APPENDIX K. DESIGN EXAMPLES BASED ON DRAFT SPECIFICATION

Three connections were selected from different bridges referred to in Appendix A to demonstrate the application of the proposed rating specifications. These connections were rated using the existing LRFR checks from the FHWA Guide, as well as, the proposed LRFR and LFR specification for the MBE found in Appendix J. A summary of the rating factors for each joint are reflected in Table K1 through K3. The reader should be aware of three caveats when comparing all the rating factors from the tables below:

1. The checks focus on the gusset plate limit-states only, hence limit-states associated with fasteners were not performed.

2. No condition factors were used in any of the LRFR calculations.

3. When evaluating LRFR with the FHWA Guide, the system factor was not used. A system factor of 0.90 was assumed in the LRFR checks with the proposed specification because it is recommended this be mandatory. Therefore, a true comparison between the LRFR specifications should consider an additional 0.90 reduction on the values calculated with the FHWA Guide.

It is expected that there will be differences in rating factors calculated from the three methods, though these three example may shed some light on the magnitude of the differences. Overall, there is little change between the LRFR ratings attained from the FHWA Guide, the LRFR proposed specifications, and the LFR proposed specifications at the Inventory level. At the Operating level, the proposed LFR specifications consistently produced more favorable ratings than the two LRFR approaches.

Detailed rating calculations for each joint can be found on the pages following Table K3.
Table K1. Rating Factors for I-35W L1 Joint

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.25 buckling</td>
<td>2.85 buckling</td>
<td>2.40 buckling</td>
<td>1.62 buckling</td>
<td>3.69 buckling</td>
<td>4.01 buckling</td>
</tr>
<tr>
<td>Member 2</td>
<td>3.26 buckling</td>
<td>3.35 buckling</td>
<td>2.69 buckling</td>
<td>4.23 buckling</td>
<td>4.35 buckling</td>
<td>4.49 buckling</td>
</tr>
<tr>
<td>Member 3</td>
<td>2.02 buckling</td>
<td>1.08 PPSY</td>
<td>1.03 PPSY</td>
<td>2.62 buckling</td>
<td>1.40 PPSY</td>
<td>1.72 PPSY</td>
</tr>
<tr>
<td>Member 4</td>
<td>3.70 buckling</td>
<td>1.26 chord splice</td>
<td>1.46 chord splice</td>
<td>4.79 buckling</td>
<td>1.63 chord splice</td>
<td>2.43 chord splice</td>
</tr>
<tr>
<td>Vertical Shear 1</td>
<td>3.46 yielding</td>
<td>3.99 yielding</td>
<td>3.65 yielding</td>
<td>4.49 yielding</td>
<td>5.17 yielding</td>
<td>6.1 yielding</td>
</tr>
<tr>
<td>Vertical Shear 2</td>
<td>4.59 yielding</td>
<td>5.25 yielding</td>
<td>4.84 yielding</td>
<td>5.96 yielding</td>
<td>6.80 yielding</td>
<td>8.09 yielding</td>
</tr>
<tr>
<td>Controlling Rating Factor</td>
<td>1.25</td>
<td>1.08</td>
<td>1.03</td>
<td>1.62</td>
<td>1.40</td>
<td>1.72</td>
</tr>
</tbody>
</table>

PPSY = Partial Plane Shear Yield

Table K2. Rating Factors for I-80 L3 Joint

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.38 buckling</td>
<td>NA</td>
<td>NA</td>
<td>3.09 buckling</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Member 2</td>
<td>7.25 block shear</td>
<td>6.71 yielding</td>
<td>6.26 block shear</td>
<td>9.40 block shear</td>
<td>8.70 yielding</td>
<td>10.45 block shear</td>
</tr>
<tr>
<td>Member 3</td>
<td>9.24 buckling</td>
<td>10.14 buckling</td>
<td>8.32 buckling</td>
<td>11.98 buckling</td>
<td>13.15 buckling</td>
<td>13.89 buckling</td>
</tr>
<tr>
<td>Member 4</td>
<td>6.55 buckling</td>
<td>2.51 PPSY</td>
<td>2.53 PPSY</td>
<td>8.50 buckling</td>
<td>3.26 PPSY</td>
<td>4.22 PPSY</td>
</tr>
<tr>
<td>Member 5</td>
<td>6.36 buckling</td>
<td>NA</td>
<td>NA</td>
<td>8.25 buckling</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Chord Splice</td>
<td>NA</td>
<td>5.55</td>
<td>6.42</td>
<td>NA</td>
<td>7.19</td>
<td>10.72</td>
</tr>
<tr>
<td>Horizontal Shear</td>
<td>4.04 yielding</td>
<td>4.53 yielding</td>
<td>4.46 yielding</td>
<td>5.23 yielding</td>
<td>5.87 yielding</td>
<td>7.44 yielding</td>
</tr>
<tr>
<td>Controlling Rating Factor</td>
<td>2.38</td>
<td>2.51</td>
<td>2.53</td>
<td>3.09</td>
<td>3.26</td>
<td>4.22</td>
</tr>
</tbody>
</table>

N/A = Not Applicable
PPSY = Partial Plane Shear Yield
<table>
<thead>
<tr>
<th>Member</th>
<th>Inventory Level</th>
<th>Operating Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member 1</td>
<td>3.20 buckling</td>
<td>NA</td>
</tr>
<tr>
<td>Member 2</td>
<td>12.77 buckling</td>
<td>14.23 buckling</td>
</tr>
<tr>
<td>Member 3</td>
<td>8.45 block shear</td>
<td>9.31 block shear</td>
</tr>
<tr>
<td>Member 4</td>
<td>2.86 buckling</td>
<td>NA</td>
</tr>
<tr>
<td>Chord Splice</td>
<td>NA</td>
<td>3.67</td>
</tr>
<tr>
<td>Controlling Rating Factor</td>
<td>3.20</td>
<td>3.67</td>
</tr>
</tbody>
</table>

N/A = Not Applicable
PPSY = Partial Plane Shear Yield
I-35W GUSSET PLATE CHECKS

These checks will make comparisons between the existing FHWA Guidance, the new proposed LRFR MBE specification, and the new proposed LFR MBE provisions. Fastener checks will also not be provided. Condition factors are assumed to be 1.00.

Note this joint has a bearing reaction on the bottom and the built-up multi-cell box section beneath the vertical member is extremely stiff and negates checking some limit states. This multi-celled section should be checked for compression resistance from the bearing reaction, but will not be done in this example.

\[F_y := 50 \text{ksi} \]
\[F_u := 70 \text{ksi} \]
\[E := 29000\text{ksi} \]
\[t_g := \frac{1}{2} \text{in} \]

Material Properties

Gusset and Shingle Plate Thickness

Existing FHWA Guide Resistance Factors

\[\phi_y := 0.95 \quad \phi_c := 0.9 \]
\[\phi_u := 0.80 \quad \phi_{vy} := 0.95 \]
\[\phi_{bs} := 0.80 \quad \phi_{vu} := 0.80 \]
\[\Omega := 0.74 \]

Proposed Resistance Factors

\[\phi_{bs_new} := 1.00 \quad \phi_{c_new} := 0.95 \]
\[\phi_{vg} := 1.00 \quad \phi_{cs} := 0.85 \]
\[\Omega_{new} := 0.88 \]
Load Factors
\[\gamma_{LL} := 1.75 \]
\[\gamma_{DL} := 1.25 \]
\[\gamma_{LL_LFR} := 2.17 \]
\[\gamma_{DL_LFR} := 1.3 \]

System Factor
\[\phi_s := 0.90 \]

assumes it's a bolted truss, proposed as mandatory for LRFR under MBE Article 6A.6.12.6. The system factor will not be used in calculations using the existing FHWA Guidance.

Member Forces For One Gusset Plate
\[P_{1DL} := \frac{560}{2} \text{kip} \]
\[P_{1LL} := \frac{311 + 65}{2} \text{kip} \]

Compression
\[P_{2DL} := \frac{323}{2} \text{kip} \]
\[P_{2LL} := \frac{207 + 62}{2} \text{kip} \]

Compression
\[P_{3DL} := \frac{662}{2} \text{kip} \]
\[P_{3LL} := \frac{462 + 60}{2} \text{kip} \]

Compression
\[P_{4DL} := \frac{190}{2} \text{kip} \]
\[P_{4LL} := \frac{394 + 35}{2} \text{kip} \]

Compression

MEMBER 1
Compression Member - Need to check Whitmore buckling and partial plane shear yielding

\[L_{\text{avg}1} := \frac{0\text{in} + 10.9\text{in} + 25.1\text{in}}{3} \]
\[L_{\text{avg}2} := \frac{0\text{in} + 10.9\text{in} + 23.3\text{in}}{3} \]
\[L_{\text{mid}} := 10.9\text{in} \]
\[r_s := \frac{t_g}{\sqrt{12}} \]
\[A_{s1} := 37.9\text{in} \cdot t_g \]
\[A_{s2} := 29.6\text{in} \cdot t_g \]
Calculate LRFR rating factors using existing FHWA Guidance method

\[K := 1.2 \]

Calculate the compression capacity of the primary gusset plate

\[\lambda_1 := \left(\frac{K \cdot L_{\text{avg}1}}{t_g \pi} \right)^2 \left(\frac{F_Y}{E} \right) \]

\[\lambda_1 = 1.74 \]

\[C_1 := \phi \cdot \begin{cases} 0.66 \cdot \lambda_1 \cdot F_Y \cdot A_{s1} & \text{if } \lambda_1 \leq 2.25 \\ 0.88 \cdot F_Y \cdot A_{s1} & \text{otherwise} \end{cases} \]

\[C_1 = 414.05 \text{-kip} \]

Calculate the compression capacity of the shingled plate

\[\lambda_2 := \left(\frac{K \cdot L_{\text{avg}2}}{t_g \pi} \right)^2 \left(\frac{F_Y}{E} \right) \]

\[\lambda_2 = 1.57 \]

\[C_2 := \phi \cdot \begin{cases} 0.66 \cdot \lambda_2 \cdot F_Y \cdot A_{s2} & \text{if } \lambda_2 \leq 2.25 \\ 0.88 \cdot F_Y \cdot A_{s2} & \text{otherwise} \end{cases} \]

\[C_2 = 346.97 \text{-kip} \]

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

\[\frac{P_{1DL}}{P_{1LL}} = 1.49 \]

\[R_{\text{DLLLU}} := 1 - 0.1 \left(\frac{1.49 - 1}{5} \right) \]

\[R_{\text{DLLLU}} = 0.99 \]

\[P_{e1} := \frac{3.29 \cdot E}{L_{\text{mid}}^2} \cdot A_{s1} = 3804.43 \text{-kip} \]

\[P_{e2} := \frac{3.29 \cdot E}{L_{\text{mid}}^2} \cdot A_{s2} = 2971.27 \text{-kip} \]

\[P_{o1} := F_Y \cdot A_{s1} = 947.5 \text{-kip} \]

\[P_{o2} := F_Y \cdot A_{s2} = 740 \text{-kip} \]
\[
\begin{align*}
\text{Whit}_1 & := \phi_{c_{\text{new}}}, \\
& = \begin{cases}
\frac{P_{o1}}{P_{e1} \cdot P_{o1}} & \text{if } \frac{P_{e1}}{P_{o1}} \geq 0.44 \\
0.877 \cdot P_{e1} & \text{otherwise}
\end{cases}
\quad = 811.02 \text{-kip}
\end{align*}
\]
\[
\begin{align*}
\text{Whit}_2 & := \phi_{c_{\text{new}}}, \\
& = \begin{cases}
\frac{P_{o2}}{P_{e2} \cdot P_{o2}} & \text{if } \frac{P_{e2}}{P_{o2}} \geq 0.44 \\
0.877 \cdot P_{e2} & \text{otherwise}
\end{cases}
\quad = 633.41 \text{-kip}
\end{align*}
\]

