Microcomputer Control for AASHTO T 161
“A” F—T Cabinet

The standard AASHTO T 161 “A” freeze-thaw (F-T) cabinet is a relatively simple and
straightforward design. The insulated cabinet contains a freezing table on which stainless steel
pans sit filled with concrete specimens in water. Freezing occurs from the bottom up, and heating
is provided by resistive heaters inserted between the sample pans. The freezing and heating
capabilities are designed for the rapid “A” version of 4-5 cycles per day. The temperature is
controlled from the center of a dummy concrete beam located near the middle of the test
samples.

In the early units, a mechanical temperature switch transferred power between the cooling unit
and heating units when the upper or lower set limit was reached. Continuous observation was
often required as the set limits needed adjusting while the cabinet came to equilibrium from
ambient temperature, or inevitably, ice or condensation began accumulating inside the cabinet. A
chart recorder wheel was installed as secondary verification as the mechanical switches were
often only triggered near the desired settings.

As computer controls became available, proprietary computer controls became an option and
then became the standard. The computer-controlled systems were all designed only to perform
AASHTO T 161 “A” without any flexibility for other test methods.

In any arrangement, the AASHTO T 161 “A” cabinet has a temperature sensor that controls a
switch to turn on/off the resistive heaters or cooling unit. The Raspberry Pi control used in this
study employed a Campbell Scientific T107 thermistor connected to an analog to digital (A/D)
shield. Low voltage AC/DC relays were controlled by the Raspberry Pi to initiate either heating
or cooling.

Table F-1 provides the parts list required to convert either the fully mechanical or semi-
computerized cabinets to Raspberry Pi control.

Table F-1. Parts list for Raspberry Pi control.

Item | Manufacturer Description Part Name/Number Quantity Eggﬁ/ Price
1 |omron SO e el o | GBNA-225B DC5-24 2 [$31.92]%64
2 | Bussmann Fuse holder %vfgg\lgglz type fuse 2 $11 |$22
3 | Bussmann Fuse holder E)'I\,Afgizgg type fuse 1 $14 (%14

Square D Definite Purpose
Contactor-single pole

Square D/8910DP32V02/
Contactor, 600 VAC, 2 pole
P-CC15 Amp, 600V, Class CC,

4 | Schneider Electric | Single contactor 1 $40 $40

5 | Schneider Electric | Double contactor 1 $46 $46

6 |Bussmann 15A CC time delay fuse LP-CC-15, L P-CC15 3 $8 $24

7 | Bussmann 20A CC time delay fuse 20A CC time delay fuse 1 $8 $8

8 | Grainger Terminal strip 15-pole electric terminal block 1 $15 $15

9 | Raspberry Pi Microcomputer Raspberry Pi 3 Model B 1 $35 $35

Raspberry Pi

10 |Waveshare highp-preg;sion AD/DA board | RB-Wav-08 1 |$28 |$28

11 | Campbell Scientific | Temperature sensor TI07 1 $125 |$125
Total for All $420

A fully computerized version of the cabinet will include the necessary contactors, fusing, and
terminal blocks. With a computerized version, the only parts required are the lower voltage
relays, Raspberry Pi, AD/DA board, and T107 thermistor.

Figure F-1 shows the wiring schematic for computerizing the F-T cabinet.

Figure F-1. Wiring diagram for Raspberry Pi control.

Wire gauges should be at least 10 ga. from the wall outlet to the main breaker. All AC wires
should be 12 ga. Ensure the unit is disconnected from the wall before any wiring or rewiring.
Wiring should only be performed by someone familiar with electrical systems. Figure F-2
shows the wiring setup on a prototype board.

F-3

Figure F-2. Expanded wiring overview.

Figure F-3 shows the overview of the Raspberry Pi with the AD/DA shield attached.

F-4

Figure F-3. Overview of AD/DA board wiring.

The Campbell Scientific T107 temperature sensor is wired into the top (analog) side and into the
relay controls in the bottom (digital) side. Figure F-4 shows the wiring from the temperature
sensor in detail.

Note: Red = AD2, Purple = AGND, Black = VCC, White = GND.
Figure F-4. Analog connection for temperature sensor.

The 3.3 v output from the sensor is coded into the AD2 terminal with the purple ground into
AGND, black into VCC, and white into GND. The digital output is shown in Figure F-5 where
the ground is connected to 4 on the relays, the P5 post is connected to the 3 control on the heater
relay, and P4 connected to the 3 on the cooling relay.

