TABLE 1 : CONNECTIVITY SOLUTIONS

Solution	Species Group	Region	Mitigation Type	Timing Of Solution/ Evaluation	Impact Reduction Benefits	Cost Range	Design Considerations	
Shift Alignment - Prevent or reduce in	mpact through alte	ration to the	proposed road alig	nment such that th	ne connectivity fu	inction can be maintained		
Examples:	• Multi- species	VT	Minimization	Project Planning/ Alternatives Analysis			 Shift road alignment at least 100 ft away from edge of Missisquoi River and restore area to functional riparian habitat 	Austin, J.M., M connectivity a Vermont: an o Transportatior Environment, http://escholar
INSTALL STRUCTURE - Provide over	pass, underpass, c	or at-grade c	ross to facilitate wil	dlife passage over	, under or across	the roadway		
Overpass: Grade separation structure	e designed to allow	v wildlife to	cross over an inters	ecting highway or	railroad, usually	covered with vegetation		
	Carnivores/large herbivores/small - medium sized mammals/flying animals/reptiles & amphibians	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	>\$1 million	 Size range >40 m wideWidth required increases with length of overpass (width to length ratio should be >0.8) Designed to resemble natural habitat 	Bissonette, J./ Effectiveness Academies, W http://onlinepu
Examples:	Ungulates/multi- species	Alberta	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$1,688,993/overpass (2007); IN CONSTRUCTION - \$3,290,000 - \$3,760,000 for Lake Louise Area of Park including traffic control & detour; fencing \$69/m (2007 \$) (Huijser et al. 2008)	 52-m wide x 70 m long overpasses (Huijser et al. 2008) Openness ratio =5.41 (Clevenger and Waltho 2005) Planted with native grasses/shrubs/white spruce (Gloyne and Clevenger 2001) Lake Louise overpass - 60m wide across 2-lane road (Huijser et al. 2008) 	Clevenger, A.I Crossing Struct 453-464 <u>http://biology.t</u> Gloyne, C.C. a structures on t 117-124. <u>http://www.wilk</u> M.P. Huijser, F reduction stud Transportation
								nttp://www.tnv
Bridge underpass: structure (>20') including supports, erected over a depression or obstruction and having a floor for carrying traffic or other moving loads								
Examples:	Carnivores/large herbivores/small - medium sized mammals/flying animals/reptiles & amphibians, aquatic animals	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Location in the landscape influences effectiveness Light in the underpass will increase openness and therefore, may be helpful for some species 	Bissonette, J./ Effectiveness Academies, W http://onlinepu
	Bighorn sheep	AZ			Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Openness ratios: = 75, 28, 56 (highest was most successful) 	Bristow, K. an of desert bigh Transporation http://www.azo
	Mountain goat	MT			Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Openness ratio = 25-57 12-28 feet h x 90 ft w x 44 ft through 8-ft fencing 	Singer, F.J., W underpasses abstract only

Source(s)

M. Ferguson, G. Gingras, and G. Bakos. 2003. Strategies for restoring ecological and establishing wildlife passage for the upgrade of Route 78 in Swanton, overview. IN: Proceedings of the 2003 International Conference on Ecology and n, Eds. C.L. Irwin, P. Garrett, K.P. McDermott. Center for Transportation and the North Carolina State University, Raleigh, NC: pp. 253-259.

ship.org/uc/item/50q5q4m7

A. and P.C. Cramer. NCHRP Report 615: Evaluation of the Use and of Wildlife Crossings. Transportation Research Board of the National Vashington D.C., 2008.

bs.trb.org/onlinepubs/nchrp/nchrp_rpt_615.pdf

P. and N. Waltho. 2005. Performance Indices to Identify Attributes of Highway actures Facilitating Movement of large Mammals. Biological Conservation 121(3):

ucf.edu/~rnoss/papers/Clevenger%20and%20Waltho%202005.pdf

and A.P. Clevenger. 2001. Cougar (Puma concolor) use of wildlife crossing the Trans-Canada highway in Banff National Park, Alberta. Wildlife Biology 7:

Idlifebiology.com/Downloads/Article/326/En/7_2_gloyne.pdf

P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision dy: best practices manual. Report to Congress. U.S. Department of n, Federal Highway Administration.

wa.dot.gov/environment/hconnect/wvc/index.htm

A. and P.C. Cramer. NCHRP Report 615: Evaluation of the Use and of Wildlife Crossings. Transportation Research Board of the National Nashington D.C., 2008.

ubs.trb.org/onlinepubs/nchrp/nchrp_rpt_615.pdf

nd M. Crabb. 2008. Evaluation of Distribution and Trans-highway movment norn sheep: Arizona Highway 68. Final Report 588. Arizona Department of

dot.gov/TPD/ATRC/publications/project_reports/PDF/AZ588.pdf

N.L. Langlitz, and E.C. Samuelson. 1985. Design and construction of highway used by mountain goats. Transportation Research Record. 1016:6-10

