope	17.1 vs. 17.4	1.04	2.32	9	23	0.439	Accept
WY gyratory (except middle measurement locations) Vs. WY slab (except middle measurement locations)	Creep Slope	19.6 vs. 12.3	2.54	2.91	23	9	0.075	Accept
	Stripping Slope	16.5 vs. 14.5	1.30	3.12	23	8	0.367	Accept
WY gyratory (except end measurement locations) Vs. WY slab (except end measurement locations)	Creep Slope	14.1 vs. 23.6	2.78	2.37	8	23	0.026	Reject
	Stripping Slope	18.4 vs. 22	1.43	2.32	9	23	0.234	Accept

Table 4-17- Statistical F-test for comparison of reproducibility coefficients of variation (COV) of number of cycles to $\mathbf{6 - m m}$ and $12-\mathrm{mm}$ rut depth and to the inflection point for gyratory and slab specimens of WY mixture using various measurement location sets

Comparison	Property	COV of \#of Cycles	F	$\begin{gathered} \hline \hline \text { Critical } \\ \mathrm{F} \\ \hline \hline \end{gathered}$	df1	df2	P	Decisio n
WY gyratory (all measurement locations) Vs. WY Slab (all measurement locations)	Cycles to 6 mm	25.3 vs. 20.1	1.59	2.90	24	9	0.240	Accept
	Cycles to 12 mm	22.6 vs. 8.9	6.41	5.77	24	4	0.042	Reject
	Cycles to Inflection Point	32.8 vs. 29.4	1.25	2.91	23	9	0.381	Accept
WY gyratory (except middle measurement locations) Vs. WY slab (except middle measurement locations)	Cycles to 6 mm	24.7 vs. 14.8	2.77	3.12	24	8	0.069	Accept
	Cycles to 12 mm	22.5 vs. 10.3	4.78	5.82	18	4	0.070	Accept
	Cycles to Inflection Point	30.9 vs. 29.1	1.13	2.90	24	9	0.450	Accept
WY gyratory (except end measurement locations) Vs. WY slab (except end measurement locations)	Cycles to 6 mm	26.2 vs. 20	1.72	2.90	24	9	0.201	Accept
	Cycles to 12 mm	23.7 vs. 11.2	4.48	4.53	24	5	0.051	Accept
	Cycles to Inflection Point	35.5 vs. 35	1.03	2.91	23	9	0.511	Accept

Table 4-18- Statistical F-test for comparison of reproducibility coefficient of variations (COV) of creep and stripping slope of gyratory and slab specimens of WY mixture using various measurement location sets

Comparison	Property	$\begin{gathered} \text { COV (\%) of } \\ \text { Slope } \\ \hline \end{gathered}$	F	Critical F	df1	df2	P	Decision
WY gyratory (all measurement locations) Vs. WY Slab (all measurement locations)	Creep Slope	32.4 vs. 22.4	2.09	2.91	23	9	0.125	Accept
	Stripping Slope	21 vs. 23.7	1.27	2.32	9	23	0.304	Accept
WY gyratory (except middle measurement locations) Vs. WY slab (except middle measurement locations)	Creep Slope	30.9 vs. 21.9	1.98	2.91	23	9	0.144	Accept
	Stripping Slope	19.4 vs. 16.3	1.41	3.12	23	8	0.319	Accept
WY gyratory (except end measurement locations) Vs. WY slab (except end measurement locations)	Creep Slope	27.8 vs. 21.8	1.63	3.12	23	8	0.243	Accept
	Stripping Slope	20.2 vs. 23.9	1.40	2.32	9	23	0.244	Accept

### 4.3.3 Pooled Statistics

Precision estimates were prepared for the properties of the two types of mixtures. For the well-performing mixture, the precision estimates are prepared for deformation after specific numbers of passes and for creep slope. For the poorly-performing mixture, the precision estimates are prepared for the number of passes to the threshold rut depth, creep slope, stripping slope, and number of passes to the inflection point. Since creep slope is a common property for both well-performing and poorly performing mixtures, statistical analysis will be conducted to determine if the statistics of creep slope from the two mixture types are the same and can be pooled together. Precision estimates of all other properties will be prepared independent of each other. The following sections explain which statistics were pooled in determining the precision estimates of the properties.