Calculate the partial plane shear yield check
\[
\begin{align*}
\text{PS}_1 & := \phi_{vg} \cdot \frac{\Omega_{\text{new}} \cdot (0.58 \cdot F_y) \cdot (62.4 \text{-in}) \cdot \tan \theta}{\cos(50.2 \text{deg})} = 1243.89 \text{-kip} \\
\text{PS}_2 & := \phi_{vg} \cdot \frac{\Omega_{\text{new}} \cdot (0.58 \cdot F_y) \cdot (54.5 \text{-in}) \cdot \tan \theta}{\cos(50.2 \text{deg})} = 1086.41 \text{-kip}
\end{align*}
\]

The buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria
\[
C_{\text{LRFR}} := \min \left(\text{Whit}_1 + \text{Whit}_2, \text{PS}_1 + \text{PS}_2 \right)
\]
\[
\begin{align*}
\text{RFLRFR}_{\text{inv}} & := \frac{R_{DL _LL} \cdot \phi_{s} \cdot C_{LRFR} - \gamma_{DL} \cdot P_{1DL}}{\gamma_{LL} \cdot P_{1LL}} = 2.85 \\
\text{RFLRFR}_{\text{oppr}} & := \frac{\text{RFLRFR}_{\text{inv}}}{1.35}
\end{align*}
\]
\[
\text{RFLRFR}_{\text{oppr}} = 3.69
\]

Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear)
\[
\begin{align*}
\text{calculate the factored Whitmore buckling strength} \\
K_{\text{avr}} & := 0.5 \\
F_{cr} & := F_y \left[1 - \frac{F_y}{4 \cdot \pi^2 \cdot E \left(\frac{K \cdot L_{\text{mid}}}{r_s} \right)^2} \right] \quad \text{if } \frac{K \cdot L_{\text{mid}}}{r_s} \leq \sqrt{\frac{2 \cdot \pi^2 \cdot E}{F_y}} = 46.89 \text{-ksi} \\
& = \frac{\pi^2 \cdot E}{\left(\frac{K \cdot L_{\text{mid}}}{r_s} \right)^2} \quad \text{otherwise}
\end{align*}
\]
\[
\begin{align*}
\text{Whit} & := 0.85 \cdot (A_{s1} + A_{s2}) \cdot F_{cr} = 1345.06 \text{-kip}
\end{align*}
\]

Calculate the partial plane shear yield check
the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

\[C_{LFR} := \min(\text{Whit}, PS) = 1345.06\text{-kip} \]

\[RF_{LFR\text{inv}} := \frac{C_{LFR} - \gamma_{DL\text{-LFR}} P_{1DL}}{\gamma_{LL\text{-LFR}} P_{1LL}} = 2.4 \]

\[RF_{LFR\text{opr}} := RF_{LFR\text{inv}} \cdot \frac{2.17}{1.3} \]

\[RF_{LFR\text{opr}} = 4.01 \]

Summarize Rating Factors Using the Three Methods for Member 1

<table>
<thead>
<tr>
<th>Method</th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA LRFR Method</td>
<td>(RF_{FHWA\text{inv}} = 1.25)</td>
<td>(RF_{FHWA\text{opr}} = 1.62)</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>(RF_{LFR\text{inv}} = 2.85)</td>
<td>(RF_{LFR\text{opr}} = 3.69)</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>(RF_{LFR\text{inv}} = 2.4)</td>
<td>(RF_{LFR\text{opr}} = 4.01)</td>
</tr>
</tbody>
</table>

MEMBER 2

Compression Member - Need to check Whitmore buckling

\[I_{avg1} := \frac{4.3\text{in} + 4.3\text{in} + 4.3\text{in}}{3} \]

\[I_{avg2} := \frac{4.3\text{in} + 4.3\text{in} + 4.3\text{in}}{3} \]

\[r := \frac{t_g}{\sqrt{12}} \]

\[A_w := 27.7\text{in} \cdot t_g \]

\[A_z := 19.6\text{in} \cdot t_g \]
Calculate the compression capacity of the primary gusset plate

\[\lambda_1 = \frac{K \cdot L_{avg1} \cdot F_y}{r_s \pi} \]

\[C_1 = \phi_c \cdot \left(0.66 \cdot \lambda_1 \cdot \frac{F_y \cdot A_s}{E} \right) \]

if \(\lambda_1 \leq 2.25 \)

\[C_1 = 568.03 \text{-kip} \]

Otherwise

\[C_1 = \phi_c \cdot \frac{0.88 \cdot F_y \cdot A_s}{\lambda_1} \]

Calculate the compression capacity of the shingled plate

\[\lambda_2 = \frac{K \cdot L_{avg2} \cdot F_y}{r_s \pi} \]

\[C_2 = \phi_c \cdot \left(0.66 \cdot \lambda_2 \cdot \frac{F_y \cdot A_s}{E} \right) \]

if \(\lambda_2 \leq 2.25 \)

\[C_2 = 401.93 \text{-kip} \]

Otherwise

\[C_2 = \phi_c \cdot \frac{0.88 \cdot F_y \cdot A_s}{\lambda_2} \]

\[R_{FFHWAOpr} = RF_{FHWAINV} \cdot \frac{1.75}{1.35} = 4.23 \]

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

\[\frac{P_{2DL}}{P_{2LL}} = 1.2 \]

\[R_{DL_LL} = 1 - 0.1 \cdot \left(\frac{1.18 - 1}{5} \right) \]

calculate the factored Whitmore buckling strength. Sum together the individual components of the gusset and shingle plate.

\[P_{e1} = 3.29 \cdot E \cdot \frac{L_{mid}}{t_g} \cdot A_{s1} = 17866.8 \text{-kip} \]

\[P_{e2} = 3.29 \cdot E \cdot \frac{L_{mid}}{t_g} \cdot A_{s2} = 12642.21 \text{-kip} \]

\[P_{o1} = F_y \cdot A_{s1} = 692.5 \text{-kip} \]

\[P_{o2} = F_y \cdot A_{s2} = 490 \text{-kip} \]

K-9
Whit 1 := \phi_{c_{\text{new}}} \begin{cases} \frac{p_{o1}}{p_{o1}} \text{if } \frac{p_{e1}}{p_{o1}} \geq 0.44 = 647.29 \text{kip} \\ 0.877 \cdot p_{e1} \text{ otherwise} \end{cases}

Whit 2 := \phi_{c_{\text{new}}} \begin{cases} \frac{p_{o2}}{p_{o2}} \text{if } \frac{p_{e2}}{p_{o2}} \geq 0.44 = 458.01 \text{kip} \\ 0.877 \cdot p_{e2} \text{ otherwise} \end{cases}

calculate the partial plane shear yield check

This check is not relevant to this vertical member because there is no partial plane that can shear and reduce the out-of-plane stiffness of the member

therefore the capacity is only determined from the sum of the Whitmore buckling strength from the primary gusset and shingle

\[C_{LFR} := \text{Whit}_1 + \text{Whit}_2 = 1105.3 \text{kip} \]

\[RF_{LFRinv} := \frac{R_{DL\cdot LL} \cdot \phi_s \cdot C_{LFR} \cdot \gamma_{DL} \cdot P_{2DL}}{\gamma_{LL} \cdot P_{2LL}} = 3.35 \]

\[RF_{LFRopr} = 4.35 \]

Calculate the proposed LFR rating factors

calculate the factored Whitmore buckling strength

\[K := 0.5 \]

\[F_{cr} := \begin{cases} F_{y} \left[1 - \frac{F_{y}}{4 \cdot \pi^2 \cdot E} \left(\frac{K \cdot L_{\text{mid}}}{r_s} \right)^2 \right] \text{if } \frac{K \cdot L_{\text{mid}}}{r_s} \leq \sqrt{\frac{2 \cdot \pi^2 \cdot E}{F_{y}}} = 49.52 \text{ ksi} \\ \frac{\pi^2 \cdot E}{\left(\frac{K \cdot L_{\text{mid}}}{r_s} \right)^2} \text{ otherwise} \end{cases} \]

\[\text{Whit} := 0.85 \cdot (A_{s1} + A_{s2}) \cdot F_{cr} = 995.39 \text{ kip} \]

calculate the partial plane shear yield check

This check is not relevant to this vertical member because there is no partial plane that can shear and reduce the out-of-plane stiffness of the member

therefore the capacity is only determined from the sum of the Whitmore buckling strength from the primary gusset and shingle

\[C_{LFR} := \text{Whit} = 995.39 \text{ kip} \]
Summary Rating Factors Using the Three Methods for Member 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA LRFR Method</td>
<td>$R_{FHWA_{inv}} = 3.26$</td>
<td>$R_{FHWA_{opr}} = 4.23$</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>$R_{LRFR_{inv}} = 3.35$</td>
<td>$R_{LRFR_{opr}} = 4.35$</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>$R_{LFR_{inv}} = 2.69$</td>
<td>$R_{LFR_{opr}} = 4.49$</td>
</tr>
</tbody>
</table>

MEMBER 3

Compression Member - Need to check Whitmore buckling and partial plane shear yielding

\[
L_{avg1} = \frac{0in + 14.7in + 0in}{3} \quad L_{avg2} = \frac{3.9in + 14.7in + 0in}{3}
\]

\[
L_{mid} = 14.7in \quad r_s = \frac{t_g}{\sqrt{12}}
\]

\[
A_{s1} = 41.3in \cdot t_g \quad A_{s2} = 27.6in \cdot t_g
\]
Calculate LRFR rating factors using existing FHWA Guidance method

\[K := 1.2 \]

Calculate the compression capacity of the primary gusset plate

\[\lambda_1 := \left(\frac{K \cdot L_{avg1}}{r_s \cdot \pi} \right)^2 \cdot \left(\frac{F_y}{E} \right) \]

\[\lambda_1 = 0.29 \]

\[C_1 := \phi_c \cdot \begin{cases}
0.66 \cdot \frac{\lambda_1 \cdot F_y \cdot A_{s1}}{\lambda_1} & \text{if } \lambda_1 \leq 2.25 \\
0.88 \cdot F_y \cdot A_{s1} & \text{otherwise}
\end{cases} \]

\[C_1 = 823.79 \text{-kip} \]