Solution	Species	Pagion	Mitigation Type	Timing Of Solution/	Impact Reduction Bonofits	Cost Pango	Design Considerations	
	Florida panther/	FL	Mitigation Type	LValuation	Maintain connectivity		Openness ratio = 0.92-1.12 Underpass has 22.3 m median opening	Foster, M.L. a other wildlife.
	alligators				between core habitats; maintain biodiversity; reduce WVCs		3 m high fence	http://www.jsto
	Multi-species	NC			Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Openness ratio = 2.48-4.03 3 m high fencing ≥800 m from underpasses (continued through underpasses to other side) One underpass has a stream 	McCollister, M Fencing to Re 1731. http://onlinelib
	• Elk	AZ			Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$1.5 - 2 million/underpass; video/cameras -\$7000	Openness ratios - 12.3 and 5.5 Minimize length or add atrium Avoid areas with human disturbance Some underpasses with streams	Dodd, N.L., J. Measures to M Arizona Route http://www.aze
	Mountain lions, multi- species	Alberta			Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$675,597-965,139 (2007) - 12m w x 30m l underpass; IN CONSTRUCTION - Lake Louise area - \$2,350,000 (2007) incl traffic control & detour (16-25m w under- pass); fencing \$69/m (2007 \$) (Huijser et al. 2008)	Open span /creek=3m h x 11 m w (Phase 1 &2) 12m w x 5 m high underpass (Phase 3A) (Huijser et al. 2008) Openness ratio =0.4-1.25 minimize human disturbance/use (Clevenger and Waltho 2000)	Gloyne, C.C. a structures on t 117-124. <u>http://www.wik</u> M.P. Huijser, F reduction stud Transportation <u>http://www.fhw</u> Clevenger, A.F underpasses i <u>http://www.tran</u>
	Multi-species	Ontario	Minimizaton/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	bridge =\$1.2 million;	81 m open span bridge	Gartshore, R. Richmond Hill Environmenta 2005 Internati Garrett, and K North Carolina http://www.ico
	Large herbivores, carnivores, small & medium-sized mammals	MT	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$435,340 (2007\$); fencing \$27-42/m (Huijser et al. 2008)	Open span bridge 12m w x 30 m l (height unknown) (Huiijser et al. 2008)	M.P. Huijser, F reduction stuc Transportation http://www.fhv Huijser, M.P., Collision and between Evar http://www.mc oct10.pdf
	Multi-species	VT	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 500-ft wide bridge span over wetland/upland habitat complex 	Austin, J.M., M connectivity a Vermont: an o Transportation Environment, http://escholar

nd S.R. Humphrey. 1995. Use of highway underpasses by Florida panthers and Wildlife Society Bulletin 23(1): 95-100

or.org/pss/3783202

1.F. and F.T. Van Manen. 2010. Effectiveness of Wildlife Underpasses and educe Wildlife-Vehicle Collisions. Journal of Wildlife Management 74(8): 1722-

rary.wiley.com/doi/10.2193/2009-535/abstract

W. Gagnon, S. Boe, A. Manzo, and R.E. Schweinsburg. 2007. Evaluation of Minimize Wildlife-Vehicle Collisions and Maintain Permeability across highways: e 260. Final Report 540. Arizona Department of Transportation.

dot.gov/TPD/ATRC/publications/project_reports/PDF/AZ540.pdf

and A.P. Clevenger. 2001. Cougar (Puma concolor) use of wildlife crossing the Trans-Canada highway in Banff National Park, Alberta. Wildlife Biology 7:

dlifebiology.com/Downloads/Article/326/En/7 2 gloyne.pdf

P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision ly: best practices manual. Report to Congress. U.S. Department of n, Federal Highway Administration.

va.dot.gov/environment/hconnect/wvc/index.htm

P. and N. Waltho. 2000. Factors influencing the effectiveness of wildlife in Banff National Park, Alberta, Canada. Conservation Biology 14(1): 47-56.

nswildalliance.org/resources/200884165345.pdf

. G., M. Purchase, R.I. Rook,and L. Scott. Bayview Avenue Extension, II, Ontario, Canada Habitat Creation and Wildlife Crossings in a Contenious al Setting: A Case Study (September 2005). Pages 55-76 IN Proceedings of the ional Conference on Ecology and Transportation, edited by C. Leroy Irwin, Paul K.P. McDermott. Raleigh, NC: Center for Transportation and the Environment, a State University, 2006.

et.net/ICOET_2005/proceedings/2005ICOETProceedingWeb.pdf

P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision dy: best practices manual. Report to Congress. U.S. Department of n, Federal Highway Administration.

