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INTRODUCTION

This digest summarizes findings from research
conducted under NCHRP Project 9-30 with the ob-
jective of developing a detailed, statistically sound,
and practical experimental plan to refine the cali-
bration and validation of the performance models
incorporated in the pavement design guide (here-
inafter referred to as the 2002 Design Guide) pro-
duced in NCHRP Project 1-37A with laboratory-
measured hot mix asphalt (HMA) material
properties.

Jackknifing is an analytical procedure for
refining and confirming the calibration coefficients
of mechanistic-empirical (M-E) distress prediction
equations and models such as those used in the
2002 Design Guide. Jackknifing provides more re-
liable assessments of model prediction accuracy
than the alternative use of either traditional split-
sample validation or calibration goodness-of-fit
statistics because jackknifing’s goodness-of-fit
statistics are based on predictions rather than the
data used for fitting the model parameters (Miller,
1974; Mosteller and Tukey, 1977). Thus, the
model validation statistics are developed indepen-
dently of the data used for calibration. Multiple
jackknifing is used to assess the sensitivity of the
validation goodness-of-fit statistics to sample size.

To develop jackknife statistics from a sample
of n sets of measured values, the data matrix is
divided into two groups, one part for calibration

and the other for prediction. Assume that the data
matrix includes measurements of p predictor vari-
ables Xij, j = 1...p and a single criterion variable
Y;, with'i = 1...n sets of measured values. There-
fore, the data matrix will have n rows and p+1
columns. For an n—1 jackknife validation, the pro-
cedure begins by removing one set of measure-
ments from the data matrix and calibrating the
model with the remaining n—1 sets of measure-
ments. The kth set of measurements that was with-
held is then used to predict the criterion variable
Y\, from which the error () is gomputed as the
difference between the predicted (Yy) and measured
('Y,) values of the criterion variable. A second set
of measurements is removed while replacing the
first set, and the new n—1 set is used to calibrate a
new model. This new calibrated model is then used
with the withheld set of X values to predict Y and
compute the error €,.

The process of withholding, calibrating, and
predicting is repeated until all n sets have been
used for prediction. This yields n values of the
error, from which the jackknifing goodness-of-fit
statistics can be computed. While both the calibra-
tion statistics based on all n sets and the jackknifing
statistics are computed from N measures of the
error, the jackknifed errors are computed from
measured X values that were not used in calibrat-
ing the model coefficients. Thus, the jackknifing
goodness-of-fit statistics are considered to be
independent measures of model accuracy.
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Because sample sizes of most pavement engineering
data sets are limited, one objective of model validation is
to assess the sensitivity, or stability, of the accuracy of the
model to sample size. To assess the stability of the jack-
knifed goodness-of-fit statistics, multiple jackknifing can be
performed by withholding two sets of X, while calibrating
on the remaining N—2 sets. Two errors are computed for each
calibration based on the n—2 withheld sets of X. For small
samples, the goodness-of-fit statistics for the n—2 jackknifing
may be quite different from those for the n—1 jackknifing. If,
however, the n—1 and n—2 jackknifing goodness-of-fit statis-
tics are similar, the n—1 jackknifing statistics are not sensi-
tive to the sample size and the statistics are stable. Stable
statistics are reliable indicators of goodness-of-fit or predic-
tion accuracy.

The primary advantage of jackknifing is that the
goodness-of-fit statistics are based on predictions from data
that are independent of the calibration data. Thus, they more
likely indicate the accuracy of future predictions than the
statistics based on calibration of all n data vectors. The use
of multiple jackknifing to assess the stability of the predic-
tion statistics is a second advantage of jackknifing. A third
advantage is that the method is easy to apply.

Split-sample validation differs from jackknifing in that
the goodness-of-fit statistics for both calibration and predic-
tion are based on n/2 values (for symmetrical split sampling,
the usual case) rather than n values. Traditional split-sample
validation has the distinct disadvantage that, if n is small
relative to the infra-space being simulated, then n/2 is even
smaller, which produces inaccurate calibrations, inaccurate
coefficients, and less reliable prediction accuracy.