Calculate the compression capacity of the shingled plate

\[\lambda_2 := \left(\frac{K \cdot L_{avg2}}{r_s \cdot \pi} \right)^2 \cdot \left(\frac{F_y}{E} \right) \]

\[\lambda_2 = 0.46 \]

\[C_2 := \phi_c \cdot \begin{cases}
0.66 \cdot \frac{\lambda_2 \cdot F_y \cdot A_{s2}}{\lambda_2} & \text{if } \lambda_2 \leq 2.25 \\
0.88 \cdot F_y \cdot A_{s2} & \text{otherwise}
\end{cases} \]

\[C_2 = 512.07 \text{-kip} \]

\[RF_{\text{FHWAinv}} := \frac{(C_1 + C_2) - \gamma_{DL} \cdot P_{3DL}}{\gamma_{LL} \cdot P_{3LL}} = 2.02 \]

\[RF_{\text{FHWAopr}} := RF_{\text{FHWAinv}} \frac{1.75}{1.35} \]

\[RF_{\text{FHWAopr}} = 2.62 \]

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

\[\frac{P_{3DL}}{P_{3LL}} = 1.27 \]

\[R_{DL_{-LL}} = 1 - 0.1 \cdot \left(\frac{1.27 - 1}{5} \right) \]

\[R_{DL_{-LL}} = 0.99 \]

Calculate the factored Whitmore buckling strength.

\[P_{1} := \frac{3.29 \cdot E}{2} \cdot \frac{L_{\text{mid}}}{t_g} \cdot A_{s1} = 2279.39 \text{-kip} \]

\[P_{2} := \frac{3.29 \cdot E}{2} \cdot \frac{L_{\text{mid}}}{t_g} \cdot A_{s2} = 1523.28 \text{-kip} \]

\[P_{1} := F_y \cdot A_{s1} = 1032.5 \text{-kip} \]

\[P_{2} := F_y \cdot A_{s2} = 690 \text{-kip} \]
Calculate the partial plane shear yield check

\[PS_1 := \phi_{vg} \cdot \Omega_{\text{new}} \cdot (0.58 \cdot F_y) \cdot \tan(39.9^\circ) \cdot 35.7 \text{ in}() \cdot \cos(39.9^\circ) = 593.79 \text{ kip} \]

\[PS_2 := \phi_{vg} \cdot \Omega_{\text{new}} \cdot (0.58 \cdot F_y) \cdot \tan(39.9^\circ) \cdot 25.2 \text{ in}() \cdot \cos(39.9^\circ) = 419.14 \text{ kip} \]

the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

\[CLRFR := \min(\text{Whit}_1 + \text{Whit}_2, PS_1 + PS_2) \]

\[RFLRFR := \frac{R_{DL_LL} \cdot \phi_s \cdot CLRFR - \gamma_{DL} \cdot P_{3DL}}{\gamma_{LL} \cdot P_{3LL}} = 1.08 \]

\[RF_{LFR_opr} := \frac{RFLRFRinv}{1.35} \]

\[RFLRFR_{opr} = 1.4 \]

Calculate the proposed LFR rating factors

calculate the factored Whitmore buckling strength

\[K := 0.5 \]

\[F := \left\{ \begin{array}{ll} F_y \left[1 - \frac{F_y}{4 \cdot \pi^2 \cdot E} \left(\frac{K \cdot L_{mid}}{r_s} \right) \right]^2 & \text{if } \frac{K \cdot L_{mid}}{r_s} \leq \sqrt{\frac{2 \cdot \pi^2 \cdot E}{F_y}} = 44.34 \text{ ksi} \\
\frac{\pi^2 \cdot E}{\left(\frac{K \cdot L_{mid}}{r_s} \right)^2} & \text{otherwise} \end{array} \right. \]

\[\text{Whit} := 0.85 \cdot (A_{s1} + A_{s2}) \cdot F_{cr} = 1298.32 \text{ kip} \]
calculate the partial plane shear yield check

\[PS = \Omega_{\text{new}} \left(0.58 \cdot F_y\right) \left(35.7\text{in} + 25.2\text{in} \cdot \tan(39.9\deg)\right) \cos(39.9\deg) = 1012.93\text{-kip} \]

the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

\[C_{\text{LFR}} = \min(\text{Whit}, PS) = 1012.93\text{-kip} \]

\[RF_{\text{LFR}} = \frac{C_{\text{LFR}} - \gamma_{\text{DL LFR}} P_{3\text{DL}}}{\gamma_{\text{LL LFR}} P_{3\text{LL}}} = 1.03 \]

\[RF_{\text{LFRinv}} = RF_{\text{LFRinv}} \frac{2.17}{1.3} \]

\[RF_{\text{LFRop}} = 1.72 \]

Summarize Rating Factors Using the Three Methods for Member 3

<table>
<thead>
<tr>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA LRFR Method</td>
<td>RF\text{FHWA}inv = 2.02</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>RF\text{LFRinv} = 1.08</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>RF\text{LFRinv} = 1.03</td>
</tr>
</tbody>
</table>

MEMBER 4

Calculate LRFR rating factors using existing FHWA Guidance method that suggests a Whitmore buckling analysis

\[L_{\text{avg1}} = \frac{6.4\text{in} + 5.6\text{in} + 5.2\text{in}}{3} \]

\[L_{\text{avg2}} = \frac{6.2\text{in} + 5.6\text{in} + 5.2\text{in}}{3} \]

\[L_{\text{mid}} = 5.6\text{in} \]

\[r = \frac{t_g}{\sqrt{12}} \]

\[A_1 = 42.4\text{in} \cdot t_g \]

\[A_2 = 36.4\text{in} \cdot t_g \]

\[K = 1.2 \]
Calculate the compression capacity of the primary gusset plate

\[
\lambda_1 = \left(\frac{K \cdot L \cdot \text{avg} \cdot 1}{r_s \cdot \pi} \right)^2 \frac{F_y}{E} \lambda_1
\]

\[
C_1 := \phi_c \cdot \begin{cases}
0.66 \cdot \lambda_1 \cdot F_y \cdot A_{s1} & \text{if } \lambda_1 \leq 2.25 \\
0.88 \cdot F_y \cdot A_{s1} & \text{otherwise}
\end{cases}
\]

\[
\lambda_1 = 0.4 \\
C_1 = 808.95 \text{kip}
\]

Calculate the compression capacity of the shingled plate

\[
\lambda_2 = \left(\frac{K \cdot L \cdot \text{avg} \cdot 2}{r_s \cdot \pi} \right)^2 \frac{F_y}{E} \lambda_2
\]

\[
C_2 := \phi_c \cdot \begin{cases}
0.66 \cdot \lambda_2 \cdot F_y \cdot A_{s2} & \text{if } \lambda_2 \leq 2.25 \\
0.88 \cdot F_y \cdot A_{s2} & \text{otherwise}
\end{cases}
\]

\[
\lambda_2 = 0.39 \\
C_2 = 697.13 \text{kip}
\]

\[
\frac{(C_1 + C_2) - \gamma_{DL} \cdot P_{4DL}}{\gamma_{LL} \cdot P_{4LL}} = 3.7
\]

\[
\text{RF}_{\text{FHWAopr}} = \frac{1.75}{1.35} \text{RF}_{\text{FHWAinv}} = 4.79
\]

Calculate the proposed LRFR rating factors. Check the member as if it was a chord splice to ensure the section won't yield under the eccentric loading, this would consider the load from both the P3 and P4 members.
Since \(KL/r \) of the free plate between chords is less than 25, \(F_{cr} \) equals \(F_y \) (MBE Equation 6A.6.12.6.8-2)

\[
F_{cr} = F_y
\]

Calculate the height (\(h_1 \)) of the P3 and P4 force resultant, use the factored loads

\[
P_3 := 2 \cdot \gamma_{LL} \cdot P_{3LL} + 2 \cdot \gamma_{DL} \cdot P_{3DL}
\]

\[
P_3 = 1741 \text{kip}
\]

\[
P_4 := 2 \cdot \gamma_{LL} \cdot P_{4LL} + 2 \cdot \gamma_{DL} \cdot P_{4DL}
\]

\[
P_4 = 988.25 \text{kip}
\]

\[
h_1 := \frac{P_4 \cdot \cos(1.6\text{deg}) \cdot (14.0\text{in}) + P_3 \cdot \cos(38.3\text{deg}) \cdot (29.2\text{in})}{P_4 \cdot \cos(1.6\text{deg}) + P_3 \cdot \cos(38.3\text{deg})}
\]

\[
h_1 = 22.82 \text{in}
\]

Calculate the gross area of the combined gusset and shingle plate cross-section

\[
A_g := 2 \cdot t_g \cdot (61.7\text{in}) + 2 \cdot t_g \cdot (51.7\text{in}) = 113.4 \text{in}^2
\]

Calculate the height of the centroid of the combined gusset and shingle plate cross-section

\[
h_2 := \frac{2 \cdot t_g \cdot (61.7\text{in}) \cdot \left(\frac{61.7}{2}\text{in}\right) + 2 \cdot t_g \cdot (51.7\text{in}) \cdot \left(\frac{51.7}{2}\text{in}\right)}{A_g}
\]

\[
h_2 = 28.57 \text{in}
\]

Calculate the eccentricity between the force resultant and the centroid of the cross-section

\[
e_p := h_2 - h_1
\]

\[
e_p = 5.75 \text{in}
\]

Since the centroid of the force is below the centroid of the cross-section, the maximum axial+bending stress will be at the bottom of the plate. Now calculate the section modulus to the bottom of the cross-section

\[
I_g := 2 \left[\frac{(61.7\text{in})^3 \cdot t_g}{12} + (61.7\text{in}) \cdot t_g \left(\frac{61.7}{2}\text{in} - h_2\right)^2 + \frac{(51.7\text{in})^3 \cdot t_g}{12} + (51.7\text{in}) \cdot t_g \left(\frac{51.7}{2}\text{in} - h_2\right)^2 \right]
\]

\[
S_g := \frac{I_g}{h_2}
\]

\[
S_g = 1112.78 \text{in}^3
\]

Calculate the capacity of the section assuming it occurs at first yield using beam bending theory (MBE Eqn. 6A.6.12.6.8-1)

\[
C_{LLFR} := \phi_{cs} \cdot F_{cr} \left(\frac{S_g \cdot A_g}{S_g + e_p \cdot A_g}\right) = 3039.09 \text{kip}
\]

Calculate the DL/LL reduction factor
(P_{4DL}\cdot\cos(1.6\text{deg}) + P_{3DL}\cdot\cos(38.3\text{deg}))
(P_{4LL}\cdot\cos(1.6\text{deg}) + P_{3LL}\cdot\cos(38.3\text{deg})) = 0.85

** The DL/LL ratio is less than 1.0, so no DL/LL reduction is necessary **

\[R_{DL_LL} := 1 \]

Calculate the LRFR Inventory rating factor

\[RF_{LRFR_{inv}} := \frac{\phi_s R_{DL_LL} C_{LRFR} - 2\gamma_{DL} \left(P_{4DL}\cdot\cos(1.6\text{deg}) + P_{3DL}\cdot\cos(38.3\text{deg})\right)}{2\gamma_{LL} \left(P_{4LL}\cdot\cos(1.6\text{deg}) + P_{3LL}\cdot\cos(38.3\text{deg})\right)} \]