va.dot.gov/environment/hconnect/wvc/index.htm

T.D.H. Allen, and W.Camel. 2010. US 93 Post-Construction Wildlife-Vehicle Wildlife Crossing Monitoring and Research on the Flathead Indian Reservation ro and Polson, Montana. Annual Report. Montana Department of Transportation.

dt.mt.gov/research/docs/research_proj/wildlife_crossing/phaseii/annual_report_

M. Ferguson, G. Gingras, and G. Bakos. 2003. Strategies for restoring ecological and establishing wildlife passage for the upgrade of Route 78 in Swanton, overview. IN: Proceedings of the 2003 International Conference on Ecology and on, Eds. C.L. Irwin, P. Garrett, K.P. McDermott. Center for Transportation and the North Carolina State University, Raleigh, NC: pp. 253-259.

ship.org/uc/item/50q5q4m7

Solution	Species Group	Region_	Mitigation Type	Timing Of Solution/ Evaluation	Impact Reduction Benefits	Cost Range	Design Considerations	
Culvert - covered with embankment around entire perimeter	Carnivores/small - medium sized	ALL	Minimization/ Compensation	Project Planning/ Alternatives	Maintain connectivity		Location in the landscape influences effectiveness Light in the underpass will increase openness and therefore, may	Bissonette, J., Effectiveness
	animals/reptiles & amphibians,			Analysis	core habitats; maintain		be nelptul for some species	http://onlinepu
					reduce WVCs			
Box culvert - culvert with a square or	rectangular cross-	sectional p	rofile having 4 sides	, including a botto	m.	1		1
Examples: CLASS 1: Small; ≤1.5 m (5 ft)	Some medium- sized mammals, aquatic animals, small mammals, reptiles & amphibians	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
	 Spotted salamander/ mole salamanders 	MA	Minimization		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Bury drift fence 6-10 cm (Jackson and Tyning 1989) Tunnels 200 m apart (FHWA Critter Crossings website); or 200 ft. apart (Jackson 2003). Min. 2 ft. x 2ft concrete culverts, open grate top and soil bottom (Jackson 2003) Culvert wingwalls and min. 18-inch high vertical walls extend 100 to 200 feet in length (Jackson 2003) 	Jackson, S.D. spotted salam proceedings of http://www.um and_roads.pd Jackson, Scot Tunnels in Ne Massachusett http://www.um FHWA Critter http://www.fhv
	 Otter, beaver, muskrat, herps 	VT	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Concrete wetland box culverts min. 4' wide Open grate, trapezoidal cast concrete amphibian tunnels 	Austin, J.M., M connectivity an Vermont: an o Transportation Environment, http://escholar
	Santa Cruz long-toed salamander	CA	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		• Five 32cm h x 47cm w and one 21 cm h x 23 cm w tunnels constructed of non-abrasive cement polymer with slots along top Entrances screened with wire mesh (5cm x 10 cm) to reduce predator access Permanent fencing 40 cm h, curved	Allaback, M.L. long-toed sala http://www.tws
	 Small & medium-sized mammals 	МТ	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$70,932 (2007 \$); fencing \$27-42/m (Huijser et al. 2008)	 Concrete box culverts, 1.2m w x 1.8m h x 27.5m l (Huijser et al. 2008) Openness ratio =0.08 	M.P. Huijser, F reduction stud Transportation http://www.fhw Huijser, M.P., ⁷ Collision and ¹ between Evan http://www.mc oct10.pdf

A. and P.C. Cramer. NCHRP Report 615: Evaluation of the Use and of Wildlife Crossings. Transportation Research Board of the National Nashington D.C., 2008.

ubs.trb.org/onlinepubs/nchrp/nchrp_rpt_615.pdf

and T.F. Tyning. 1989. Effectiveness of drift fences and tunnels for moving nanders under roads. Pp. 93-99 In T.E.S. Langton (ed.) Amphibians and Roads. of the toad tunnel conference. ACO Polymer Products, Shefford, England.

nassextension.org/NREC/images/stories/linked_content/pdf_files/amphibians_ If

ott. 2003. Proposed Design and Considerations for Use of Amphibian and Reptile ew England. Department of Natural Resources Conservation, University of tts Amherst.

nass.edu/nrec/pdf_files/herp_tunnels.pdf

Crossings Website

wa.dot.gov/environment/wildlifecrossings/salamand.htm

M. Ferguson, G. Gingras, and G. Bakos. 2003. Strategies for restoring ecological and establishing wildlife passage for the upgrade of Route 78 in Swanton, overview. IN: Proceedings of the 2003 International Conference on Ecology and n, Eds. C.L. Irwin, P. Garrett, K.P. McDermott. Center for Transportation and the North Carolina State University, Raleigh, NC: pp. 253-259.