A procedure proposed for the NCHRP Project 9-30
experimental plan presented in NCHRP Research Results
Digest 284 combines jackknifing with split-sample testing
in what is essentially an n/2 jackknifing scheme termed split-
sample jackknifing. Split-sample jackknifing provides some-
what better measures of prediction accuracy than the tradi-
tional split-sample validation. Using this procedure, the
number of test sections required to accurately recalibrate the
HMA distress prediction models in the 2002 Pavement De-
sign Guide with measured materials properties was esti-
mated from the standard error of estimate for each model
published in the final report for Project 1-37A, “Develop-
ment of the 2002 Guide for the Design of New and Rehabili-
tated Pavement Structures: Phase I1.”

This split-sample jackknifing procedure for calibration
and validation is illustrated in the remainder of this digest
using simulations of rutting performance based on measured
data from in-service pavement sections at the Minnesota
Road Research Project (MnROAD).

JACKKNIFE TESTING—APPLICATION OF THE
EXPERIMENTAL APPROACH

Overview and Model Formulation

To illustrate the split-sample jackknifing procedure for
calibration and validation, measured permanent deforma-
tion (rutting) data from five pavement sections at the
MnROAD test site were used to develop a statistical simula-
tion model. The five pavement sections—MnROAD Cells
16, 17, 18, 20, and 22—are from an in-service length of
Interstate 94 in Minnesota.

The site climate is characterized as moderate to cold
temperature. All sections were conventional flexible systems
with approximately 8 inches of HMA over either 28 inches
of good-quality base (Minnesota Department of Transporta-
tion [MnDOT] Class 3 material in Cells 16, 17, 18, and 20)
or 18 inches of high-quality crushed stone base (MnDOT
Class 6 material in Cell 22). The HMA at the five test sec-
tions differed in the binder grade and mixture gradation. The
natural soil subgrade under all sections was a silty clay
(AASHTO A-6). Traffic loading consisted of typical Inter-
state highway traffic mix with a volume of about 25,000
vehicles per day and approximately 12.5% trucks; these
traffic conditions were identical for all five sections. The
test sections were opened to traffic in 1994.

Rut depth and other performance measurements have
been taken periodically since the opening of the sections to
traffic. The rutting performance history used in this example
spans slightly more than 3 million equivalent single-axle
loads (ESALs). Eight rut depth measurements distributed
over the life of the pavement were typically available for
each of the test sections. Figure 1 shows the measured rut
depth versus traffic histories for the five sites.

Four of the five sections (Cells 16, 17, 18, and 22)
exhibited very similar rutting performance histories, with
maximum rut depths of 4 to 6 mm after 3 million ESALs.
The fifth section (Cell 20) exhibited a maximum rut depth of
approximately 17 mm after only 2.5 million ESALs. How-
ever, this type of variability is believed to be typical among
multiple sites within any given pavement condition category.

These five MnROAD test sections had previously been
studied as part of the development of the simple perfor-
mance test in NCHRP Project 9-19, “Superpave Support
and Performance Models Management,” because all condi-
tions other than HMA mixture properties were identical. The
preliminary results from this study and standard empirical
model forms for pavement rutting were used to formulate a
simple performance model relating the cumulative rut depth
D, in millimeters, to the number of traffic repetitions, N
(defined in terms of millions of 18-kip ESALs, or MESALs),
and the mixture stiffness Sin 10° psi:

D=Db,N"S> (1)
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Figure 1. Measured rutting performance histories at selected MNROAD test sections.
The mixture stiffness Sis quantified by the ratio |E"I/sin @ D = 4.96N%44g07% “)

in accordance with the results of Task C of NCHRP Project
9-19, where IE"| is the dynamic modulus and @is the phase
angle for a reference temperature and loading rate. The stiff-
ness Sis intended to capture the differences in binder and
gradation among the mixtures. The stiffness values for the
five sites varied from 0.6 to 1.5 million psi, with a mean
value of 1.15 + 0.34 million psi.

Model Calibration
The two-predictor power model form in Equation 1 was

fitted to the data using least squares regression of the loga-
rithmic transformation:

log D =log(h,) +b logN +b, logS 2)
The parameters of by, b;, and b, are the regression
coefficients. These three coefficients were fitted to the entire

MnROAD data set for these five pavement sections with the
following result in transformed log-log space:

logD =0.695 +0.4541og N —=0.79510og S 3)

In arithmetic space, Equation 3 can be written as

The calibration goodness-of-fit statistics in arithmetic
space are as follows: correlation coefficient R = 0.833
(R? = 0.694), standard error of estimate S, = 1.87 mm, rela-
tive standard error Se/ =0.5718, bias & =—0.255 mm, and
the relative bias (bias divided by the mean D) R, = —4.60%.
The bias is minimal but not insignificant. The relative stan-
dard error ratio suggests moderate precision.