### 4.3.3.1 Well-Performing Mixture

For the rutting and moisture resistant mixture, the statistical comparisons in Table 4-3 and Table 4-4 indicated that the COV of the properties measured from any sets of measurement locations are not significantly different. Therefore, they are pooled together. Additionally, the COV of the properties of the gyratory and slab specimens, as shown in Table 4-6 and Table 4-7 are not significantly different. For the rut depth after each set of pass numbers, the COVs are pooled from different specimen types as presented in Table 4-19. However, for the creep slope, although the difference between COVs corresponding to gyratory and slab specimens are not statistically significant, the COVs are not pooled. This is because the rejection probability for the comparison of the repeatability COV of creep slope of gyratory and slab specimens is only slightly larger than $0.05 \% ~(0.052 \%$ in Table 4-6) and considering the magnitude of the difference
between the variability of creep slope of gyratory and slab specimens, this difference is considered significant from practical stand point. Since the number of gyratory specimens is larger than the number of slabs, the COVs measured from gyratory specimens are considered more accurate and therefore, the precision estimates of creep slope is determined using the COVs corresponding to gyratory specimens as presented in Table 4-19.

Table 4-19- Pooled COV of deformation after 10, 15, and 20 thousand number of passes and of creep slope for well-performing mixture

Property	Repeatability COV, \%	Reproducibility COV, \%
Rut after 10,000 passes (mm)	13.0	24.9
Rut after 15,000 passes (mm)	14.1	25.9
Rut after 20,000 passes (mm)	15.4	27.1
Creep slope (mm/ pass)	16.5	26.2

A statistical comparison of the repeatability and reproducibility COVs of the rut depth after various number of passes was conducted to determine if they are the same and can be pooled together. The results are shown in Table 4-20. As shown in the table, the COVs of the rut depths after various number of passes are not significantly different. Therefore, the COVs of rut depth after $10,000,15,000$, and 20,000 are pooled together, resulting in the 1 s repeatability COV of $14.2 \%$ and 1 s reproducibility COV of $26.0 \%$.

Table 4-20- Statistical comparison of the pooled COV of deformation after 10, 15, and 20 thousands number of passes for well-performing mixture

Comparison, Passes	Statistics	F	Critical F	df1	df2	$P$	Decision
10,000 vs. 15,000	Repeatability	1.18	1.50	66	67	0.25	Accept
	Reproducibility	1.09	1.50	66	67	0.37	Accept
15,000 vs. 20,000	Repeatability	1.19	1.50	66	66	0.24	Accept
	Reproducibility	1.09	1.50	66	66	0.36	Accept
10,000 vs. 20,000	Repeatability	1.41	1.50	66	67	0.08	Accept
	Reproducibility	1.19	1.50	66	67	0.24	Accept

### 4.3.3.2 Poorly-Performing Mixture

For the poorly-performing mixture, the statistical comparisons in Table 4-10 through Table 4-13 showed that COV of the properties measured from various measurement location sets are not significantly different. Therefore, they are pooled together as presented in Table 4-21 and Table 4-22.

Table 4-21- Pooled coefficients of variation (COV) of number of cycles to $6-\mathrm{mm}$ and $\mathbf{1 2 - m m}$ rut depth and to inflection point for gyratory and slab specimens of the poorly-performing mixture

Specimen Type	Property	Repeatability STD, \# of Cycles	Reproducibility STD, \#of Cycles
Gyratory	Passes to 6-mm	15.7	25.4
	Passes to 12-mm	17.4	22.9
	Passes to Inflection Point	24.6	33.1
Slab	Passes to 6-mm	13.8	18.3
	Passes to 12-mm	5.7	10.1
	Passes to Inflection Point	21.9	31.2

Table 4-22- Pooled coefficients of variation (COV) of creep and stripping slopes of gyratory and slab specimens of the poorly-performing mixture