** dead and live loads were doubled because earlier in the sheet they were halved so resistance checks could be made per gusset plate, which doesn't apply to the chord splice **

\[RF_{LRFR_{inv}} = 1.26 \]

\[RF_{LRFR_{opr}} := RF_{LRFR_{inv}} \frac{1.75}{1.35} \]

\[RF_{LRFR_{opr}} = 1.63 \]

Calculate the proposed LFR rating factors

The capacity calculation is no different in LFR

\[C_{LRFR} := \frac{C_{LRFR}}{\phi_{cs}} = 3575.4\text{-kip} \]

\[RF_{LFR} := \frac{C_{LFR} - 2\gamma_{DL_LFR} \left(P_{4DL}\cdot\cos(1.6\text{deg}) + P_{3DL}\cdot\cos(38.3\text{deg})\right)}{2\gamma_{LL_LFR} \left(P_{4LL}\cdot\cos(1.6\text{deg}) + P_{3LL}\cdot\cos(38.3\text{deg})\right)} = 1.46 \]

\[RF_{LFR_{opr}} := RF_{LFR_{inv}} \frac{2.17}{1.3} \]

\[RF_{LFR_{opr}} = 2.43 \]

Summarize Rating Factors Using the Three Methods for Member 4

<table>
<thead>
<tr>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA LRFR Method</td>
<td>(RF_{FHWA_{inv}} = 3.7)</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>(RF_{LRFR_{inv}} = 1.26)</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>(RF_{LFR_{inv}} = 1.46)</td>
</tr>
</tbody>
</table>
Vertical Plane 1 Shear Check

\[
P_{3\text{VDL}} := P_{3\text{DL}} \cdot \sin(38.3\,\text{deg})
\]

\[
P_{4\text{VDL}} := P_{4\text{DL}} \cdot \sin(1.6\,\text{deg})
\]

\[
P_{3\text{VLL}} := P_{3\text{LL}} \cdot \sin(38.3\,\text{deg})
\]

\[
P_{4\text{VLL}} := P_{4\text{LL}} \cdot \sin(1.6\,\text{deg})
\]

\[
P_{\text{VDL}} := P_{3\text{VDL}} - P_{4\text{VDL}} = 202\,-\text{kip}
\]

\[
P_{\text{VLL}} := P_{3\text{VLL}} - P_{4\text{VLL}} = 156\,-\text{kip}
\]

Calculate LRFR rating factors using existing FHWA Guidance method

Gross Yielding

\[
V_{ny} := \phi_{vy}(0.58 \cdot F_{y})(54.4\,\text{in} + 63.0\,\text{in}) \cdot \tan \theta = 1197\,-\text{kip}
\]

Shear Fracture

\[
V_{nu} := \phi_{vu}(0.58 \cdot F_{u})\left[54.4 + 63.0 - 16\left(1 + \frac{1}{8}\right)\right] \cdot \tan \theta = 1614\,-\text{kip}
\]

The capacity is the minimum resistance between shear yielding and fracture

\[
C_{\text{FHWA}} := \min(V_{ny}, V_{nu}) = 1196.72\,-\text{kip}
\]

\[
RF_{\text{FHWA inv}} := \frac{C_{\text{FHWA}} - \gamma_{\text{DL}} P_{\text{VDL}}}{\gamma_{\text{LL}} P_{\text{VLL}}} = 3.46
\]

\[
RF_{\text{FHWA opr}} := \frac{1.75}{1.35} \times \frac{1.75}{1.35} = 4.49
\]

RF_{\text{FHWA opr}} = 4.49
Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

\[
\frac{P_{VDL}}{P_{VLL}} = 1.3 \\
R_{DL_LL} = 1 - 0.1 \left(\frac{1.30 - 1}{5} \right) = 0.99
\]

Gross Yielding

\[
V_{ny} := \phi_{vg} (0.58 \cdot F_y) \left(54.4 \text{in} + 63.0 \text{in} \right) \cdot t_g \cdot \Omega_{new} = 1498 \text{kip}
\]

Shear Fracture

\[
V_{nu} := \phi_{vu} (0.58 \cdot F_u) \left[54.4 + 63.0 - 16 \left(1 + \frac{1}{8} \right) \right] \cdot t_g = 1614 \text{kip}
\]

The capacity is the minimum resistance between shear yielding and fracture

\[
C_{LRFR} := \min(V_{ny}, V_{nu}) = 1498.02 \text{kip}
\]

\[
\frac{R_{FLFR_{op}}}{R_{FLFR_{inv}}} := \frac{R_{DL_LL} \cdot \phi_s \cdot C_{LRFR} - \gamma_{DL} \cdot P_{VDL}}{\gamma_{LL} \cdot P_{VLL}} = 3.99
\]

\[
R_{FLFR_{op}} = 5.17
\]

Calculate the proposed LFR rating factors

Gross Yielding

\[
V_{ny} := \left(0.58 \cdot F_y \right) \left(54.4 \text{in} + 63.0 \text{in} \right) \cdot t_g \cdot \Omega_{new} = 1498 \text{kip}
\]

Shear Fracture

\[
V_{nu} := 0.85 \left(0.58 \cdot F_u \right) \left[54.4 + 63.0 - 26 \left(1 + \frac{1}{8} \right) \right] \cdot t_g = 1521 \text{kip}
\]

The capacity is the minimum resistance between shear yielding and fracture

\[
C_{LFR} := \min(V_{ny}, V_{nu}) = 1498.02 \text{kip}
\]

\[
\frac{R_{FLFR_{op}}}{R_{FLFR_{inv}}} := \frac{C_{LFR} - \gamma_{DL_LFR} \cdot P_{VDL}}{\gamma_{LL_LFR} \cdot P_{VLL}} = 3.65
\]

\[
R_{FLFR_{op}} = 6.1
\]
Summarize Rating Factors Using the Three Methods for Vertical Plane 1 Shear

<table>
<thead>
<tr>
<th>Method</th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA LRFR Method</td>
<td>RF_{FHWA_{inv}} = 3.46</td>
<td>RF_{FHWA_{opr}} = 4.49</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>RF_{LRFR_{inv}} = 3.99</td>
<td>RF_{LRFR_{opr}} = 5.17</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>RF_{LFR_{inv}} = 3.65</td>
<td>RF_{LFR_{opr}} = 6.1</td>
</tr>
</tbody>
</table>

Vertical Plane 2 Shear Check

\[P_{V_{DL}} := P_{1DL} \cdot \cos(50.2^\circ) = 179 \text{ kip} \]
\[P_{V_{LL}} := P_{1LL} \cdot \cos(50.2^\circ) = 120 \text{ kip} \]

Calculate LRFR rating factors using existing FHWA Guidance method

Gross Yielding

\[V_{vy} := \phi_v \left(0.58 \cdot F_y \right) \cdot \left(54.5 \text{ in} + 62.4 \text{ in} \right) \cdot t_g \cdot \Omega = 1192 \text{ kip} \]

Shear Fracture

\[V_{vu} := \phi_v \left(0.58 \cdot F_u \right) \left[54.5 + 62.4 - 14 \left(1 + \frac{1}{8} \right) \right] \cdot t_g = 1643 \text{ kip} \]
The capacity is the minimum resistance between shear yielding and fracture

\[C_{FHWA} := \min(V_{ny}, V_{nu}) = 1191.62 \text{ kip} \]

\[RF_{FHWA} := \frac{C_{FHWA} - \gamma_{DL} P_{VDL}}{\gamma_{LL} P_{VLL}} = 4.59 \]

\[RF_{FHWA} \text{opr} := RF_{FHWA} \text{inv} \left(\frac{1.75}{1.35}\right) = 5.96 \]

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

\[\frac{P_{VDL}}{P_{VLL}} = 1.49 \]

\[R_{DL_{new}} := 1 - 0.1 \left(\frac{1.49 - 1}{5}\right) = 0.99 \]

Gross Yielding

\[V_{ny} := \phi_{vg} \left(0.58 F_y\right) (54.5 \text{ in} + 62.4 \text{ in}) t_g \Omega_{new} = 1492 \text{ kip} \]

Shear Fracture

\[V_{nu} := \phi_{vu} \left(0.58 F_u\right) \left[54.5 + 62.4 - 14 \left(1 + \frac{1}{8}\right)\right] \text{ in} t_g = 1643 \text{ kip} \]

The capacity is the minimum resistance between shear yielding and fracture

\[C_{LRFR} := \min(V_{ny}, V_{nu}) = 1491.64 \text{ kip} \]

\[RF_{LRFR} := \frac{R_{DL_{LL}} \phi_s C_{LRFR} - \gamma_{DL} P_{VDL}}{\gamma_{LL} P_{VLL}} = 5.25 \]

\[RF_{LRFR} \text{opr} := RF_{LRFR} \text{inv} \left(\frac{1.75}{1.35}\right) = 6.8 \]

Calculate the proposed LFR rating factors

Gross Yielding

\[V_{ny} := \left(0.58 F_y\right) (54.4 \text{ in} + 63.0 \text{ in}) t_g \Omega_{new} = 1498 \text{ kip} \]

Shear Fracture

\[V_{nu} := 0.85 \left(0.58 F_u\right) \left[54.4 + 63.0 - 26 \left(1 + \frac{1}{8}\right)\right] \text{ in} t_g = 1521 \text{ kip} \]
The capacity is the minimum resistance between shear yielding and fracture

$$C_{LFR} = \min\{V_{ny}, V_{nu}\} = 1498.02\text{-kip}$$

$$RF_{LFRinv} = \frac{C_{LFR} - \gamma_{DL_{LFR}}P_{VDL}}{\gamma_{LL_{LFR}}P_{VLL}} = 4.84$$

$$RF_{LFRop} = 8.09$$

Summarize Rating Factors Using the Three Methods for Vertical Plane 2 Shear

<table>
<thead>
<tr>
<th></th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA LRFR Method</td>
<td>RF_{FHWAinv} = 4.59</td>
<td>RF_{FHWAop} = 5.96</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>RF_{LFRinv} = 5.25</td>
<td>RF_{LFRop} = 6.8</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>RF_{LFRinv} = 4.84</td>
<td>RF_{LFRop} = 8.09</td>
</tr>
</tbody>
</table>

Horizontal Plane Shear Check
the only valid plane would have to pass through the multi-celled box above the bearing thus requiring alot of area to shear that cannot occur.
These checks will make comparisons between the existing FHWA Guidance and new proposed MBE specification. Since the final report clearly outlined that Whitmore compression checks of chord splices do not provide value, they will not be reported. Fastner checks will also not be provided. Condition factors are assumed to be 1.00.