The statistics and the model of Equation 4, which are
based on the MnROAD data, are used as the statistical popu-
lation values for a Monte Carlo simulation exercise. The
purpose of the simulation is to extend the model beyond
constraints imposed by the data structure of the MnROAD
data. Specifically, the number of sections, the number of
observations at each section, and the maximum ESAL value
at which rutting data are measured can be varied to assess
their effects on the calibration and validation statistics for
the model.

Calibration Versus Prediction Accuracy
The calibration goodness-of-fit statistics for the model

of Equation 4 should not be assumed to represent prediction
accuracy; true estimation of prediction accuracy requires



model validation. The model of Equation 4 was therefore
used as the basis for a Monte Carlo model validation simula-
tion using n—1, N-2, and split-sample jackknifing. The valida-
tion goodness-of-fit statistics for these analyses can then be
compared with those for calibration.

Rational design of pavements requires that the pave-
ment distresses at the end of the design life just reach their
limiting design values. Thus, it is the accuracy of perfor-
mance predictions at the end of the pavement’s design life
that is of most interest in assessing the value of the model.
Various factors influence the prediction accuracy of a model.
Six factors considered in the present study are as follows:
the underlying but unknown population correlation coeffi-
cient of the model, p; the desired level of confidence y for
the performance predictions; the number of traffic repeti-
tions at the end of the pavement design life, Ny; the number
of pavement sections within a region, m; the number of per-
formance measurements per section, n; and the ESAL value
at the last performance measurement, N,

Monte Carlo simulations (Ross, 1990; Sobol, 1994)
were performed to evaluate the influence of each of these
factors on the prediction accuracy of the model. The Monte
Carlo model is of the following form:

D=Db,N"S¢ 6))

The parameters of by, b;, and b, constants are the popu-
lation values that are assumed equal to the MnROAD values
determined in Equation 4, and € is the stochastic component
that is inversely related to the population correlation coeffi-
cient p for the model. A total of 15,000 simulations were
performed for each set of study conditions. For each simula-
tion, rut depth predictions were made at N values of 10 and
15 MESALSs. The 15,000 predictions in each set were tabu-
lated into histograms from which 60%, 75%, and 90% one-
sided nonexceedence values were determined. A relative
error D was then computed as the difference between the

predicted rut depth f)v at a specified confidence level y and

the mean population rut depth D for the same ESAL
normalized by the mean population rutting depth:

D, -D|
TE5 ©)

This normalized error value should be relatively trans-
ferable to other pavement conditions. The numerator of the
ratio is simply the expected error in the prediction at the
specified confidence level.

A central benefit of jackknifing is that it assesses predic-
tion accuracy, not calibration accuracy. A principal objective
of this analysis was to identify the conditions under which
jackknifed prediction statistics differed significantly from
calibration statistics. The differences between the calibra-
tion and validation goodness-of-fit indices should depend

on several data characteristics, most notably the number of
pavement sections used to develop the prediction equation.
Figures 2 and 3 summarize values of the correlation
coefficient and the standard error ratio, respectively, for se-
lected numbers of pavement sections. The values plotted in
the figures are the median statistics of all 15,000 simulations
for the following cases: calibration accuracy (C); prediction
accuracy as determined from n—1 jackknifing (J1); predic-
tion accuracy as determined from n-2 jackknifing (J2); and
prediction accuracy as determined from conventional split-
sample testing (SS). The difference between the calibration
C and n-1 jackknifing J1 statistics reflects the difference
between calibration and actual prediction accuracy (as assessed
via n—1 jackknifing). The difference between the n—1 and n-2
jackknifing statistics indicates the effect of losing an addi-
tional piece of data from the calibration. The difference
between the n—1 jackknifing statistics and the split-sample
values indicates the effect of losing n/2 observations in the
traditional 50-50 split-sample testing approach. The values
in Figures 2 and 3 show several important general trends:

e As the median calibration correlation coefficient C
increases, the calibration statistics become a more accu-
rate indicator of prediction accuracy. For example, for
the high assumed population correlation of 0.9 and m=4,
the n—1 jackknife prediction correlation J1 equals 0.844,
only 6.2% less than C. If the assumed population corre-
lation coefficient is dropped to 0.7, the n—1 jackknife
prediction correlation J1 drops to 0.495, or 29.3% less
than the calibration value. In other words, the predic-
tion statistics become increasingly poorer than the cali-
bration statistics as the sample size decreases. This fact
indicates that the calibration statistics in these cases
overestimate the prediction accuracy and shows the
importance of the jackknife approach as a more realistic
measure of true prediction accuracy for small samples.

e The n-1 and N2 jackknifing statistics are similar for all
cases studied. This result suggests that the differences
between the calibration and n—1 prediction statistics are
not due to the loss of the one observation, but rather the
inability of the calibration statistics to represent predic-
tion accuracy.

*  The split-sample statistics are poor measures of predic-
tion accuracy when the samples are small, when the
population correlation is low, or both. Split-sample test-
ing is not a reasonable substitute for jackknifing, except
possibly for large samples of data.

Deter minants of Prediction Accuracy

Jackknifing for model validation is of interest when
modeling permanent deformations and other distresses in
pavements because large databases are rarely available.
Pavement distress models must usually be calibrated and
validated using very limited data sets for each combination
of pavement characteristics, environmental conditions, and
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Figure 2. Comparison of correlation coefficients for calibration statistics (C) and prediction statistics from n-1
jackknifing (J1), n—2 jackknifing (J2), and split-sample jackknifing (SS) at different levels of population correlation
coefficients p and for different numbers of pavement sections m per pavement condition cell. (n = 4, N;= 15, Ny = 3)

traffic loading. Thus, it is important to know the relative
influence of the key parameters on the predicted distresses
relative to the prediction accuracy at the end of design life
Ng The key parameters include the number of pavement
sections m, the average number of distress measurements
per section N, the average duration of the distress measure-

ment time series at each site N,,,, the population correlation
coefficient p, and the desired confidence level .

Based on the population model of Equation 4 and the
standard error, simulated rutting performance histories were
generated using Monte Carlo techniques based on the fol-
lowing stochastic model:
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Figure 3. Comparison of standard error ratio for calibration statistics (C) and prediction statistics from n—1 jackknifing
(J1), n—=2 jackknifing (J2), and split-sample jackknifing (SS) at different levels of population correlation coefficients p and
for different numbers of pavement sections m per pavement condition cell. (n = 4, Ny= 15, N, = 3)

logD =1log(B,) +B,logN +B,logS+zlogo,  (7)

in which [3; (i =0, 1, 2) is the assumed population parameters
inferred from the MnROAD data, z is a standard normal
deviate, and 0, is the population value of the standard error
of estimate. The stiffness Swas held constant over time for

each pavement section but varied randomly using a normal
distribution among the sections. The range for each of the
other parameters was selected to span typical ranges that might
be reasonable and expected in actual pavement data sets.

The number of available sections per calibration/
validation matrix cell (m) ranged from 4 to 24. The average



TABLE 1 Coefficients(c,, ¢;, C,, C;) for distressratio model of Equation 8 asa function of ultimate ESAL, confidence coefficient (y),

and population correlation coefficient (p)

MESAL % p Co Cy C C3
15 60 0.70 0.2351 —0.2945 —0.1883 —0.1468
0.80 0.1704 -0.2148 -0.1378 -0.1176
0.90 0.0990 —0.0888 —0.0555 —0.0527
75 0.70 0.6602 -0.2797 -0.1753 —0.1388
0.80 0.4789 -0.1972 —0.1255 -0.1084
0.90 0.2918 —0.0820 —0.05395 —0.04443
90 0.70 1.3981 -0.2705 -0.1670 -0.1267
0.80 1.0752 -0.1801 -0.1198 —0.0951
0.90 0.7486 -0.07616 -0.05137 —0.03558
10 60 0.70 0.1736 -0.2144 —0.1430 —0.1335
0.80 0.1337 -0.1568 —0.0989 —0.1033
0.90 0.08789 —0.05953 -0.03713 —0.04607
75 0.70 0.4830 -0.1962 —0.1287 -0.1215
0.80 0.3778 -0.1352 —0.0898 —0.09455
0.90 0.26264 —0.05454 —0.03929 -0.03707
90 0.70 1.0010 -0.1825 -0.1151 -0.1001
0.80 0.8404 -0.1151 —-0.0920 -0.0782
0.90 0.6608 —0.04928 —0.04220 —0.03095
number of distress measurements per site (N) ranged from 4 D, = ¢,nom* N, & )