rship.org/uc/item/50q5q4m7

.. and D.M. Laabs. 2002-03. Effectiveness of road tunnels for the Santa Cruz amander. Transactions of the Western section of the Wildlfie Society 38/39:5-8.

s-west.org/transactions/Allaback%20Laabs.pdf

P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision dy: best practices manual. Report to Congress. U.S. Department of n, Federal Highway Administration.

wa.dot.gov/environment/hconnect/wvc/index.htm

T.D.H. Allen, and W.Camel. 2010. US 93 Post-Construction Wildlife-Vehicle Wildlife Crossing Monitoring and Research on the Flathead Indian Reservation ro and Polson, Montana. Annual Report. Montana Department of Transportation.

dt.mt.gov/research/docs/research_proj/wildlife_crossing/phaseii/annual_report_

	Species			Timing Of Solution/	Impact Reduction			
Solution	Group	Region	Mitigation Type	Evaluation	Benefits	Cost Range	Design Considerations	
CLASS 2: Medium ; >1.5 m (5 ft) to 2.4 x 2.4 m (8 ft)	Large carnivores, small & medium- sized mammals, reptiles & amphibians, aquatic animals, some flying animals	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
	Multi-species	FL	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 2.4x2.4m submerged culverts 1.8x1.8m dry culverts Openness ratio <0.6 Concrete barrier wall 1.1 m h, 15.2 cm overhanging lip; wall runs 2.8 km e and 2.5 km w 	Dodd, C.K., W. in reducing wik 118: 619-631. http://www.scie user=10&_cov origin=browse 4%23498300% acct=C000050 8c3ed58de&se
CLASS 3: Large - 2.4 m x 6.1 m (8x20 ft) or 3.1 x 3.1 m (10x10ft) to open span bridges	Large herbivores, large carnivores, small & medium- sized mammals, reptiles & amphibians, aquatic animals, some flying animals	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
	Florida panther	FL	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Openness ratio = 1.2 2.4 m h x 7.3 m w, 14.6 m l 	Land, D. and M other wildlife in Proceedings of Tallahassee, F
	Mountain lions; multi- species	Alberta	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$217,156-241,285 (2007 \$) (4x7); \$173,725 (2007 \$) (2.5x3); IN CONSTRUC- TION - Lake Louise area 3-4m w and h \$940,000 incl traffic control & detour; fenc- ing \$69/m (2007 \$) (Huijser et al. 2008)	 Metal culvert= 4m h x 7 m w, concrete box culvert= 2.5m h x 3m w; all crossings with dirt substrate (Phase 1&2) (Gloyne and Clevenger 2001) Metal culverts 3.5m h x 4.2m w x 96m l & 4m h x 7m w x 56 l, openness ratio =0.15-0.5 (Clevenger and Waltho 2000) 	Gloyne, C.C. a structures on tt 117-124. <u>http://www.wild</u> Clevenger, A.P underpasses ir M.P. Huijser, P. reduction study Transportation <u>http://www.fhw</u>
	Black bear	FL	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Openness ratio- 1.22 2.4m h x 7.3 m w x 14.3 m l 3 m fence with barbed wire - 0.6 km to west, 1.1 km to east; bury fence 	Roof, J. and J. Florida. 7 pp. In Transportation mortality semin ER-58-96. http://www.icoe

J. Barichivich, and L.L. Smith. 2005. Effectiveness of a barrier wall and culverts dlife mortality on a heavily traveled highway in Florida. Biological Conservation

encedirect.com/science?_ob=ArticleURL&_udi=B6V5X-4BG8TPH-1&_ rerDate=08%2F31%2F2004&_rdoc=8&_fmt=high&_orig=browse&_ &_zone=rslt_list_item&_srch=doc-info(%23toc%235798%232004%2399881999 %23FLA%23display%23Volume)&_cdi=5798&_sort=d&_docanchor=&_ct=15&_ 0221&_version=1&_urlVersion=0&_userid=10&md5=c2e64825118ceaaf42f6be7 earchtype=a

M. Lotz. 1996. Wildlife crossing designs and use by florida panthers and in southwest Florida. In G.L. Evink, P.A. Garrett, D. Zeigler, and J. Berry, eds. of the International Conf. on Wildlife Ecology and Transportation. June, 1996. FL. FL DOT FL-ER 58-96.

et.net/downloads/96paper26.pdf

and A.P. Clevenger. 2001. Cougar (Puma concolor) use of wildlife crossing he Trans-Canada highway in Banff National Park, Alberta. Wildlife Biology 7:

dlifebiology.com/Downloads/Article/326/En/7_2_gloyne.pdf

P. and N. Waltho. 2000. Factors influencing the effectiveness of wildlife n Banff National Park, Alberta, Canada. Conservation Biology 14(1): 47-56.