Specimen Type	Property	Repeatability COV, \%	Reproducibility COV, \%
Gyratory	Creep Slope, $\mathrm{mm} /$ pass	16.6	30.4
	Stripping Slope, $\mathrm{mm} /$ pass	17.3	20.2
Slab	Creep Slope, $\mathrm{mm} /$ pass	16.9	22.0
	Stripping Slope, $\mathrm{mm} /$ pass	18.0	21.3

A statistical comparison of the variability of properties of gyratory and slab specimens in Table 4-21 and Table 4-22 was conducted to determine if the COVs are the same and can be pooled. Table 4-23 and Table 4-24 provide the results. As indicated from the tables, the repeatability/reproducibility COVs for the number of passes to $12-\mathrm{mm}$ rut depth are significantly different and the reproducibility COVs of passes to 6 mm and of creep slope are significantly different. Considering the smaller number of slab specimens compared to gyratory specimens, the COV of the number of passes to 6 mm and 12-mm rut depth and of the creep slope corresponding to gyratory specimens are considered more accurate and therefore used for preparing the precision estimates. For other properties, COVs are not significantly different, and they are pooled together. The pooled COVs are presented in Table 4-25.

Table 4-23- Results of statistical comparison of repeatability COVs of the properties of gyratory and slab specimens

Property	COV	F	Critical F	df1	df2	P	Decision
Cycles to 6 mm	16 vs. 14	1.28	1.79	72	26	0.242	Accept
Cycles to 12 mm	17 vs. 6	9.30	2.29	66	13	0.000	Reject
Cycles to Inflection Point	25 vs. 22	1.26	1.77	70	27	0.253	Accept
Creep Slope	17 vs. 17	1.03	1.66	26	69	0.440	Accept
Stripping Slope	17 vs. 18	1.07	1.76	18	69	0.395	Accept

Table 4-24- Results of statistical comparison of reproducibility COVs of the properties of gyratory and slab specimens

Property	COV	F	Critical F	df1	df2	P	Decision
Cycles to 6 mm	25 vs. 18	1.93	1.79	72	26	0.032	Reject
Cycles to 12 mm	23 vs. 10	5.12	2.29	66	13	0.001	Reject
Cycles to Inflection Point	33 vs. 31	1.13	1.77	70	27	0.375	Accept
Creep Slope	30 vs. 22	1.90	1.79	69	26	0.035	Reject
Strip Slope	20 vs. 21	1.11	1.76	18	69	0.359	Accept

Table 4-25- Pooled coefficients of variation (COV) of properties of poorly-performing mixture

Property	Repeatability COV, \%	Reproducibility COV, \%
\#of Cycles to 6-mm	15.7	25.4
\#of Cycles to 12-mm	17.4	22.9
\#of Cycles to inflection point	23.2	32.1
Creep Slope, mm/pass	16.7	30.4
Stripping Slope, mm/pass	17.7	20.8

A statistical comparison of the repeatability and reproducibility COV of the number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth and to the inflection point was conducted to determine if the COVs are the same and can be pooled together. The results are provided in Table 4-26. As indicated from the table, the COV of the number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth are the same and, therefore, they can be pooled together. However, the COV of the number of passes to the inflection point is significantly different from those of number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ rut depth. Therefore, in preparing the precision statement, a separate set of precision estimates is provided for the number of passes to inflection point. The resulted 1s repeatability/reproducibility COVs of the \# of passes to threshold rut depth are

Table 4-26- Statistical comparison of the pooled COV of number of passes to $6-\mathrm{mm}$ and $12-\mathrm{mm}$ deformation and to the inflection point for poorly-performing mixture

Comparison	Statistics	COV, \%	F	Critical F	df1	df2	P	Decision
6-mm vs. 12-mm	Repeatability	15.7 vs. 17.4	1.23	1.44	66	98	0.173	Accept
	Reproducibility	25.4 vs. 22.9	1.23	1.46	98	66	0.188	Accept
6-mm vs. Inflection Point	Repeatability	15.7 vs. 23.2	2.19	1.40	97	98	0.000	Reject
	Reproducibility	25.4 vs. 32.1	1.60	1.40	97	98	0.011	Reject
12-mm vs. Inflection Point	Repeatability	17.4 vs. 23.2	1.78	1.46	97	66	0.007	Reject
	Reproducibility	22.9 vs. 32.1	1.96	1.46	97	66	0.002	Reject

### 4.3.4 Comparison of COV of Creep Slopes of the Two Mixture Types

The COVs of the creep slope corresponding to well-performing and poor-performing mixtures were statistically compared to investigate if they are statistically the same and can be pooled together. The results of the analysis are provided in Table 4-27. As shown in the table the differences between repeatability/reproducibility COVs of creep slope corresponding to the two mixtures are not significantly different and can be pooled together. The resulting 1 s repeatability COV of creep slope is $16.6 \%$ and 1 s reproducibility COV is $28.3 \%$.