Note: GND = Relay 4, P5 = Heater Relay 3, P4 = Cooling Relay 3.
Figure F-5. Digital connection for relay control.

F-6

Raspberry Pi Program for AASHTO T 161 “A”

#1/usr/bin/python

-*- coding: utf-8 -*-

import time, math

import sys

from ADS1256_definitions import *
from pipyadc import ADS1256
import RPi.GPI0 as GPIO

import os

Input pin for the potentiometer on the Waveshare Precision ADC
board:

POTI = POS_AINO|NEG_AINCOM

Light dependant resistor of the same board:

LDR = POS_AIN1|NEG_AINCOM

The other external input screw terminals of the Waveshare
board:

EXT2, EXT3, EXT4 = POS_AINZ2|NEG_AINCOM, POS_AIN3|NEG_AINCOM,
POS_AIN4|NEG_AINCOM

EXT5, EXT6, EXT7 = POS_AIN5|NEG_AINCOM, POS_AING6|NEG_AINCOM,
POS_AIN7|NEG_AINCOM

POTI1_INVERTED = POS_AINCOM|NEG_AINO

SHORT_CIRCUIT = POS_AINO|NEG_AINO

CH_SEQUENCE = (POTI, LDR, EXT2, EXT3, EXT4, EXT7, POTI_INVERTED,
SHORT_CIRCUIT)

Campbell polynomial fit data for T107 temperature probe
Temp_Coeff = [-53.4601, 90.807, -83.257, 52.283, -16.723, 2.211]
#Temp_Coeff = [-75.499, 0.60781, -0.0011973, 1.0489%e-6, 0, O]
Initialise ADC object:

ads = ADS1256()

Gain and offset self-calibration:

ads.cal_self()

HHAH TR R R R R
HHAHHHH B R R R R
HHAH TR R R R R
Cycle Parameters

N = 30# Number of cycles

Tmax = 37 #Upper temp limit in F

Tmin = 3 # Lower temp limit in F
HHAHHHH B R R R R R
HHAH TR R R R
HHAHHHH B H R R R R

F-7

Set GPI10 to Broadcom numbering system
GP10.setmode(GP10.BOARD)
#GP10.setmode(GPI10.BCM)
GPI0O.setwarnings(False)

Setting up the two relay pins

Heat Pin = 18 # This is the PIN number not the GPIOXX number
Cool _Pin = 16 #GP1024, 16=GP1023

GPI10.setup(Heat Pin, GPI0.0UT)

GPI10.setup(Cool _Pin, GPI0.0OUT)

GPI0.output(Heat_Pin, False)

GPI10.output(Cool _Pin, False)

heat status 0

cold_status 0

Correction factor to match known thermometer values
adjustment_value = 1.0

Setting up the logging file, stores in Log Files directory
gg = 0
while os.path.exists(’'Log_Files/datalog%s.csv'" % gg):

gg+=1
header_string = "Time, Temp (F), Heat, Cool, Cycle Num,
Voltage/reading \n"
fh = open("'Log_Files/datalog%s.csv'" % gg,'a')
fth.write(header_string)
fth.close()

DEBUG_MODE = False

def temperature_reading():
temp_volt = 0
for g In range(0,25):
raw_channels = ads.read_oneshot(EXT2)
voltages = raw_channels * ads.v_per_digit
temp_volt = temp_volt + voltages
temp_volt = temp_volt/25 # averaging 100 samples to get
better voltage estimate
t107_volt = temp_volt/4.388*800
t107_temp = Temp_Coeff[0] + Temp_Coeff[1]*t1l07_volt +
Temp_Coeff[2]*t107_volt**2 + Temp_Coeff[3]*t107_volt**3 +
Temp_Coeff[4]*t107_volt**4 + Temp_Coeff[5]*t107_volt**5
t107_temp = 9.0/5.0*t107_temp + 32.0 # Converting Celsius
to F
#print “{:.1f}" . format(tlO07_temp) + " F~©

