NCHRP 25-25/Task 72

Current Practices to Address Construction Vibration
and Potential Effects to Historic Buildings
Adjacent to Transportation Projects

Fact Sheet

Prepared by:
Wilson, Ihrig & Associates, Inc.
ICF International
Simpson, Gumpertz & Heger, Inc.

September 2012
Construction Vibration:

- Heavy construction equipment, particularly equipment used for pile driving and other impact devices such as pavement breakers create substantial ground vibration.
- Vibration waves travel in the ground outward from the source with diminishing amplitude as distance increases.
- The velocity of the ground motion is measured in units of \textit{inches/sec}.
- The maximum value of motion is referred to as the “peak particle velocity” (PPV).
- Vibration can be continuous (vibratory roller) or transient (blasting, pile driving).
- Depending on the amplitude, vibration can range anywhere from imperceptible to annoying and if strong enough can cause damage to buildings.

Typical values of PPV from Construction:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>PPV at 25 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile driver (impact)</td>
<td>0.644 to 1.518</td>
</tr>
<tr>
<td>Pile drive (sonic/vibratory)</td>
<td>0.170 to 0.734</td>
</tr>
<tr>
<td>Vibratory roller</td>
<td>0.210</td>
</tr>
<tr>
<td>Hoe ram</td>
<td>0.089</td>
</tr>
<tr>
<td>Large bulldozer</td>
<td>0.089</td>
</tr>
<tr>
<td>Caisson drilling</td>
<td>0.089</td>
</tr>
<tr>
<td>Loaded trucks</td>
<td>0.076</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>0.035</td>
</tr>
<tr>
<td>Small bulldozer</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Damage Classification Terminology:

- Cosmetic - The formation of hairline cracks on drywall surfaces or the growth of existing cracks in plaster or drywall surfaces; the formation of hairline cracks in mortar joints of brick/concrete block construction.
- Minor - The formation of large cracks or loosening and falling of plaster or drywall surfaces, or cracks through bricks/concrete blocks.
- Major - Damage to structural elements of the building, cracks in support columns, loosening of joints, and splaying of masonry cracks.

Susceptibility of Historic Buildings to Vibration:

- Type of building construction – Older buildings are typically built from more brittle materials (brick masonry, terra cotta, and plaster) when compared to steel and even wood, which are more flexible.
- Age – Over time the effects of the aging process caused by weathering, temperature variation, freeze-thaw and long-term settlement of the structure weakens building elements decreasing their ability to absorb dynamic loads elastically without sustaining damage.
- Maintenance – A regular maintenance program that repairs age and weather related deterioration will improve a buildings resistance to exterior vibration.
Human Response to Vibration:

- Human perception of and response to vibration depends on many factors including:
 - the location of the person (indoors or outdoors),
 - the presence of distractions such as background noise and,
 - the level of activity of the person when vibration occurs.

- For continuous vibration from construction activities such as vibratory compaction or vibratory pile driving, an indoor PPV exceeding 0.035 inches/sec is generally considered to be distinctly perceptible, whereas a PPV of 0.2 inches/sec is definitely annoying.

- Because transient vibration has a short duration, it requires a higher level than continuous vibration to be perceived. For transient vibration caused by sources such as pile driving and blasting, an indoor PPV between 0.2 inches/sec is considered barely perceptible, whereas a PPV between 2.0 inches/sec would be strongly perceptible.
Vibration Criteria for Historic Buildings:

- There is a wide range of opinion on appropriate vibration limits for historic buildings.
- At one end of the range is a conservative PPV limit of 0.10 inches/sec except in the case of ancient ruins where 0.08 inches/sec is considered appropriate by some.
- At the other end of the range, some would consider 0.50 inches/sec to be appropriate or even 2.0 inches/sec.
- Conservative vibration limits can be set initially with some flexibility in modifying those limits based on detailed engineering investigation and analysis done on a case-by-case basis prior to award of the construction contract.

Vibration Monitoring:

- Monitoring of vibration during construction is one of the best means of protection for buildings.
- Modern seismographs are small, portable and battery operated.
- Threshold levels can be used to trigger visual or audio alarms to warn equipment operators and construction engineers when vibration limits are approached.