Table 4-27- Statistical comparison of the COVs of creep slope of well-performing and poorlyperforming mixtures

Statistics	COV, \%	F	Critical F	df1	df2	P	Decision
Repeatability	16.6 vs. 16.5	1.47	1.55	51	69	0.069	Accept
Reproducibility	30.4 vs. 26.2	1.35	1.55	51	69	0.122	Accept

### 4.3.5 Precision Estimates of AASHTO T 324

Table 4-28 provides the precision estimates for AASHTO T 324 developed in this research. The table includes repeatability and reproducibility COVs for various properties of HWTT. A single set of precision estimates were prepared for the properties of both gyratory and slab specimens either by combining the COVs corresponding to the gyratory and slab specimens or by using COVs corresponding to the gyratory specimens since they were larger number of gyratory specimens than slab specimens. The proposed precision statement that includes the developed precision estimates is provided in Appendix I.

It is important to note that the variability computed in this research only reflects the variability from the HWTT and the test specimen assembly since test specimens were fabricated at AMRL. The variability of measurements is attributed to the factors such as the dynamic effect of the wheels, position of the wheel with respect to specimen, the actual measurement locations compared to the design locations, lack of confinement at
the joint between gyratory samples, and the effect of the dynamics of the right and left wheels on each other, as discussed in Appendix C. To minimize the variability of the test measurements, factors such as position of the wheel with respect to specimen and position of measurement locations should be regularly verified. Improving the specimen assembly and mold geometry would also assist in reducing the variability of the test.

Table 4-28- Precision estimates for AASHTO T 324

Properties	Single-Operator		Multilaboratory	
		Coefficient of   Variation (\%)	Acceptable   Range of Two   Test Results   (Percent of   Mean)	Acceptable   Range of Two   Cesficient of Results   (Percent of   Mean)
Deformation (mm)	14.2	40.2	26.0	73.6
Number of Passes to Threshold Rut Depth	16.6	47.0	24.2	68.5
Number of Passes to Inflection Point	23.9	67.6	32.1	90.9
Creep Slope (mm/cycle)	16.6	47.0	28.3	80.1
Strip Slope, mm/pass	17.7	50.0	20.8	58.8

[^0]
## CHAPTER 5- FINDINGS AND PROPOSED CHANGES TO AASHTO T 324 AND THE HWTT EQUIPMENT

### 5.1 Findings

This report presents the results of an interlaboratory study (ILS) to determine precision estimates for AASHTO T 324, "Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)." The ILS included preparing and sending four replicates of Superpave gyratory and two replicates of linearly kneaded compacted slab specimens of each of a rutting and moisture resistant (well-performing) and a rutting and moisture susceptible (poorly-performing) mixture to laboratories participating in the ILS to be tested according the AASHTO T 324. Using the results reported back by the laboratories, the precision estimates for properties of the two mixtures were prepared. The precision estimates include the within- and between-laboratory precisions for deformation, the number of passes to threshold rut depths, the creep and strip slopes, and the number of passes to the inflection point.

The effect of measurement locations used in the analysis and the effect of specimen type on the mean and variance of the HWTT properties. The properties of the mixtures measured using all measurement locations were statistically compared with those measured using all except three middle measurement locations and those measured using all except the two measurement locations at each end. Moreover, the statistics of the properties of gyratory and slab specimens were statistically compared. These results along the precision estimates are presented in Chapter 4. The precision statement that includes the developed precision estimates is provided in Appendix I.