F-8

return tl07_temp, tl1l07_volt # returning both in case a
post-test calibration is needed

initial_time = time.time()
ifT (DEBUG_MODE == True): # Debug mode enables turning relays on

manual ly

while True: # Run debug code forever

print "Which relay do you want to turn on? Relay will

be on for 5 seconds"

to quit)

iIs ON"

output_status = input('0 for Heat, 1 for Cool, Ctrl+C
#output_status = 3

ifT (output_status == 0):

active_pin = Heat Pin

device = "Heat"

heat status = 1

cold_status 0
ifT (output_status == 1):

active_pin = Cool _Pin

device = "Cool™

heat status = 0

cold status = 1
GPI10.output(active _pin, True)
#time.sleep(20.0)
#if (output_status !'= 1 and output_status != 0):
device = "None"
print “Error, iIncorrect choice"
break
temp_temp = O
for 1 in range(0,30):

[temp, volt] = temperature_reading()
#print temp, volt

GPI10.output(active _pin, True)
print *{:_1f}"_.format(temp) + * F~©
#device = "None"
#print "Temp: ", "{:.1f}"_format(temp), device, "

fh = open(*'Log_Files/datalog%s.csv' % gg,'a'™)
log data = "{:.1f}" _format(time.clock()) + *," +

*{:.1f}" _format(temp) + *," + str(heat_status) + *," +
str(cold_status) + *"\n*

fh.write(log_data)
fth.close()

F-9

time.sleep(0.5)
GPI0.output(Heat_Pin, False)
GPI10.output(Cool _Pin, False)
else:
prev_time = time.time()
for 1 iIn range(O,N):
[temp, volt] = temperature_reading()
while temp > Tmin:
iT (time.time() - prev_time >= 5.0):
prev_time = time.time()
GPI10.output(Cool_Pin, True)
cold status =1
heat status = 0
[temp, volt] = temperature_reading()
print “{:_1f}" _format(time.time()-
initial_time),"Temp: *, *“{:.1f}"_format(temp), "F, COLD is ON,
Cycles=", i1, "{:.4f}" _format(volt)
fth = open('Log_Files/datalog%s.csv'" %
gg,"a™)
log data = "{:.1f}" _format(time.time()-
initial_time) + *," + "{:_.1f}" _format(temp) + *," +
str(heat_status) + *," + str(cold _status) + *," +str(i) + *," +
“{:.4f}" _format(volt) + "\n-
fh.write(log_data)
fth.close()

[temp, volt] = temperature_reading()
GPI10.output(Cool _Pin, False)
while temp < Tmax:
ifT (time.time() - prev_time >= 5.0):
prev_time = time.time()
GPI10.output(Heat_Pin, True)
cold status = 0
heat status =1
[temp, volt] = temperature_reading()
print “{:_.1f}" . format(time.time()-
initial_time), "Temp: ", "{:.1f}" _format(temp), "F, HEAT is ON,
Cycles="", i1, "{:.4f}" _format(volt)
th = open('Log_Files/datalog¥s.csv™ %
gg,"a")
log data = *“{:.1f}" . format(time.time()-
initial_time) + °,° + “{:.1f}" _format(temp) + *," +
str(heat_status) + "," + str(cold status) + *," +str(1) + ~," +
{:.4f}" _format(volt) + ~“\n
fh.write(log_data)
fth.close()

F-10

GPI10.output(Heat_Pin, False)
End of F-T test, turn off all systems

GPI10.output(Heat_Pin,False)
GPI10.output(Cool_Pin,False)

F-11

Raspberry Pi Program for CDF Ramping Program

#1/usr/bin/python

-*- coding: utf-8 -*-

import time, math

import sys

from ADS1256_definitions import *
from pipyadc import ADS1256
import RPi.GPI0 as GPIO

import os

Input pin for the potentiometer on the Waveshare Precision ADC
board:

POTI = POS_AINO|NEG_AINCOM

Light dependant resistor of the same board:

LDR = POS_AIN1|NEG_AINCOM

The other external input screw terminals of the Waveshare
board:

EXT2, EXT3, EXT4 = POS_AINZ2|NEG_AINCOM, POS_AIN3|NEG_AINCOM,
POS_AIN4|NEG_AINCOM

EXTS5, EXT6, EXT7 = POS_AINS5|NEG_AINCOM, POS_AING6|NEG_AINCOM,
POS_AIN7|NEG_AINCOM

POTI_INVERTED = POS_AINCOM|NEG_AINO

SHORT_CIRCUIT = POS_AINO|NEG_AINO

CH_SEQUENCE = (POTI, LDR, EXT2, EXT3, EXT4, EXT7, POTI_INVERTED,
SHORT_CIRCUIT)