P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision y: best practices manual. Report to Congress. U.S. Department of p. Federal Highway Administration.

va.dot.gov/environment/hconnect/wvc/index.htm

. Wooding. 1996. Evaluation of the S.R. 46 wildlife crossing in Lake County, In G.L. Evink, P. Garrett, D. Zeigler and J. Berry (eds.) Trends in Addressing Related Wildlife Mortality, proceedings of the transportation related wildlife nar. State of Florida Department of Transportation, Tallahassee, FL. FL-

et.net/downloads/96paper27.pdf

	Spe <u>cies</u>			Timing Of Solution/	Impact Reduction			
Solution	Group	Region	Mitigation Type	Evaluation	Benefits	Cost Range	Design Considerations	
Arch culvert - a culvert section formi	ng an arc of a circl	e and having	g a natural substrate	for its base (botto	omless)			
Examples: CLASS 1: Small; ≤1.5 m (5 ft)	Some medium- sized mammals, aquatic animals, small mammals, reptiles & amphibians	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
CLASS 2: Medium; >1.5 m (5 ft) to 2.4 x 2.4 m (8 ft)	Large carnivores, small & medium- sized mammals, reptiles & amphibians, aquatic animals, some flying animals	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
CLASS 3: Large - 2.4 m x 6.1 m (8x20 ft) or 3.1 x 3.1 m (10x10ft) to open span bridges	Large herbivores, large carnivores, small & medium- sized mammals, reptiles & amphibians, aquatic animals, some flying animals	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
	Some large herbivores, carnivores, small & medium-sized mammals	МТ	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$223,076 (2007 \$); fencing \$27-42/m (Huijser et al. 2008)	 Metal arch underpass (Huijser et al. 2008) 7-8m w x 5m h x 18.3-21.9 l (Huijser et al. 2008) Openness ratio = 1.6-1.9 (Huijser et al. 2008) 	M.P. Huijser, P reduction study Transportation <u>http://www.fhw</u> Huijser, M.P., T Collision and V between Evarce <u>http://www.mdf</u> <u>oct10.pdf</u>
Round/elliptical culvert - a culvert un	broken (entire in ci	oss-section	l	·	·			
Examples: CLASS 1: Small; ≤1.5 m (5 ft)	Some medium- sized mammals, aquatic animals, small mammals, reptiles & amphibians	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
	Herps/sm mammals	Ontario	Minimizaton/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	Migration study - \$71,000; 5 amphibian tunnels = \$360,000; monitoring - \$14,500/year	 Round pipes: two concrete 1.2m diameter, two corrugated steel 1.2m diameter One 1m x 1.7m elliptical concrete Openness ratio = <0.6 (0.04-0.05) 	Gartshore, R. C Richmond Hill, Environmental 2005 Internatio Garrett, and K. North Carolina http://www.icoe

P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision ly: best practices manual. Report to Congress. U.S. Department of n, Federal Highway Administration.

a.dot.gov/environment/hconnect/wvc/index.htm

T.D.H. Allen, and W.Camel. 2010. US 93 Post-Construction Wildlife-Vehicle Wildlife Crossing Monitoring and Research on the Flathead Indian Reservation o and Polson, Montana. Annual Report. Montana Department of Transportation.

t.mt.gov/research/docs/research_proj/wildlife_crossing/phaseii/annual_report_

G., M. Purchase, R.I. Rook,and L. Scott. Bayview Avenue Extension, I, Ontario, Canada Habitat Creation and Wildlife Crossings in a Contenious al Setting: A Case Study (September 2005). Pages 55-76 IN Proceedings of the ional Conference on Ecology and Transportation, edited by C. Leroy Irwin, Paul K.P. McDermott. Raleigh, NC: Center for Transportation and the Environment, a State University, 2006.