Material Properties

- $F_y = 50$ksi
- $F_u = 70$ksi
- $E = 29000$ksi

Gusset Thickness

- $t_g = 0.75$in
- $A_{TCS} = \left(\frac{3}{8} \right) \cdot 24\text{in}$
- $A_{TCS} = 9\text{in}^2$
- $A_{BCS} = \left(\frac{3}{8} \right) \cdot 18\text{in}$
- $A_{BCS} = 6.75\text{in}^2$
- $A_{SCS} = \left(\frac{4}{8} \right) \cdot 30\text{in} + \left(\frac{7}{16} \right) \cdot 16\text{in}$
- $A_{SCS} = 22\text{in}^2$

Existing FHWA Guide Resistance Factors

- $\phi_y = 0.95$
- $\phi_c = 0.9$
- $\phi_u = 0.80$
- $\phi_{vy} = 0.95$
- $\phi_{bs} = 0.80$
- $\phi_{vu} = 0.80$

Proposed Resistance Factors

- $\phi_{bs_{\text{new}}} = 1.00$
- $\phi_{c_{\text{new}}} = 0.95$
- $\phi_{vg} = 1.00$
- $\phi_{cs} = 0.85$
- $\Omega_{\text{new}} = 0.88$

Load Factors

- $\gamma_{LL} = 1.75$
- $\gamma_{LL_LFR} = 2.17$
- $\gamma_{DL} = 1.25$
- $\gamma_{DL_LFR} = 1.3$
System Factor

\(\phi_s := 0.90 \) assumes it's a bolted truss, proposed as mandatory for LRFR under MBE Article 6A.6.12.6. The system factor will not be used in calculations using the existing FHWA Guidance.

Member Forces For One Gusset Plate

\[
P_{1DL} := \frac{1213}{2} \text{kip} \quad P_{1LL} := \frac{419 + 37}{2} \text{kip} \quad \text{Compression}
\]

\[
P_{2DL} := \frac{719}{2} \text{kip} \quad P_{2LL} := \frac{183 + 23}{2} \text{kip} \quad \text{Tension}
\]

\[
P_{3DL} := \frac{262}{2} \text{kip} \quad P_{3LL} := \frac{124 + 36}{2} \text{kip} \quad \text{Compression}
\]

\[
P_{4DL} := \frac{667}{2} \text{kip} \quad P_{4LL} := \frac{206 + 26}{2} \text{kip} \quad \text{Compression}
\]

\[
P_{5DL} := \frac{267}{2} \text{kip} \quad P_{5LL} := \frac{255 + 22}{2} \text{kip} \quad \text{Compression}
\]
Calculate LRFR rating factors using existing FHWA Guidance method

\[K := 1.2 \]

Calculate the compression capacity of the primary gusset plate

\[
\lambda := \left(\frac{K\cdot L_{\text{avg}}}{r_s \cdot \pi} \right)^2 \cdot \left(\frac{F_y}{E} \right) \quad \lambda = 0.16
\]

\[
C := \phi_c \begin{cases}
0.66\cdot F_y\cdot A_s & \text{if } \lambda \leq 2.25 \\
0.88\cdot F_y\cdot A_s & \text{otherwise}
\end{cases}
\]

\[C = 1709.3 \text{ kip} \]

Calculate the rating factors for Member 1

\[
\text{RF}_{\text{FHWAinv}} := \frac{C - \gamma_{DL}\cdot P_{DL}}{\gamma_{LL}\cdot P_{LL}} = 2.38
\]

\[
\text{RF}_{\text{FHWAopr}} := \text{RF}_{\text{FHWAinv}} \cdot \frac{1.75}{1.35}
\]

\[\text{RF}_{\text{FHWAopr}} = 3.09 \]

Calculate the rating factors for Member 5

\[
\text{RF}_{\text{FHWAinv}} := \frac{C - \gamma_{DL}\cdot P_{DL}}{\gamma_{LL}\cdot P_{LL}} = 6.36
\]

\[
\text{RF}_{\text{FHWAopr}} := \text{RF}_{\text{FHWAinv}} \cdot \frac{1.75}{1.35}
\]

\[\text{RF}_{\text{FHWAopr}} = 8.25 \]

K-25
Calculate the proposed LRFR rating factors. In the proposed method, both members are evaluated as part of a chord splice check.

Start by calculating the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6. Look at loads on both sides of the splice and use the worst case.

left side

\[F_{\text{left}} := \gamma_{\text{DL}} \left(P_{5\text{DL}} + P_{4\text{DL}} \cdot \cos(53.1\,\deg) \right) + \gamma_{\text{LL}} \left(P_{5\text{LL}} + P_{4\text{LL}} \cdot \cos(53.1\,\deg) \right) = 781.44 \text{ kip} \]

right side

\[F_{\text{right}} := \gamma_{\text{DL}} \left(P_{1\text{DL}} - P_{2\text{DL}} \cdot \cos(53.1\,\deg) \right) + \gamma_{\text{LL}} \left(P_{1\text{LL}} - P_{2\text{LL}} \cdot \cos(53.1\,\deg) \right) = 779.09 \text{ kip} \]

since the loads are very similar, calculate the DL/LL reduction for each set of loads to consider the worst case loading

\[
\frac{P_{5\text{DL}} + P_{4\text{DL}} \cdot \cos(53.1\,\deg)}{P_{5\text{LL}} + P_{4\text{LL}} \cdot \cos(53.1\,\deg)} = 1.6 \quad \frac{P_{1\text{DL}} - P_{2\text{DL}} \cdot \cos(53.1\,\deg)}{P_{1\text{LL}} - P_{2\text{LL}} \cdot \cos(53.1\,\deg)} = 2.35
\]

\[R_{\text{DL_LL_left}} := 1 - 0.1 \left(\frac{1.6 - 1}{5} \right) = 0.99 \quad R_{\text{DL_LL_right}} := 1 - 0.1 \left(\frac{2.35 - 1}{5} \right) = 0.97 \]

The loads on the right side would be more severe, so base the chord splice capacity on the of the right side of the connection

Determine the height (h1) of the M1 and M2 force resultant, using the factored loads. Since both members share a common workpoint that is on the spliced plane, h1 is simply half the depth of the chord.

\[h_1 := \frac{31.88 \text{ in}}{2} \quad h_1 = 15.94 \text{ in} \]

Calculate the gross area of the combined gusset and shingle plate cross-section

\[A_g := 2 \cdot t_g (74.20 \text{ in}) + A_{\text{TCS}} + A_{\text{BCS}} + 2 \cdot A_{\text{SCS}} = 171.05 \text{ in}^2 \]
The other cross-sectional properties of the combined section were determined using a CAD program.

\[e_p := 13.98 \text{ in} \] is the eccentricity between the force resultant and the centroid of the combined plate area.

\[I_g := 74126 \text{ in}^4 \] is the moment of inertia of the gross spliced section, calculated with a CAD program.

Since the centroid of the force is below the centroid of the cross-section, the maximum axial+bending stress will be at the bottom of the plate. Now calculate the section modulus to the bottom of the cross-section

\[S_g := \frac{I_g}{h_1} \] \[S_g = 4650.31 \text{ in}^3 \]

Determine if the chord splice is compact

\[K := 0.5 \] \[L_{\text{splice}} := 5.5 \text{ in} \] \[\frac{K L_{\text{splice}} \sqrt{12}}{t_g} = 12.7 \]

Since KL/r of the free plate between chords is less than 25, Fcr equals Fy

\[F_{cr} := F_y \]

Calculate the capacity of the section assuming it occurs at first yield using beam bending theory

\[C_{LRFR} := \phi_{cs} F_{cr} \left(\frac{S_g A_g}{S_g + e_p A_g} \right) = 4800.91 \text{ kip} \]

Calculate the rating factor

\[RF_{LRFRinv} := \phi_s R_{DL_{\text{LLright}}} C_{LRFR} - 2 \cdot \gamma_{DL} \left(P_{1DL} - P_{2DL} \cdot \cos(53.1 \text{ deg}) \right) \\ 2 \cdot \gamma_{LL} \left(P_{1LL} - P_{2LL} \cdot \cos(53.1 \text{ deg}) \right) \]

\[RF_{LRFRinv} = 5.55 \]

\[RF_{LRFRopr} := RF_{LRFRinv} \frac{1.75}{1.35} \]

\[RF_{LRFRopr} = 7.19 \]
Calculate the proposed LFR rating factors

The capacity calculation is the same, though there is a difference in the resistance factors.

\[C_{LFR} = \frac{C_{LRFR}}{\phi_{cs}} = 5648.13 \text{kip} \]

Calculate the rating factor

\[RF_{LFR_{inv}} := \frac{C_{LFR} - 2 \cdot \gamma_{DL} \cdot P_{1DL} - P_{2DL} \cdot \cos(53.1 \text{deg})}{2 \cdot \gamma_{LL} \cdot P_{1LL} - P_{2LL} \cdot \cos(53.1 \text{deg})} \]

\[RF_{LFR_{inv}} = 6.42 \]

\[RF_{LFR_{opr}} := RF_{LFR_{inv}} \cdot \frac{2.17}{1.30} \]

\[RF_{LFR_{opr}} = 10.72 \]

Summarize Rating Factors Using the Three Methods for the Chord Splice

<table>
<thead>
<tr>
<th></th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>(RF_{LFR_{inv}} = 5.55)</td>
<td>(RF_{LFR_{opr}} = 7.19)</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>(RF_{LFR_{inv}} = 6.42)</td>
<td>(RF_{LFR_{opr}} = 10.72)</td>
</tr>
</tbody>
</table>

MEMBER 2

Tension member - Need to check gross/net section checks on Whitmore section, and block shear
define the gross and net section areas on Whitmore section

\[
A_w := 54.45 \text{in} \cdot t_g = 40.84 \text{in}^2
\]

\[
A_n := 54.45 \text{in} - 6 \left(\frac{7}{8} + \frac{1}{8} \right) \text{in} \cdot t_g = 36.34 \text{in}^2
\]

define the gross and net sections for block shear check

\[
A_{tg} := 17.56 \text{in} \cdot t_g = 13.17 \text{in}^2
\]

\[
A_{vg} := (2 \cdot 33.75 \text{in}) \cdot t_g = 50.62 \text{in}^2
\]

\[
A_{tn} := A_{tg} - 5 \left(\frac{7}{8} + \frac{1}{8} \right) \text{in} \cdot t_g = 9.42 \text{in}^2
\]

\[
A_{vn} := A_{vg} - 17 \left(\frac{7}{8} + \frac{1}{8} \right) \text{in} \cdot t_g = 37.88 \text{in}^2
\]

Calculate LRFR rating factors using existing FHWA Guidance method

calculate yield on gross and fracture on net for the Whitmore plane

\[
P_y := \phi_y \cdot F_y \cdot A_g = 1940 \text{-kip}
\]

\[
P_n := \phi_u \cdot F_u \cdot A_n = 2034.9 \text{-kip}
\]

calculate block shear resistance

\[
P_{bs} := \begin{cases}
\phi_{bs} \left(0.58 \cdot F_y \cdot A_{vg} + F_u \cdot A_{tn} \right) & \text{if } A_{tn} \geq 0.58 \cdot A_{vn} = 1756.98 \text{-kip} \\
\phi_{bs} \left(0.58 \cdot F_u \cdot A_{vn} + F_y \cdot A_{tg} \right) & \text{otherwise}
\end{cases}
\]

the capacity is based on the minimum of block shear, yield on Whitmore, and fracture on Whitmore

\[
C_{FHWA} := \min \{ P_y, P_n, P_{bs} \} = 1756.98 \text{-kip}
\]

\[
\frac{RF_{FHWA}}{R_{FHWA}} := \frac{C_{FHWA} - \gamma_{DL} \cdot P_{2DL}}{\gamma_{LL} \cdot P_{2LL}} = 7.25
\]

\[
RF_{FHWAop} = 9.4
\]