to 8. The desired confidence levels were set at 60%, 75%,
and 90%. The population correlation coefficient was varied
from 0.7 to 0.9, which reflects explained variances from
50% to 80%.! The duration of the distress measurement
time series (N,;) was varied between 2 and 6 MESALSs. For
each combination of parameters, 15,000 samples were gen-
erated, and predictions were made for each section at design
lives (Ny) of 10 and 15 MESALSs. The distributions of the
15,000 predictions were compiled and the upper bounds
computed for the 60%, 75%, and 90% confidence levels.
The bounds were normalized using the mean design life
predictions from the assumed population model for each of
the two design lives in terms of the relative distress error
ratio (Dg) given in Equation 6.

The Monte Carlo simulation yielded 15,000 distress
error ratios for each combination of the six parameters (n, m,
N,» P, ¥, and Ny). The distress error ratios were then re-
gressed on the parameters of n, m, and N,,, using a multiple
variable power mathematical model form:

! The actual population correlation coefficient for the MnROAD data
set as inferred from regression equation 4 was 0.833. Regressions of this
model form to other selected field pavement data (not reported here) from
the FHWA Accelerated Load Facility (ALF) (Lanes 5, 7, 8, 9, 10, 11, and
12 in the ALF binder study) and WesTrack (Sections 2,4, 7, 15, 23, and 24)
found correlation coefficient values of 0.65 and 0.95, which are on the
same order as the value from the MnROAD data set and which suggest
reasonable ranges for the population correlation coefficient.

in which ¢; (i = 0, 1, 2, 3) are the regression coefficients
evaluated using least squares on the logarithms of the four
variables. Equation 8 was estimated separately for each
value of population correlation coefficient p, desired confi-
dence level for prediction accuracy Y, and pavement design
life Ny. The fitted coefficients are given in Table 1 for the
various values of p, Y, and Ny. The correlation coefficients
for the fitted models ranged from 0.854 to 0.948 and the
standard error ratios ranged from 0.335 to 0.547, both of
which suggest good agreement between the predicted and
simulated distress error ratios.

The coefficients for n, m, and N, are all negative, which
indicates that the distress error ratio decreases as each of the
parameters increases. For most of the equations, the stan-
dardized partial regression coefficients for the log-linear
models suggest that the number of sections (m) was slightly
more important than either the average number of distress
measurements per section (n) or the duration of the distress
measurement time series (N,;)).

Effect of Confidence Level

The desired level of confidence y for the prediction
accuracy is the most critical factor. As shown in Figure 4,
the distress error ratio is about 0.1 at a 60% confidence
level, 0.25 at a 75% confidence level, and 0.6 at a 90%
confidence level. A larger Dg value—i.e., a wider interval—
reflects the greater confidence in the accuracy of the predic-
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tion. In other words, one can only be 60% confident that the
predicted value is within 10% of the “true” value but 90%
confident that it is within 60% of the actual. The selection of
the desired level of confidence is a policy decision, as it
reflects on the cost and safety of projects.

The influence of the other five parameters (Figures 5
through 9) is small relative to the variation associated with
the confidence level. However, these other variations are
not insignificant. The effects of different parameters may be

interactive; therefore, the effect of any one parameter may
depend on the magnitudes of the other parameters.