Campbell polynomial fit data for T107 temperature probe
Temp_Coeff = [-53.4601, 90.807, -83.257, 52.283, -16.723, 2.211]
#Temp_Coeff = [-75.499, 0.60781, -0.0011973, 1.0489%e-6, 0, 0]
Initialise ADC object:

ads = ADS1256()

Gain and offset self-calibration:

ads.cal_self()

HHAHHHH B R R R R

HHAHHHH B R R R R

HHHAH TR R R R R

Cycle Parameters

N = 4# Number of cycles

Hot_Thresh = 2 # Hot side +/- trigger threshold
Cold_Thresh = 2 # Cold side +/- trigger threshold
Ramp_Thresh = 2 # Trigger threshold during ramp (same for
heating and cooling)

HHAHHHH B R R R R

HHAH TR R R R R

HHAHHHH B R R R R

F-12

Bottom and top temperatures
Tmax = 68.0# Upper temp limit in F
Tmin = -4.0# Lower temp limit in F

Set GP10 to Broadcom numbering system
GP10.setmode(GPI10.BOARD)
#GP10.setmode(GPI10.BCM)
GPI10.setwarnings(False)

Setting up the two relay pins

Heat Pin = 18 # This i1s the PIN number not the GPIOXX number
Cool_Pin = 16 #GP1024, 16=GP1023

GPI0.setup(Heat_Pin, GPI0.0UT)

GPI10.setup(Cool _Pin, GPI0O.0OUT)

GPI0.output(Heat_Pin, False)

GPI10.output(Cool _Pin, False)

heat_status 0

cold _status 0

Correction factor to match known thermometer values
adjustment_value = 1.0

Setting up the logging file, stores in Log Files directory
gg = 0
while os.path.exists('Log_Files/datalog%s.csv' % gg):

gg+=1
header_string = "Time, Temp (F), Heat, Cool, Cycle Num,
Voltage/reading \n"
fh = open(*'Log_Files/datalog%s.csv' % gg,'a'™)
fh.write(header_string)
fth.close()

DEBUG_MODE = False

def temperature_reading():
temp_volt = 0
for g in range(0,25):
raw_channels = ads.read_oneshot(EXT2)
voltages = raw_channels * ads.v_per_digit
temp_volt = temp_volt + voltages
temp_volt = temp_volt/25 # averaging 100 samples to get
better voltage estimate
t107_volt = temp_volt/4.388*800

F-13

t107_temp = Temp_Coeff[0] + Temp_ Coeff[1]*t107_volt +
Temp_Coeff[2]*t107_volt**2 + Temp_Coeff[3]*t107_volt**3 +
Temp_Coeff[4]*t107_volt**4 + Temp_Coeff[5]*t107_volt**5

t107_temp = 9.0/5.0*t107_temp + 32.0 # Converting Celsius
to F

#print “{:.1f}" _format(tlO07_temp) + " F~©

return tl07_temp, tl07_volt # returning both in case a
post-test calibration is needed

initial_time = time.time()
ifT (DEBUG_MODE == True): # Debug mode enables turning relays on
manual ly
while True: # Run debug code forever

print “Which relay do you want to turn on? Relay will
be on for 5 seconds™

output_status = input('0 for Heat, 1 for Cool, Ctrl+C
to quit)

#output_status = 3

ifT (output_status == 0):
active _pin = Heat Pin
device = "Heat"
heat status = 1
cold_status 0

ifT (output_status == 1):
active_pin = Cool _Pin
device = "Cool™
heat status = 0
cold status =1

GPI10.output(active _pin, True)

#time.sleep(20.0)

#1T (output_status != 1 and output_status != 0):

device = "None"
print “Error, iIncorrect choice"
break

temp_temp = 0
for 1 in range(0,30):

[temp, volt] = temperature_reading()
#print temp, volt
GPI0O.output(active_pin, True)
print *{:_1f}"_.format(temp) + * F~©
#device = "None"
#print "Temp: ", "{:.1f}"_format(temp), device, "
is ON™