et.net/ICOET_2005/proceedings/2005ICOETProceedingWeb.pdf

	Species			Timing Of Solution/	Impact Reduction			
Solution	Group	Region	Mitigation Type	Evaluation	Benefits	Cost Range	Design Considerations	
	Herps, small mammals	FL	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Round 0.9m culverts Openness ratio <0.6 Concrete barrier wall 1.1 m h, 15.2 cm overhanging lip; wall runs 2.8 km e and 2.5 km w 	Dodd, C.K., W in reducing will 118: 619-631. http://www.scie user=10&_cov origin=browsed
								<u>4%23498300%</u> acct=C000050 <u>8c3ed58de&se</u>
	Small mammals	Alberta	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 0.3 m dia metal drainage culverts Vegetative cover important 	McDonald, W. use by small m http://onlinelibr
	• Red-sided garter snake	Manitoba	Minimization		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs		 Drift fencing Pipes 6-12 inches; 20 cm polymer concrete channel covered by slotted iron gate 	Carcnet websit
CLASS 2: Medium; >1.5 m (5 ft) to 2.4 x 2.4 m (8 ft)	Large carnivores, small & medium- sized mammals, reptiles & amphibians, aquatic animals, some flying animals	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			
	• Bats	Wales	Minimization		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	Bat tunnel installation = \$180,000 (unsure if per tunnel or total)	 2.2 m and 1.8 m - diameter corrugated steel ellipitcal culverts installed on flight path/hedgerow lines Funnel leading to tunnels was planted to help continue hedgerow corridor effect 	Wray, S., D. W Safe Crossing Proceedings o C. Leroy Irwin, the Environme http://www.icoe
	Some large herbivores, carnivores, small & medium-sized mammals	MT	Minimization/ Compensation		Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs	\$70,932 (2007 \$); fencing \$27-42/m (Huijser et al. 2008)	 Elliptical culvert; 2m w x 1.5m h x 27.5m l (Huijser et al. 2008) Openness ratio =0.11 (Huijser et al. 2008) 	M.P. Huijser, P reduction study Transportation <u>http://www.fhw</u> Huijser, M.P., T Collision and V between Evarc <u>http://www.mdt</u> <u>oct10.pdf</u>
CLASS 3: Large - 2.4 m x 6.1 m (8x20 ft) or 3.1 x 3.1 m (10x10ft) to open span bridges	Large herbivores, large carnivores, small & medium- sized mammals, reptiles & amphibians, aquatic animals, some flying animals	ALL	Minimization/ Compensation	Project Planning/ Alternatives Analysis	Maintain connectivity between core habitats; maintain biodiversity; reduce WVCs			

I.J. Barichivich, and L.L. Smith. 2005. Effectiveness of a barrier wall and culverts dilife mortality on a heavily traveled highway in Florida. Biological Conservation

encedirect.com/science?_ob=ArticleURL&_udi=B6V5X-4BG8TPH-1&_

rerDate=08%2F31%2F2004&_rdoc=8&_fmt=high&_orig=browse&_ &_zone=rslt_list_item&_srch=doc-nfo(%23toc%235798%232004%2399881999 %23FLA%23display%23Volume)&_cdi=5798&_sort=d&_docanchor=&_ct=15&_ 0221&_version=1&_urlVersion=0&_userid=10&md5=c2e64825118ceaaf42f6be7 earchtype=a

and St Clair, C. C. (2004), Elements that promote highway crossing structure nammals in Banff National Park. Journal of Applied Ecology, 41: 82–93.

rary.wiley.com/doi/10.1111/j.1365-2664.2004.00877.x/full

te

cnet.ca/english/tunnels/snake_mortality.php

Vells., W. Cresswell, and H. Walker. Design, Installation, and Monitoring of Points for Bats on a New Highway Scheme in Wales. Pages 369-379 IN of the 2005 International Conference on Ecology and Transportation, edited by , Paul Garrett, and K.P. McDermott. Raleigh, NC: Center for Transportation and ent, North Carolina State University, 2006.

et.net/ICOET_2005/proceedings/2005ICOETProceedingWeb.pdf

P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision
 y: best practices manual. Report to Congress. U.S. Department of
 n, Federal Highway Administration.

a.dot.gov/environment/hconnect/wvc/index.htm

T.D.H. Allen, and W.Camel. 2010. US 93 Post-Construction Wildlife-Vehicle Wildlife Crossing Monitoring and Research on the Flathead Indian Reservation o and Polson, Montana. Annual Report. Montana Department of Transportation.