Effect of Number of Sections

The number of pavement sections (M) per cell needed to
achieve a reasonable level of accuracy is an important deci-
sion parameter. Figure 5 shows the variation in the distress
error ratio, as a function of mfor selected values of the other



0.7
—

o 7"'"'”"""————777,;
a 06 T
2 —
2 05 7 Confl
g —o—90% Confidence
5 0.4 - —a— 75% Confidence
IE 0a | —2—60% Confidence

. B
8 [ = N B
o 0.2
=
n
a 0.1 7 =

0 | | ‘ |

, A 6 8 10

Number of Observations per Section n

Figure 6. Effect of number of observations per section n on distress error ratio Dy, as a function of desired confidence

level y. (p = 0.8, m= 5, N,= 3 MESALs, N;= 15 MESALS)

0.7

0.6 - S S
g e R T R O
o 0.5 i
2 ——90% Confidence
né 04 | —=—75% Confidence
2 ——60% Confidence
ﬂ 0.3 .
@ d- 77fffT7.7.’?_’.’.’TEL:TT”WT_—~— .
202" T
]
[a)

0.1 1 b AT

0 ‘ ‘ ‘
0.6 0.7 0.8 0.9 1

Population Correlation Coefficient P

Figure 7. Effect of population correlation coefficient p on distress error ratio Dy, as a function of desired confidence level .
(m=5,n=5 N,= 3MESALs, solid lines are N;= 15 MESALs, dashed lines are N;= 10 MESALS)

parameters. The distress error ratio decreases by between
5% and 18% as mincreases from 4 to 10 sites. For example,
for a 75% level of confidence, a population correlation
coefficient of 0.8, a time series duration N, of 3, and an
average number of measurements per section n of 8, the
distress error ratios are 0.237, 0.221, and 0.211 for values of
mof 4, 7, and 10, respectively; this trend remains relatively
consistent for other combinations of y, p, N, N, and Ny. The
distress error ratio decreases with an increasing number of

pavement sections because the uncertainty decreases as the
amount of data available increases.

Effect of Number of Distress Measurements

The average number of distress measurements taken at
each pavement section (n) is also a reflection of the informa-
tion content of the data available for calibration. In the simu-
lations, the number of distress measurements per section
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was varied from 4 to 8, which reflects the range typically
available in pavement distress databases (e.g., the long-term
pavement performance [LTPP] database). As shown in Fig-
ure 6, the distress error ratio decreases by between 8% and
34% as nincreases from 3 to 9. The actual effect depends to
some extent on the values of the other parameters, but the
average number of distress measurements for each pave-
ment section appears to be slightly more important than the
number of sections for the ranges of values considered in
this study.

This observation is confirmed by examining the relative
sensitivity of Dg with respect to mand n (McCuen, 2003).
Taking the partial derivatives of Equation 8 for Dy with
respect to mand n yields:

aDR Ci ~nCa —I N\ C
= n"'m-* N 3
=g ; ©)

aDR C; =1 22Cy NIC
= n"' - 'm> N 3
an @G m (10)



For p=0.8,y=0.75, and Ny= 15 MESALSs, Table 1 gives
values ¢, = 0.4789, ¢, = -0.1972, ¢, = —0.1255, and
C; =—-0.1084. Substituting these values into Equations 9 and
10 with N,,,= 3 MESALSs gives:

aDR —0.1972 .~—1.1255
—2=-0.0677Tn"""m

am (1D
0;::; - _0.1064n_1'1972m_0']255 (12)

If one further assumes that m and n are comparable in mag-
nitude (as they often will be in real pavement databases) and

dD _
thus mOn= K then Tn: 0~ 0.07k™, which is less (in an

D _
anR 0- 0.11k™, In other words,

the distress error ratio is dightly more sensitive to the aver-
age number of distress measurements per pavement section
than to the total number of sections. The overall sensitivity
of Dy to nis greatest for the poorer correlation coefficients,
with variations of Dy over 30% for p = 0.7 and only about
9% for p=0.9.

absolute value sense) than

Effect of Population Correlation Coefficient

The population correlation coefficient (p) reflects the
accuracy of the underlying model. In practice, this would be
estimated using sample values obtained from typical data-
bases. For example, the MnROAD database resulted in a
correlation coefficient of 0.83. The correlation coefficient is
a measure of the error in the predictions, with the error
decreasing with increasing p.

Figure 7 shows the variation in the distress error ratio
for values p of 0.7, 0.8, and 0.9. Values are given for design
traffic levels Ny of 10 and 15 MESALSs for the three target
confidence levels. In general, the variation in the distress
error ratio with population correlation coefficient is less than
10%, which suggests that for correlation coefficients greater
than 0.7 the influence is minimal.