F-14

fh = open(''Log_Files/datalog%s.csv'" % gg,'a')
log data = “{:.1f}" . format(time.clock()) + *," +
*{:.1f}" _format(temp) + *," + str(heat_status) + *," +
str(cold_status) + *"\n*
fh.write(log_data)
fth.close()
time.sleep(0.5)
GPI0.output(Heat_Pin, False)
GPI10.output(Cool_Pin, False)
else:
prev_time = time.time()
[temp, volt] = temperature_reading()
Checking i1f tank is at correct temperature before
starting the cycle process #
while ((temp < Tmin-Cold_Thresh) or (temp >
Tmax+Hot_Thresh)): # and (time.time() - prev_time >= 5.0)):
[temp, volt] = temperature_reading()
it (time.time() - prev_time >= 5.0):
ifT (temp > Tmax+Hot _Thresh):
GPI10.output(Heat_Pin,False)
GP10.output(Cool _Pin,True)
prev_time = time.time()
print "PREP PHASE: Temp is -,
"{:.1f}" format(temp), " and Cool is ON*®
elif (temp < Tmin-Cold_Thresh):
GPI10.output(Cool_Pin,False)
GPI0.output(Heat _Pin,True)
prev_time = time.time()
print "PREP PHASE: Temp is -,
"{:.1f}" format(temp), " and Heat is ON*®

HHPHH A - - —— ————— HHBH A —— - ————— HHBH R — - - ———————
HHBHHHH B

print "PREP COMPLETE: Beginning Ramp Test with ", N, *
cycles”

start_time = time.time() # Grabbing cycle start time for
logging purposes (will subtract this off to make times relative
to start time)
for 1 in range(0,N):
[temp, volt] = temperature_reading()
4 hour cycle from 68 to -4
wait_time = time.time() # initializing timer for 4
hour ramp
while (time.time() < wait_time + 14400.0): #4 hour
ramp
iT (time.time() - prev_time) >= 60.0: # 60 sec
update rate

F-15

cycle_time = time.time() - start_time #this
gives time since start of cycle
desired T = Tmax - ((Tmax -
Tmin)*cycle_time*0.25/3600.0) # desired temp at current time
[temp, volt] = temperature_reading()
iT (temp > desired_T + Ramp_Thresh): # Too
high above threshold, need to cool
GPI10.output(Heat_Pin,False)
GP10.output(Cool _Pin,True)
cold status =1
heat status = 0
iT (temp < desired_T - Ramp_Thresh): # Too
low below threshold, turn off A/C
GPI0.output(Heat _Pin,True)
GPI10.output(Cool_Pin,False)
cold status = 0
heat status = 1
print “{:_1f}" _format(time.time()-

initial_time),"Temp: ™, "{:.1f}"_format(temp), "Desired Temp: ™,
desired T, "F, A/C Status ", cold _status, ', Heat Status ",
heat status, ', Cycles=", i1, ', Volts: ",

*{:.4f}" _format(volt)

th = open('Log_Files/datalog%s.csv'” %
gg,"a")

log data = *“{:.1f}" . format(time.time()-
start_time) + ", + “{:_1f}" . format(temp) + *," +
str(heat_status) + "," + str(cold _status) + *," +str(i) + *," +
{:.4f}" _format(volt) + ", + “{:.4f}" _format(desired T) + "\n

fh.write(log_data)

fth.close()

HHPHH A - - —— ————— HHBH A —— - ————— HHBH R — - - ———————
HHBHHHH B
print "Cool Down Complete, holding temperature for 3
hours*®
wait_time = time.time() # initializing timer for
waiting period
while (time.time() < wait_time + 10800.0): #10800
seconds = 3 hours
iT (time.time() - prev_time) >= 60.0: # 60 sec
update rate
desired T = Tmin # desired temp at current
time
[temp, volt] = temperature_reading()
if (temp > desired T + Cold Thresh): # Too
high above threshold, need to cool
GPI10.output(Heat_Pin,False)