t.mt.gov/research/docs/research_proj/wildlife_crossing/phaseii/annual_report_

Solution	Species Group	Region	Mitigation Type	Timing Of Solution/ Evaluation	Impact Reduction Benefits	Cost Range	Design Considerations	Source(s)
At-grade crossing: designated areas	for wildlife to cross	s the roadw	av					
At-grade crossing	Large herbivores, reptiles & amphibians	ALL	Minimization		Reduce WVCs			
Examples:	Mule deer	UT	Minimization	n/a	Reduce WVCs	4-lane crosswalk - \$28,000/2-lane crosswalk =\$15,000; fencing	2.3 m high fence 1 m fence at funnel Cattle guard lines on road surface	Lehnert, M.E. and J.A. Bissonette. 1997. Effectiveness of highway crosswalk structures at reducting deer-vehicle collisions. Wildlife Society Bulletin 25(4):809-818.
	Mule deer	WY	Minimization	n/a	Reduce WVCs	Utilized a deer-sensing warning system	Warning signs 300 m e & w of migratory route crossing 2.4 m high fence	Gordon, K.M., M.C. McKinstry, and S.H. Anderson. 2004. Motorist response to a deer-sen warning system. Wildlfie Society Bulletin 32(2): 565-573.
	Mule deer	West US	Minimization	n/a	Reduce WVCs	Temporary/seasonal warning signs; 6.5 -km strech of rd - \$1,740 (lg signs=\$400; small signs=\$90; lights=\$40)	Signs at mile intervals in migration corridors	Sullivan, T.L., A.F. Williams, T.A. Messmer, L.A. Hellings, S.Y. Kyrychenko. 2004. Effectiveness of temporary warning signs in reducing deer-vehicle collisions during mule of migrations. Wildlife Society Bulletin 32(3): 907-915.
	Amphibians	ME	Minimization	n/a	Reduce WVCs	Temporary/seasonal warning signs	 Use standard roadway sign material Signs deployed seasonally to avoid "sign fatigue" 	Maine Department of Inland Fisheries and Wildlife <u>http://www.maine.gov/ifw/atv_snowmobile_watercraft/news_events/pressreleases/2009/07</u>
	Ungulates	All	Minimization	n/a	Reduce WVCs	Animal detection system; cost- \$9,000 - 350,000; Cost of installation: \$3,000 - 60,000	Overview of implemented systems throughout North America/Europe	Huijser, M.P. and P.T. McGowen. 2004. Overview of animal detection and animal warning systems in North America and Europe. IN: Proceedings of the 2003 International Conferer on Ecology and Transportation, Eds. Irwin CL, Garrett P, McDermott KP. Center for Transportation and the Environment, North Carolina State University, Raleigh, NC: pp. 368 382.
								http://escholarship.org/uc/item/2cc2s81w
RETROFIT STRUCTURE - modify an e	existing structure o	or roadway o	corridor to better fac	ilitate wildlife pas	sage over, under	or across		
Add ROW fencing to direct wildlife towards an existing structure								
Examples:	• Moose	Quebec	Minimization		Reduce WVCs; maintain access between core habitats	Approx. \$617,000; maintenance Approx: \$12,780	 Bridge underpass w/1.5 m high electric fence Openness ratio of existing bridge underpass = 4.87 (23 x 16 w x 7 h) Also included an at-grade crossing 	LeBlond, M., C. Dussault, J.P. Ouellet, M. Poulin, R. Courtois, and J. Fortin. 2007. Electric Fencing as a Measure to Reduce Moose-Vehicle Collisions. Journal of Wildlife Manageme 71 (5): 1695-1703 http://www.jstor.org/pss/4496252
	Desert Tortoise	CA	Minimization		Reduce WVCs; maintain access along corridor		 0.9-1.5 m diameter corrugated steel pipe 1.4m diameter concrete, 3-3.6 x 1.8-3m concrete box culverts Openness ratio = <0.6 24 km long fence, 45 cm high, buried, mesh/ hardware cloth 	Boarman, W. I. and M. Sazaki. 1996. Highway Mortality in Desert Tortoises and Small Vertebrates: Success of Barrier Fences and Culverts. Pp. 169-173 In G.L. Evink, P. Garret D. Zeigler and J. Berry (eds.) Trends in Addressing Transportation Related Wildlife Mortali Proceedings of the Transportation Related Wildlife Mortality Seminar. State of Florida Department of Transportation, Tallahassee, Florida. FL - ER - 58 - 96 Discussed IN : http://fishandgame.idaho.gov/cms/wildlife/manage_issues/collision/amphi- bRep.pdf
	• Turtle	NY	Minimization	Project Planning Post- construction	Reduce WVCs; maintain access between core habitats	\$15,250 for 2000 meters of fencing	 50 x 100mm 12 ga. PVC coated fencing or mesh Platic UV resistent cable ties 	Langen, Tom and John Falge. 2011 Design Considerations, Construction and Effectiveness of Fencing for Turtles. : Northern New York State Highway Traspostation Case Studies. New York State Wetlands Forum. April 2011.
	• Herps	FL	Minimization	n/a	Maintain access between core habitats	Low (until permanent design can be implemented)	 0.6 m temporary erosion control fence, buried 20 cm (0.4m above ground) Metal drainage culvert -3.5 m diameter x 46.6 m long Openness - 0.2 	Aresco, M.J. 2005. Mitigation measures to reduce highway mortality of turtles and other herpetofauna at a North Florida lake. Journal of Wildlife Management 69 (2): 549-560. http://www.jstor.org/stable/3803725
	Lg herbivores	МТ	Minimization/ Compensation	Project Planning	Reduce WVCs	Estimated costs from Huijser et al 2008 - jumpouts = \$6,425-13,241; wildlife guards - \$30,840	 Bridge underpass w/ 8' fence w/ jumpouts (6-8'h) & cattle guards at fence ends (Craighead et al. 2010) 	Craighead, L. A. Craighead, and L. Oechsli. 2010. Bozeman Pass Post-Fencing Wildlife Monitoring Project. Montana Department of Transportation. <u>ftp://161.7.16.40/research/OTHER/BOZEMAN_PASS/FINAL_REPORT-10-18-10.DOC.</u> M.P. Huijser, P. McGowen, A.P. Clevenger, and R. Ament. 2008. Wildlife-vehicle collision reduction study: best practices manual. Report to Congress. U.S. Department of Transportation, Federal Highway Administration.
								http://www.fhwa.dot.gov/environment/hconnect/wvc/index.htm