Effect of Distress Measurement Time Series

The duration over which distress measurements are made
(N, also influences the magnitude of the distress error ratio.
Databases that include long distress measurement histories
including values that were measured near the pavement
design traffic level (Ng) should provide more accurate rut-
ting depth estimates than relatively short records of values
taken soon after the pavement was opened to traffic. There-
fore, simulations were performed for distress measurement
time series durations (N,;) of 2, 4, and 6 MESALSs; in each
case, it was assumed that the average number of measure-
ments per section (N) was distributed uniformly throughout
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the time series. Note that the largest ESAL value in the
MnROAD data set was 3.1 million.

As shown in Figure 8, the distress error ratios decreased
by between 8% and 16% as N, increased from 2 to 6. This is
slightly less than the influence of either m or n on the predic-
tion accuracy. The greatest influence occurs at the lower popu-
lation correlation coefficients, which is consistent with the
lower overall accuracy of the model under these conditions.

Effect of Pavement Design Life

The distress error ratio should decrease as the pavement
design life (N) increases. This reflects the inevitably lower
prediction accuracy associated with extrapolating further
beyond the range of the measured distress data. Figure 9
shows the variation in Dg for Ny values of 10 and 15
MESAL:S at the different target confidence levels. The maxi-
mum change in Dy at a given confidence level is about 10%
for the parameter ranges examined in this study. The pave-
ment design life thus appears to have less effect on the accu-
racy of prediction than the other decision parameters have.

Estimating Sample Sizes and Sites

The regression equations for predicting the distress error
ratio (Equation 8 and Table 1) can be used to assess the
amount of data (number of sections m and average number
of distress measurements per site nN) needed to provide any
level of prediction accuracy at a specified desired confi-
dence level. As an example, suppose that the duration of the
distress measurement time series N, was limited to 3 by the
existing available data, the population correlation coefficient
was estimated at 0.8, the design maximum rut depth was
25+6 mm (i.e., Dg 00.25) at a pavement design life Ny of 15
MESALs, and policy required a confidence level of 75%.
Table 2 summarizes some of the various combinations of m
and n that could achieve the target distress error ratio value
of 0.25. These values are not unreasonable for real pavement
performance model calibration and validation scenarios.

Summary of the Example
A Monte Carlo simulation model was developed to

investigate systematically the effects of the various parameters

TABLE 2 Combinations of m and n to achieve Ry, of 0.25
(p=0.8,y=75%, N,,= 3, Ny=15)

m n Rp

3 8 0.246
4 7 0.243
5 6 0.244
6 5 0.247
8 4 0.249
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influencing calibration and prediction accuracy for pave-
ment performance models. The parameters studied in the
simulations were the population correlation coefficient (p);
the number of available pavement sections per calibration/
validation matrix cell (m); the average number of distress
measurements per section (N); the desired confidence level
for prediction accuracy (Y); the duration of the distress mea-
surement time series (N,); and the pavement design life
(Ny- The conclusions from this study were that y was by far
the most important parameter. This was followed (in rough
order of decreasing importance) by n, m, N, Ny, and p.
Relative sensitivity (McCuen, 2003) is a reliable mea-
sure of the relative importance of a predictor variable. For
the multiple-power model, a first-order estimate of the rela-
tive sensitivity is the magnitude of the exponents of the
predictor variables. Therefore, the ¢; (i =1, 2, 3) values of
Table 1 can be used directly as measures of the relative
importance of the variables. In every case, the coefficient ¢
for the average number of distress measurements per section
N is the largest in magnitude, which indicates that the num-
ber of measurements per section is the most important factor.
The values of ¢, and ¢ are usually similar in magnitude,
although ¢, is more often greater than c;. Therefore, the
number of pavement sections M is slightly more important
than the total duration of the distress measurement time
series N, although both are slightly less important than n.

The results from this study are obviously limited by the
specific conditions analyzed in the simulations and, more
importantly, by the assumption that the form and statistics
of the rutting simulation model in Equation 1 are fair repre-
sentations of most pavement conditions. This equation was
calibrated using measured performance data from selected
sections at the MnROAD experimental facility. This is
clearly an open question. However, the performance model
calibration completed as part of NCHRP Project 1-37A pro-
vides excellent additional data on representative levels of
accuracy of the performance models and on the range and
variability of the inputs to these models.
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