In addition to developing precision estimates, the data from the ILS and from an in house research were used to gain insight into the causes of variability of the test results. The effects of various components of the wheel track tester and the effect of specimen assembly on the test measurements were investigated. These results are presented in Chapter 3. The results of the cause and effect study are presented in Appendix C.

### 5.2 Proposed Changes to AASHTO T 324 and the HWTT Equipment

The results of the ILS suggest that the repeatability and reproducibility of measurements from the HWTT may be improved by these proposed changes:

1. The current AASHTO T 324 does not address key factors affecting performance such as starting location of the wheel, alignment of the wheel with respect to specimen, and the measurement locations used in the analysis. These factors, which have significant effect of variability of measurements, need to be standardized.
2. The operation of the equipment should be periodically verified by the manufacturer to identify any machine-related deficiencies.
3. Reducing the confinement at the ends of the two gyratory specimens and increasing the confinement at mid-point around the joints may achieve a more consistent deformation profile. Currently there is high confinement at the ends and little or no confinement at the mid-point causing differential wear in the wheel path, which would result in bias and high variability in measurements.
4. The variability in cutting the gyratory specimens may possibly affect the measured performance of mixtures (especially that of poorly-performing mixtures). The possibility of eliminating the cut should be investigated.
5. The possibility of increasing the specimen length should be explored. This will result in a greater distance between the wheels and the ends of specimens, reduction in the confinement, and more even wear of the sample.
6. A means of confining around the joint of the two adjoined gyratory specimens need to be investigated. A new mold can be designed for this purpose. The use of plaster of Paris is a possible solution for confining the gyratory specimen around the joint using the existing mold configuration. This will also prevent the movement of the molds that might be a cause of loosening of bolts during the test.
7. The expansion of the polyethylene mold due to increase in temperature was discussed as another possible cause of the tray bolts to loosen. Retightening of the tray bolts at the end of $30-\mathrm{min}$ temperature conditioning is recommended.
8. Exploring a material for the mold with smaller coefficient of thermal expansion than polyethylene is suggested.
9. Due to the possible deficiencies in the equipment and test setup that could affect the accuracy and precision of the test results, the results from HWTTs should be occasionally verified against the test results of reference specimens with known properties. Testing reference specimens can identify problems with the machine or test setup and remove any anomalies. It is expected that this reference testing can significantly reduce the variability of the test results between participating laboratories.
10. Considering that the deformations across various measurement locations are interdependent, excluding the deformation from any measurement location is not recommended. An average deformation from all measurement locations would provide a more comprehensive representation of the entire deformation basin.

## REFERENCES

1. AASHTO, Designation T 324, "Standard Method of Test for "Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)," Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 33rd Edition, AASHTO, Washington, DC, 2013.
2. AASHTO, Designation T 312, "Standard Method of Test for Preparing and Determining the Density of Hot-Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor," Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 33rd Edition, AASHTO, Washington, DC, 2013.
3. AASHTO, Designation R30, "Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA)," Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 33rd Edition, AASHTO, Washington, DC, 2013.
4. AASHTO, Designation T 209, "Standard Method of Test for Theoretical Maximum Specific Gravity and Density of Hot-Mix Asphalt Paving Mixtures," Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 33rd Edition, AASHTO, Washington, DC, 2013.
5. AASHTO, Designation T 166, "Standard Method of Test for Bulk Specific Gravity (Gmb) of Compacted Hot-Mix Asphalt (HMA) Using Saturated Surface-Dry Specimens," Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 33rd Edition, AASHTO, Washington, DC, 2013.
6. AASHTO, Designation T 331, "Bulk Specific Gravity (Gmb) and Density of Compacted Hot Mix Asphalt (HMA) Using Automatic Vacuum Sealing Method," Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 33rd Edition, AASHTO, Washington, DC, 2013.
7. http://www.svi.nl/SignalToNoiseRatio
8. http://www.wireless-nets.com/resources/tutorials/define SNR values.html
9. http://en.wikipedia.org/wiki/Signal-to-noise_ratio_(imaging)
10. ASTM E691, "Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method," Vol. 14.02, Quality Control Standards, West Conshohocken, PA, 2009.

[^0]:    ${ }^{\text {a }}$ These values represent the 1 s and d2s limits described in ASTM Practice C670