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

\[
\frac{P_{2DL}}{P_{2LL}} = 3.49
\]

\[
R_{DL_LL} := 1 - 0.1 \cdot \left(\frac{3.49 - 1}{5} \right) = 0.95
\]

calculate yield on gross for the Whitmore plane

\[
P_y := \phi_y \cdot F_y \cdot A_g \cdot R_{DL_LL} = 1843 \text{-kip}
\]
calculate the block shear resistance

\[P_n := \phi_u \cdot F_u \cdot A_n \cdot R_{DL,LL} = 1933.56 \text{-kip} \]

the resistance is the minimum of the Whitmore yield on gross, Whitmore fracture on net, and block shear

\[C_{LRFR} := \min(P_y, P_n, P_{bs}) = 1843.18 \text{-kip} \]

\[R_{FLFRinv} = \frac{\phi_s \cdot C_{LRFR} - \gamma_{DL} \cdot P_{2DL}}{\gamma_{LL} \cdot P_{2LL}} = 6.71 \]

\[R_{FLFRoppr} = RF_{LFRinv} \cdot 1.75 \]

Calculate the proposed LFR rating factors

calculate yield on effective Whitmore plan

\[\beta := 0.15 \]

\[A_e := \begin{cases} A_n + \beta \cdot A_g & \text{if } A_n + \beta \cdot A_g \leq A_g, \quad 40.84 \text{ in}^2 \\ A_n & \text{otherwise} \end{cases} \]

\[P_y := F_y \cdot A_e = 2042 \text{-kip} \]

calculate block shear resistance

\[P_{bs} := \begin{cases} 0.85 \cdot (0.58 \cdot F_y \cdot A_{vn} + F_u \cdot A_{tn}) & \text{if } A_{tn} \geq 0.58 \cdot A_{vn}, \quad 1866.79 \text{-kip} \\ 0.85 \cdot (0.58 \cdot F_u \cdot A_{vn} + F_y \cdot A_{tg}) & \text{otherwise} \end{cases} \]

the capacity is the minimum of the yield on effective Whitmore area or block shear

\[C_{LFR} := \min(P_y, P_{bs}) = 1866.79 \text{-kip} \]

\[R_{FLFRinv} = \frac{C_{LFR} - \gamma_{DL} \cdot LFR \cdot P_{2DL}}{\gamma_{LL} \cdot LFR \cdot P_{2LL}} = 6.26 \]

\[R_{FLFRoppr} = RF_{LFRinv} \cdot 2.17 \]

\[RF_{LFRoppr} = 10.45 \]
Summarize Rating Factors Using the Three Methods for Member 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>$R_{F,\text{FHWA}_{\text{inv}}} = 7.25$</td>
<td>$R_{F,\text{FHWA}_{\text{opr}}} = 9.4$</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>$R_{F,\text{LRFR}_{\text{inv}}} = 6.71$</td>
<td>$R_{F,\text{LRFR}_{\text{opr}}} = 8.7$</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>$R_{F,\text{LFR}_{\text{inv}}} = 6.26$</td>
<td>$R_{F,\text{LFR}_{\text{opr}}} = 10.45$</td>
</tr>
</tbody>
</table>

MEMBER 3
Compression Member - Need to check Whitmore buckling and partial plane shear yielding

Calculate LRFR rating factors using existing FHWA Guidance method

Calculate the compression capacity of the primary gusset plate

$$K := 1.2$$

$$\lambda := \left(\frac{K \cdot L_{\text{avg}}}{r_s \pi} \right)^2 \left(\frac{F_y}{E} \right) = 0.43$$

$$C_{F,\text{FHWA}} := \phi_c \begin{cases} 0.66 \cdot F_y \cdot A_s & \text{if } \lambda \leq 2.25 \quad \text{= 1457.48 kip} \\ 0.88 \cdot F_y \cdot A_s & \text{otherwise} \end{cases}$$

$$R_{F,\text{FHWA}_{\text{opr}}} := \frac{C_{F,\text{FHWA}} - \gamma_{DL} \cdot P_{3DL}}{\gamma_{LL} \cdot P_{3LL}} = 9.24$$

$$R_{F,\text{FHWA}_{\text{opr}}} := R_{F,\text{FHWA}_{\text{inv}}} \cdot \frac{1.75}{1.35}$$

$$R_{F,\text{FHWA}_{\text{opr}}} = 11.98$$

K-31
Calculate the proposed LRFR rating factors (minimum of Whitmore buckling and partial plane shear)

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6

\[
\frac{P_{3DL}}{P_{3LL}} = 1.64
\]

\[
R_{DL-LL} := 1 - 0.1 \left(\frac{1.64 - 1}{5} \right)
\]

\[
R_{DL-LL} = 0.99
\]

calculate the factored Whitmore buckling strength.

\[
P_e := \frac{3.29 \cdot E \cdot A_s}{\left(\frac{L_{mid}}{t_g} \right)^2} = 25943.81 \text{kip}
\]

\[
P_o := F_y \cdot A_s = 1936.12 \text{kip}
\]

\[
Whit := \phi_{c_{\text{new}}} R_{DL-LL} \cdot \begin{cases}
\frac{P_o}{P_e} & \text{if } \frac{P_e}{P_o} \geq 0.44 \\
0.877 \cdot P_e & \text{otherwise}
\end{cases}
\]

\[
Whit = \frac{1759.94 \text{kip}}{} = 1759.94 \text{kip}
\]

calculate the partial plane shear yield check

\[
there is no valid partial plane shear plane for this vertical member and this does not need to be checked
\]

the buckling strength is the Whitmore buckling strength

\[
C_{LRFR} := Whit = 1759.94 \text{kip}
\]

\[
RF_{LRFR} := \frac{\phi_s C_{LRFR} - \gamma_{DL} \cdot P_{3DL}}{\gamma_{LL} \cdot P_{3LL}} = 10.14
\]

\[
RF_{LRFRop} = 13.15
\]
Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear)

calculate the factored Whitmore buckling strength

\[
K_0 := 0.5
\]

\[
F_{cr} := F_y \left[1 - \frac{F_y}{4 \cdot \pi^2 E r_s} \left(\frac{K \cdot L_{mid}}{r_s} \right)^2 \right]
\]

\[
\frac{\pi^2 E}{\left(\frac{K \cdot L_{mid}}{r_s} \right)^2}
\]

otherwise

\[
\frac{F_y}{2 \cdot \pi^2 E}
\]

if

\[
\frac{K \cdot L_{mid}}{r_s} \leq \frac{2 \pi^2 E}{F_y} = 49.07 \text{ ksi}
\]

Whit := 0.85 \cdot A_s \cdot F_{cr} = 1615 \text{ kip}

calculate the partial plane shear yield check

there is no valid partial plane shear plane for this vertical member and this does not need to be checked

the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

\[
C_{LFR} := \text{Whit} = 1615 \text{ kip}
\]

\[
RF_{LFRinv} := \frac{C_{LFR} - \gamma_{DL,LFR} P_{3DL}}{\gamma_{LL,LFR} P_{3LL}} = 8.32
\]

\[
RF_{LFRpr} := RF_{LFRinv} \frac{2.17}{1.3}
\]

\[
RF_{LFRopr} = 13.89
\]

Summarize Rating Factors Using the Three Methods for Member 3

<table>
<thead>
<tr>
<th></th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>RF_{FHWAinv} = 9.24</td>
<td>RF_{FHWAopr} = 11.98</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>RF_{LFRinv} = 10.14</td>
<td>RF_{LFRopr} = 13.15</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>RF_{LFRinv} = 8.32</td>
<td>RF_{LFRopr} = 13.89</td>
</tr>
</tbody>
</table>
MEMBER 4
Compression Member - Need to check Whitmore buckling and partial plane shear yielding

Calculate LRFR rating factors using existing FHWA Guidance method

Calculate the compression capacity of the primary gusset plate

\[K := 1.2 \]
\[\lambda := \frac{K \cdot L_{\text{avg}}}{r_s \cdot \pi} \cdot \left(\frac{F_Y}{E} \right) = 0.12 \]
\[C_{\text{FHWA}} := \phi_c \cdot \left(0.66 \cdot \lambda \cdot F_Y \cdot A_s \right) \text{ if } \lambda \leq 2.25 = 1747.39 \text{ kip} \]
\[0.88 \cdot F_Y \cdot A_s \text{ otherwise} \]

\[RF_{\text{FHWA}} := \frac{C_{\text{FHWA}} - \gamma_{\text{DL}} \cdot P_{4\text{DL}}}{\gamma_{\text{LL}} \cdot P_{4\text{LL}}} = 6.55 \]

\[RF_{\text{FHWA}} := RF_{\text{FHWA}} \cdot \frac{1.75}{1.35} \]

\[RF_{\text{FHWA}} = 8.5 \]

Calculate the proposed LRFR rating factors (minimum of Whitmore buckling and partial plane shear)

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6

\[\frac{P_{4\text{DL}}}{P_{4\text{LL}}} = 2.88 \]
\[R_{\text{DL,LL}} := 1 - 0.1 \left(\frac{2.88 - 1}{5} \right) \]

\[R_{\text{DL,LL}} = 0.96 \]
calculate the factored Whitmore buckling strength.

\[
P_w = \frac{3.29 \cdot 10^5}{A_s} = 10777.96 \text{kip}
\]

\[
P_o = F_y \cdot A_s = 2041.87 \text{kip}
\]

\[
\text{Whit} := \phi_{c,\text{new}} \cdot R_{DL, LL} \cdot \phi_{c} \cdot P_o \begin{cases}
\frac{P_o}{P_o} & \text{if } \frac{P_e}{P_o} \geq 0.44 \\
0.877 \cdot P_e & \text{otherwise}
\end{cases} = 1724.53 \text{kip}
\]

calculate the partial plane shear yield check

\[
\text{PS} := \phi_{vg} \cdot \Omega_{\text{new}} \cdot (0.58 \cdot F_y) \cdot (44.7 \text{in}) \cdot t_g \cdot R_{DL, LL} \cdot \cos(36.9 \text{deg}) = 1029.64 \text{kip}
\]

the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

\[
\text{CLRFR} := \min(\text{Whit}, \text{PS}) = 1029.64 \text{kip}
\]

\[
\text{RF}_{\text{LFR}} := \frac{\phi_s \cdot \text{CLRFR} - \gamma_{DL} \cdot P_{4DL}}{\gamma_{LL} \cdot P_{4LL}} = 2.51
\]

\[
\text{RF}_{\text{LFR, opr}} = \frac{1.75}{1.35} = 3.26
\]

Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear)
calculate the factored Whitmore buckling strength

\[
K := 0.5
\]

\[
F_w := F_y \left[1 - \frac{F_y}{4 \pi^2 \cdot E} \left(\frac{K \cdot L_{mid}}{r_s} \right)^2 \right] \begin{cases}
\frac{2 \cdot \pi^2 \cdot E}{F_y} & \text{if } \frac{K \cdot L_{mid}}{r_s} \leq \sqrt{\frac{2 \cdot \pi^2 \cdot E}{F_y}} = 47.63 \text{ksi} \\
\frac{K \cdot L_{mid}}{r_s} & \text{otherwise}
\end{cases} = 47.63 \text{ksi}
\]

\[
\text{Whit} := 0.85 \cdot A_s \cdot F_{cr} = 1653.39 \text{kip}
\]
calculate the partial plane shear yield check

$$PS := \frac{\Omega_{new} \cdot (0.58 \cdot F_y) \cdot (44.7 \text{in}) \cdot t_g}{\cos(36.9 \text{deg})} = 1069.87 \text{-kip}$$

the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$C_{LFR} := \min(\text{Whit}, PS) = 1069.87 \text{-kip}$$

$$RF_{LFR\text{inv}} := \frac{C_{LFR} - \gamma_{DL \cdot LFR} \cdot P_{4DL}}{\gamma_{LL \cdot LFR} \cdot P_{4LL}} = 2.53$$

$$RF_{LFR\text{opr}} := RF_{LFR\text{inv}} \cdot \frac{2.17}{1.3}$$

$$RF_{LFR\text{opr}} = 4.22$$

Summarize Rating Factors Using the Three Methods for Member 4

<table>
<thead>
<tr>
<th></th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>RF_{FHWA\text{inv}} = 6.55</td>
<td>RF_{FHWA\text{opr}} = 8.5</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>RF_{LFR\text{inv}} = 2.51</td>
<td>RF_{LFR\text{opr}} = 3.26</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>RF_{LFR\text{inv}} = 2.53</td>
<td>RF_{LFR\text{opr}} = 4.22</td>
</tr>
</tbody>
</table>

Horizontal Plane Shear

$$P_{2HDL} := P_{2DL} \cdot \cos(53.1 \text{deg}) = 216 \text{-kip}$$

$$P_{2HLL} := P_{2LL} \cdot \cos(53.1 \text{deg}) = 62 \text{-kip}$$

$$P_{4HDL} := P_{4DL} \cdot \cos(53.1 \text{deg}) = 200 \text{-kip}$$

$$P_{4HLL} := P_{4LL} \cdot \cos(53.1 \text{deg}) = 70 \text{-kip}$$

$$P_{HDL} := P_{4HDL} + P_{2HDL} = 416 \text{-kip}$$

$$P_{HLL} := P_{4HLL} + P_{2HLL} = 131 \text{-kip}$$
Calculate LRFR rating factors using existing FHWA Guidance method

Gross Yielding

\[V_{ny} := \phi_{vy} \left(0.58 \cdot F_y \right) \cdot 94.75 \cdot \Omega \cdot \Omega = 1449 \cdot \text{kip} \]

Shear Fracture

\[V_{nu} := \phi_{vu} \left(0.58 \cdot F_u \right) \left[94.75 - 20 \left(\frac{7}{8} + \frac{1}{8} \right) \right] \cdot \Omega = 1821 \cdot \text{kip} \]

The capacity is the minimum resistance between shear yielding and fracture

\[C_{FHWA} := \min \left(V_{ny}, V_{nu} \right) \]

\[RF_{FHWA} := \frac{C_{FHWA} - \gamma_{DL} \cdot P_{HDL}}{\gamma_{LL} \cdot P_{HL}} = 4.04 \]

\[RF_{FHWAopr} = 5.23 \]

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

\[\frac{P_{HDL}}{P_{HL}} = 3.16 \]

\[R_{DL_LL} := 1 - 0.1 \cdot \left(\frac{3.16 - 1}{5} \right) = 0.96 \]

Gross Yielding

\[V := \phi_{vg} \left(0.58 \cdot F_y \right) \cdot 94.75 \cdot \Omega \cdot \Omega \cdot R_{DL_LL} = 1735 \cdot \text{kip} \]

Shear Fracture

\[V := \phi_{vu} \left(0.58 \cdot F_u \right) \left[94.75 - 20 \left(\frac{7}{8} + \frac{1}{8} \right) \right] \cdot \Omega \cdot R_{DL_LL} = 1742 \cdot \text{kip} \]

The capacity is the minimum resistance between shear yielding and fracture

\[C_{LRF} := \min \left(V_{ny}, V_{nu} \right) = 1735.17 \cdot \text{kip} \]

\[RF_{LRF} := \frac{\phi \cdot C_{LRF} - \gamma_{DL} \cdot P_{HDL}}{\gamma_{LL} \cdot P_{HL}} = 4.53 \]

\[RF_{LRFopr} = 5.87 \]
Calculate the proposed LFR rating factors

Gross Yielding
\[V_{ny} := (0.58 \cdot F_y) \cdot 94.75 \text{in} \cdot t_g \cdot \Omega_{new} = 1814 \text{-kip} \]

Shear Fracture
\[V_{nu} := 0.85 \cdot (0.58 \cdot F_u) \left[94.75 \left(1 + \frac{1}{8}
ight)\right] \text{in} \cdot t_g = 1870 \text{-kip} \]

The capacity is the minimum resistance between shear yielding and fracture
\[C_{LFR} := \min(V_{ny}, V_{nu}) = 1813.51 \text{kip} \]

\[
\begin{align*}
RF_{LFR_{inv}} & := \frac{C_{LFR} - \gamma_{DL_{LFR}} p_{HD} \cdot DL_{LFR} - \gamma_{LL_{LFR}} p_{HL} \cdot LL_{LFR}}{\gamma_{DL_{LFR}} p_{HD} + \gamma_{LL_{LFR}} p_{HL}} = 4.46 \\
RF_{LFR_{opr}} & := RF_{LFR_{inv}} \frac{2.17}{1.30} \\
RF_{LFR_{opr}} & = 7.44
\end{align*}
\]

Summarize Rating Factors Using the Three Methods for Horizontal Shear

<table>
<thead>
<tr>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>RF_{FHWA_{inv}} = 4.04</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>RF_{LRFR_{inv}} = 4.53</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>RF_{LFR_{inv}} = 4.46</td>
</tr>
</tbody>
</table>

Vertical Plane Stress Check
unnecessary as plate cannot mobilize through chord splice
These checks will make comparisons between the existing FHWA Guidance, the new proposed LRFR MBE specification, and the new proposed LFR MBE provisions. Since the final report clearly outlined that Whitmore compression checks of chord splices do not provide value, they will not be reported. Fastener checks will also not be provided. Condition factors are assumed to be 1.00.

Material Properties

\[F_y = 100 ksi \]
\[F_u = 110 ksi \]
\[E = 29000 ksi \]

Gusset Thickness

\[t_g = 1 in \]

\[A_{TCS} = \left(\frac{1}{2} \cdot \frac{1}{2} \right) \cdot 26 \text{ in}^2 = 13 \text{ in}^2 \]

Splice Plate Areas

\[A_{BCS} = \left(\frac{1}{2} \cdot \frac{5}{8} \right) \cdot 26 \text{ in}^2 = 32.5 \text{ in}^2 \]
Existing FHWA Guide Resistance Factors

\[
\begin{align*}
\phi_y & := 0.95 & \phi_c & := 0.9 \\
\phi_u & := 0.80 & \phi_{v_y} & := 0.95 \\
\phi_{bs} & := 0.80 & \phi_{v_u} & := 0.80 \\
\Omega & := 0.74
\end{align*}
\]

Proposed MBE Resistance Factors

\[
\begin{align*}
\phi_{bs_new} & := 1.00 & \phi_{c_new} & := 0.95 \\
\phi_{v_g} & := 1.00 & \phi_{c_s} & := 0.85 \\
\Omega_{\text{new}} & := 0.88
\end{align*}
\]

Load Factors

\[
\begin{align*}
\gamma_{LL} & := 1.75 & \gamma_{LL_LFR} & := 2.17 \\
\gamma_{DL} & := 1.25 & \gamma_{DL_LFR} & := 1.3
\end{align*}
\]

System Factor

\[
\phi_s := 0.90
\]

Assumes it's a bolted truss, proposed as mandatory for LRFR under proposed MBE Article 6A.6.12.6. The system factor will not be used in calculations using the existing FHWA Guidance.

Member Forces For One Gusset Plate

\[
\begin{align*}
P_{1DL} & := \frac{2838}{2} \text{kip} & P_{1LL} & := \frac{783 + 76}{2} \text{kip} & \text{Compression} \\
P_{2DL} & := \frac{310}{2} \text{kip} & P_{2LL} & := \frac{145 + 10}{2} \text{kip} & \text{Compression} \\
P_{3DL} & := \frac{563}{2} \text{kip} & P_{3LL} & := \frac{197 + 19}{2} \text{kip} & \text{Tension} \\
P_{4DL} & := \frac{3293}{2} \text{kip} & P_{4LL} & := \frac{843 + 77}{2} \text{kip} & \text{Compression}
\end{align*}
\]
MEMBERS 1 and 4

Calculate LRFR rating factors using existing FHWA Guidance method

\[K := 1.2 \]

Calculate the compression capacity of the primary gusset plate

\[\lambda := \left(\frac{K \cdot L_{\text{avg}}}{r_s \pi} \right)^2 \frac{F_y}{E} \]

\[\lambda = 0.3 \]

\[C_1 := \phi \cdot \begin{cases} 0.66^\lambda \cdot F_y \cdot A_{s1} & \text{if } \lambda \leq 2.25 \\ \frac{0.88 \cdot F_y \cdot A_{s1}}{\lambda} & \text{otherwise} \end{cases} \]

\[C_1 = 4179.58 \text{-kip} \]

\[C_4 := \phi \cdot \begin{cases} 0.66^\lambda \cdot F_y \cdot A_{s4} & \text{if } \lambda \leq 2.25 \\ \frac{0.88 \cdot F_y \cdot A_{s4}}{\lambda} & \text{otherwise} \end{cases} \]

\[C_4 = 4361.99 \text{-kip} \]

Calculate the rating factors for Member 1

\[RF_{\text{FHWA}_{\text{inv}}} := \frac{C_1 - \gamma_{DL} \cdot P_{1DL}}{\gamma_{LL} \cdot P_{1LL}} = 3.2 \]

\[RF_{\text{FHWA}_{\text{opr}}} := RF_{\text{FHWA}_{\text{inv}}}^{1.75} \]

\[RF_{\text{FHWA}_{\text{opr}}} = 4.15 \]
Calculate the rating factors for Member 4

\[
RF_{FHWAI} := \frac{C_4 \gamma_{DL} P_{4DL}}{\gamma_{LL} P_{4LL}} = 2.86
\]

\[
RF_{FHWAO} := RF_{FHWAI} \left(\frac{1.75}{1.35} \right)
\]

\[
RF_{FHWAO} = 3.71
\]

Calculate the proposed LRFR rating factors. In this case both members 1 and 4 are considered part of the chord splice check.