F-16

GP10.output(Cool _Pin,True)

cold status = 1

heat status = 0

ifT (temp < desired T - Cold Thresh): # Too
low below threshold, turn off A/C

GPI10.output(Heat_Pin,True)
GPI10.output(Cool_Pin,False)

cold status = 0

heat status =1

print “{:_1f}" _format(time.time()-

initial_time),"Temp: ™, "{:.1f}"_format(temp), "Desired Temp: ™,
desired T, "F, A/C Status ", cold _status, ', Heat Status ",
heat_status, ', Cycles=", 1, ', Volts: ", "{:.4f}" .format(volt)

th = open('Log_Files/datalog¥%s.csv™ %
gg,"a")

log data = *“{:.1f}" . format(time.time()-
start_time) + ", + “{:.1f}".format(temp) + *," +
str(heat_status) + "," + str(cold _status) + *," +str(1) + *," +
{:.4f}" _format(volt) + ", + “{:.4f}" _format(desired T) + "\n

fh.write(log_data)

fth.close()

B - - —— ————— HHBH A —— - ————— HHAH R — - - — - —————
HHBHHHH AR
print *Wait Complete, Heating up”
ramp_time = time.time() # Another timer dummy variable
for relative timing
wait_time = time.time() # timer for 4 hour ramp
while (time.time() < wait_time + 14400): # 4 hour time
for ramp
iT (time.time() - prev_time) >= 60.0: # 60 sec
update rate
cycle_time = time.time() - ramp_time #this
gives time since start of ramp
desired T = Tmin + ((Tmax -
Tmin)*cycle_time*0.25/3600.0) # desired temp at current time
[temp, volt] = temperature_reading()
ifT (temp > desired T + Ramp_Thresh): # Too
high above threshold, turn off heat
GPI10.output(Heat_Pin,False)
GPI10.output(Cool _Pin,True)
cold status = 1
heat status = 0
iT (temp < desired T - Ramp_Thresh): # Too
low below threshold, turn on heat
GPI10.output(Heat_Pin,True)
GPI10.output(Cool_Pin,False)

F-17

cold status = 0
heat status = 1
print “{:._.1f}" . format(time.time()-

initial_time),"Temp: ", "{:.1f}"_format(temp), 'Desired Temp: ",
desired T, "F, A/C Status ", cold status, ", Heat Status ",
heat status, ', Cycles=", i1, "{:.4f}" _format(volt)

fh = open("Log_Files/datalog¥s.csv" %
gg,"a")

log data = "{:.1f}" _format(time.time()-
start_time) + ", + “{:._1f}" . format(temp) + *," +
str(heat_status) + "," + str(cold _status) + *," +str(i) + *," +
“{:.4f}" _format(volt) + ", + "{:.4f}" _format(desired_T) + "\n*

fh.write(log_data)

fth.close()

HHHHH R ————————— HHH R ———————— HHHHHHH R - —————————
HHHHH AR

print "Heat Up Complete, holding temperature for 1
hour*
wait_time = time.time() # initializing timer for
waiting period
while (time.time() < wait_time + 3600.0): #3600
seconds = 1 hour
ifT (time.time() - prev_time) >= 60.0: # 60 sec
update rate
desired T = Tmax # desired temp at current
time
[temp, volt] = temperature_reading()
iT (temp > desired T + Hot_Thresh): # Too
high above threshold, need to cool
GPI10.output(Heat_Pin,False)
GPI10.output(Cool _Pin,True)
cold status =1
heat status = 0
iT (temp < desired T - Hot_Thresh): # Too
low below threshold, turn off A/C
GPI0O.output(Heat _Pin,True)
GPI10.output(Cool_Pin,False)
cold status = 0
heat status = 1
print “{:_.1f}" . format(time.time()-

initial_time),"Temp: ", "{:.1f}"_format(temp), 'Desired Temp: ",
desired T, "F, A/C Status ", cold status, ", Heat Status ",
heat status, ', Cycles=", i, "{:.4f}" _format(volt)

fth = open('Log_Files/datalog¥%s.csv" %
gg,"a")

F-18

log data = "{:.1f}" _format(time.time()-
start_time) + ", + *{:.1f}" . format(temp) + *," +
str(heat_status) + "," + str(cold _status) + *," +str(i) + *," +
“{:.4f}" _format(volt) + ", + "{:.4f}" _format(desired_T) + "\n*
fh.write(log_data)
fth.close()
HHHHHHT - ———————— HHH R ———————— HHHHH R - - ———————
HHHH T

End of ramp test, turn off all systems

GPI10.output(Heat_Pin,False)
GP10.output(Cool _Pin,False)

F-19

	Raspberry Pi Program for AASHTO T 161 “A”
	Raspberry Pi Program for CDF Ramping Program