Solution	Species Group	Region	Mitigation Type	Timing Of Solution/ Evaluation	Impact Reduction Benefits	Cost Range	Design Considerations	
Retrofit underpass structure with ledges or pathways to facilitate passage								
Examples:	Mountain lions	CA	Minimization/ Compensation	Post- construction	Maintain access between core habitats	\$1.4-1.6 million (revegetation/fence reconfig)	 Bridge underpass, pavement removal, re-vegetation \$53 million (land acquisition) to restore patches on either side of crossing 	Koelle, Alexan The Road-RIP 2003. Vol 8. w
	Bobcats/ ocelots	ТХ	Minimization	Project Planning	Maintain access between core habitats		 Box culverts modified with "catwalks" - 18- x 12- inch concrete elevated walkways through the length of culvert and along wing walls. 	Hewitt, D.G., A expanded high highway cross Conference or
	Small mammals	MT	Minimization/ Compensation	Project Planning	Maintain access between core habitats		 Round culverts - added 25" w shelves to culverts & vole tube Culverts 3 & 4' diameter (material unknown) Added vole tube (similar to gutter drainage pipe) 	Foresman KR Western Montana - an Transportation Environment, I
	Small mammals	СО	Minimization/ Compensation	Project Planning	Maintain access along corridor		 Wooden ledges (2.54 x 15.24 cm cedar planks, 1.83 m l attached end to end), glued blocks of wood (5x10.16cm, 30.48 cm l) to culvert wall at 1.83 m intervals with Liquid Nails Ramps same size as planks, attached at ends All culverts openness ratio <0.6 	Meaney, C., M in culverts for s Department of http://www.colo
Alter landscape: designing and managing habitats alongside roads with the aim of reducing collisions and/or facilitating safe passage across the roadway								
Examples:	Pygmy owl	Mexico/ SW	Minimization	Project Planning	Reduce WVCs		 Plant/maintain Ig trees close to roadway and in median Drop road surface below surrounding elevations 	Flesch, A.D. a Pygmy-owls in Transportation http://aaronfles Pygmy-owls%
	Royal terns	FL	Minimization	Project Planning	Reduce WVCs	10-day pole installation = \$5,900 (materials + labor) (1994 \$)	 Installed 122, 3m long silver-colored metal poles, 5.1 cm diameter, attached vertically, 3.7m apart on both sides of bridge 	Bard, A.M, H.T Miller, and J.S bridge sites. W http://www.jsto

Source(s

ndra. Cougar Corridors: Restoring the Missing Link in California's Chino Hills. Porter - Quarterly Newsletter of Wildlands Center for Preventing Roads. Spring www.wildlandscpr.org

dlandscpr.org/files/uploads/RIPorter/rr_v8-1.pdf

A. Cain, V. Tuovila, D. Shindle, and M.E. Tewes. 1998. Impacts of an away on ocelots and bobcats in southern Texas and their preferences for ings. Page 126-134, In Evink, G.L., et al eds. Proceedings of the International or Wildlife Ecology and Transportation.

et.net/downloads/98paper16.pdf

. 2004. Small mammal use of modified culverts on the Lolo South project of

update. IN: Proceedings of the 2003 International Conference on Ecology and n, Eds. Irwin CL, Garrett P, McDermott KP. Center for Transportation and the North Carolina State University, Raleigh, NC: pp. 342-343.

ship.org/uc/item/7cw8043j

I. Bakeman, M. Reed-Eckert, and E. Wostl. 2007. Effectiveness of ledges small mammal passage. Report No. CDOT-2007-9. Final Report. Colorado f Transportation, Denver, CO.

oradodot.info/programs/research/pdfs/2007/smallmammal.pdf

nd R.J. Steidl. 2007. Association Between Roadways and Cactus Ferruginous Northern Sonora, Mexico. Final Report for Arizona Department of Environmental Planning Group, Tuscon, AZ.

sch.com/Publications/Reports/Flesch%20and%20Steidl.%20%202007.%20%20 20and%20roadways%20Final%20ADOT%20Report.pdf

 F. Smith, E.D. Egensteiner, R. Mulholland, T.V. Harber, G.W. Heath, W.J.B.
 Weske. 2002. A simple structural method to reduce road-kills of royal terns at /ildlife Society Bulletin 30(2):603-605.

or.org/pss/3784522