Start by calculating the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6. Look at loads on both sides of the splice and use the worst case.

left side

\[
F_{left} := \gamma_{DL} \left(P_{1DL} + P_{2DL} \cdot \sin(18.5\,\text{deg}) \right) + \gamma_{LL} \left(P_{1LL} + P_{2LL} \cdot \sin(18.5\,\text{deg}) \right) = 2629.89\,\text{kip}
\]

right side

\[
F_{right} := \gamma_{DL} \left(P_{4DL} - P_{3DL} \cdot \cos(51.7\,\text{deg}) \right) + \gamma_{LL} \left(P_{4LL} - P_{3LL} \cdot \cos(51.7\,\text{deg}) \right) = 2527.9\,\text{kip}
\]

since the loads are very similar, calculate the DL/LL reduction for each set of loads to consider the worst case loading

\[
\left(\frac{P_{1DL} + P_{2DL} \cdot \sin(18.5\,\text{deg})}{P_{1LL} + P_{2LL} \cdot \sin(18.5\,\text{deg})} \right) = 3.23
\]

\[
\left(\frac{P_{4DL} - P_{3DL} \cdot \cos(51.7\,\text{deg})}{P_{4LL} - P_{3LL} \cdot \cos(51.7\,\text{deg})} \right) = 3.75
\]

\[
R_{DL_LLleft} := 1 - 0.1 \cdot \left(\frac{3.23 - 1}{5} \right) = 0.96
\]

\[
R_{DL_LLright} := 1 - 0.1 \cdot \left(\frac{3.75 - 1}{5} \right) = 0.95
\]
The loads on the right side would be more severe, so base the chord splice capacity on the of the right side of the connection.

The other cross-sectional properties of the combined section were determined using a CAD program.

\[A_g := 184.8 \text{in}^2 \] is the gross area of all gusset and splice plates.

\[e_p := 9.10 \text{in} \] is the eccentricity between the force resultant and the centroid of the combined plate area.

\[I_g := 58049 \text{in}^4 \] is the moment of inertia of the gross spliced section.

Since the centroid of the force is above the centroid of the cross-section, the maximum axial+bending stress will be at the top of the plate. Now calculate the section modulus to the top of the cross-section

\[S_g := \frac{I_g}{18.3 \text{in}} \]

Determine if the chord splice is compact

\[K := 0.5 \quad L_{\text{splice}} := 7.1 \text{in} \]

Since \(KL/r \) of the free plate between chords is less than 25, \(F_{cr} \) equals \(F_y \)

\[F_{cr} := F_y \]

Calculate the capacity of the section assuming it occurs at first yield using beam bending theory

\[C_{LRFR} := \phi_s F_{cr} \left(\frac{S_g A_g}{S_g + e_p A_g} \right) = 10265.65 \text{kip} \]

Calculate the rating factor

\[RF_{LRFR inv} := \frac{\phi_s R_{DL _LRright} C_{LRFR} - 2 \gamma_{DL} \left(P_{4DL} - P_{3DL} \cos(51.7\text{deg}) \right)}{2 \gamma_{LL} \left(P_{4LL} - P_{3LL} \cos(51.7\text{deg}) \right)} \]

** dead and live loads were doubled because earlier in the sheet they were halved so resistance checks could be made per gusset plate, which doesn't apply to the chord splice **

\[RF_{LRFR inv} = 3.67 \]

\[RF_{LRFR opr} := RF_{LRFR inv} \frac{1.75}{1.35} \]

\[RF_{LRFR opr} = 4.76 \]

K-43
Calculate the proposed LFR rating factors

only the capacity calculation changes because the resistance factor is 1.00. Still calculate the splice capacity for each side

\[C_{LFR} := \frac{C_{LRFR}}{\phi_{cs}} = 12077.24 \text{ kip} \]

the minimum rating factor using left and right loads will control the rating

\[RF_{LFRinv} := \frac{C_{LFR} - 2\gamma_{DL _LFR} (P_{4DL} - P_{3DL} \cdot \cos(51.7\text{deg}))}{2\gamma_{LL _LFR} (P_{4LL} - P_{3LL} \cdot \cos(51.7\text{deg}))} \]

\[RF_{LFRinv} = 4.84 \]

\[RF_{LFRopr} := RF_{LFRinv} \frac{2.17}{1.30} \]

\[RF_{LFRopr} = 8.07 \]

Summarize Rating Factors Using the Three Methods for the Chord Splice

<table>
<thead>
<tr>
<th></th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>(RF_{LFRinv} = 3.67)</td>
<td>(RF_{LFRopr} = 4.76)</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>(RF_{LFRinv} = 4.84)</td>
<td>(RF_{LFRopr} = 8.07)</td>
</tr>
</tbody>
</table>
MEMBER 2
Compression Member

Calculate LRFR rating factors using existing FHWA Guidance method

Calculate the compression capacity of one gusset plate

\[
K_s = 1.2 \\
\lambda = \frac{\frac{K \cdot L_{\text{avg}}}{r_s \cdot \pi}}{\frac{F_y}{E}} = 0.5 \\
C = \phi_c \cdot \begin{cases}
0.66 \cdot \frac{F_y \cdot A_s}{\lambda} & \text{if } \lambda \leq 2.25 \quad = 1925.92 \text{ kip} \\
0.88 \cdot \frac{F_y \cdot A_s}{\lambda} & \text{otherwise}
\end{cases}
\]

\[
RF_{\text{FHWA}} = \frac{C - \gamma_{DL} \cdot P_{2DL}}{\gamma_{LL} \cdot P_{2LL}} = 12.77
\]

\[
RFF_{\text{FHWAopt}} = RF_{\text{FHWAinv}} \cdot \frac{1.75}{1.35} = 16.56
\]
Calculate the proposed LRFR rating factors (minimum of Whitmore buckling and partial plane shear)

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6

\[
\frac{P_{2DL}}{P_{2LL}} = 2
\]

\[
R_{DL_{-}LL} := 1 - 0.1 \left(\frac{2 - 1}{5} \right) \quad R_{DL_{-}LL} = 0.98
\]

calculate the factored Whitmore buckling strength.

\[
P_e := \frac{3.29\cdot E}{\left(\frac{L_{mid}}{t_g} \right)^2} \cdot A_s = 29646.54\text{kip}
\]

\[
P_o := F_y \cdot A_s = 2630\text{kip}
\]

\[
Whit := \phi_{c_{-}new} \cdot R_{DL_{-}LL} \cdot \left(\frac{P_o}{P_e \cdot P_o} \right) \left\{ \begin{array}{ll}
0.658 & \text{if } \frac{P_e}{P_o} \geq 0.44 \\
0.877 \cdot P_e & \text{otherwise}
\end{array} \right.
\]

\[
Whit = 2359.28\text{kip}
\]

calculate the partial plane shear yield check

\[
PS := \phi_{v_{g}} \cdot \frac{\Omega_{new} \cdot (0.58 - F_y) \cdot (26.7\text{in}) \cdot t_{g} \cdot R_{DL_{-}LL}}{\cos(70.1\deg)} = 3923.6\text{kip}
\]

the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

\[
C := \min(Whit, PS) = 2359.28\text{kip}
\]

\[
RF_{LRFR} := \frac{\phi_s \cdot C - \gamma_{DL} \cdot P_{2DL}}{\gamma_{LL} \cdot P_{2LL}} = 14.23
\]

\[
RF_{LRFR_{opr}} := RF_{LRFR_{inv}} \cdot \frac{1.75}{1.35} = 18.44
\]
Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear)

calculate the factored Whitmore buckling strength

\[
F_{cr} = 0.5 \cdot F_y \left[1 - \frac{F_y}{4 \cdot \pi^2 E} \left(\frac{K \cdot L_{mid}}{r_s} \right)^2 \right] \text{ if } \frac{K \cdot L_{mid}}{r_s} \leq \sqrt{\frac{2 \cdot \pi^2 E}{F_y}} = 97.78 \text{ ksi}
\]

\[
Whit := 0.85 \cdot A_s \cdot F_{cr} = 2185.92 \text{-kip}
\]

calculate the partial plane shear yield check

\[
PS := \Omega_{new} \left(0.58 \cdot F_y \right) \left(26.7 \text{in.}\cdot t_g \right) \cos(70.1 \text{deg}) = 4003.67 \text{-kip}
\]

the buckling strength will be controlled by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

\[
C_{LFR} := \min(Whit, PS) = 2185.92 \text{-kip}
\]

\[
\frac{C_{LFR} - \gamma_{DL, LFR} \cdot P_{2DL}}{\gamma_{LL, LFR} \cdot P_{2LL}} = 11.8
\]

\[
RF_{LFR}^{opr} := RF_{LFR}^{inv} \cdot \frac{2.17}{1.3} = 19.7
\]

Summarize Rating Factors Using the Three Methods for Member 2

<table>
<thead>
<tr>
<th></th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>RF_{FHWA}^{inv} = 12.77</td>
<td>RF_{FHWA}^{opr} = 16.56</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>RF_{LRFR}^{inv} = 14.23</td>
<td>RF_{LRFR}^{opr} = 18.44</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>RF_{LFR}^{inv} = 11.8</td>
<td>RF_{LFR}^{opr} = 19.7</td>
</tr>
</tbody>
</table>
MEMBER 3
Tension member - Need to check gross/net section checks on Whitmore section, and block shear

\begin{align*}
A_g & := 40.2 \text{in} \cdot t_g = 40.2 \text{in}^2 \\
A_n & := 40.2 \text{in} - 2 \left(1 + \frac{1}{8}\right) \text{in} \cdot t_g = 37.95 \text{in}^2
\end{align*}

define the gross and net section areas on Whitmore section

\begin{align*}
A_{tg} & := 3 \text{in} \cdot t_g = 3 \text{in}^2 \\
A_{vg} & := 2 \cdot 26.3 \text{in} \cdot t_g = 52.6 \text{in}^2 \\
A_m & := A_{tg} - 1 \left(1 + \frac{1}{8}\right) \text{in} \cdot t_g + \frac{3^2}{4 \cdot 3} \text{in} \cdot t_g = 2.62 \text{in}^2 \\
A_{vn} & := A_{vg} - 17 \left(1 + \frac{1}{8}\right) \text{in} \cdot t_g = 33.47 \text{in}^2
\end{align*}

define the gross and net sections for block shear check

Calculate LRFR rating factors using existing FHWA Guidance method

calculate yield on gross and fracture on net for the Whitmore plane

\begin{align*}
P_y & := \phi_y \cdot F_y \cdot A_g = 3819\text{-kip} \\
P_n & := \phi_u \cdot F_u \cdot A_n = 3339.6\text{-kip}
\end{align*}

calculate block shear resistance

\begin{align*}
P_{bs} & := \begin{cases}
\phi_{bs} \cdot (0.58 \cdot F_y \cdot A_{vg} + F_u \cdot A_m) & \text{if } A_m \geq 0.58 \cdot A_{vn} = 1948.56\text{-kip} \\
\phi_{bs} \cdot (0.58 \cdot F_u \cdot A_{vn} + F_y \cdot A_{tg}) & \text{otherwise}
\end{cases}
\end{align*}

the capacity is based on the minimum of block shear, yield on Whitmore, and fracture on Whitmore

\begin{align*}
C_{FHWA} & := \min(P_y, P_n, P_{bs}) = 1948.56\text{-kip}
\end{align*}
Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

\[
\frac{P_{3DL}}{P_{3LL}} = 2.61
\]

\[
R_{DL,LL} = 1 - 0.1 \left(\frac{2.61 - 1}{5} \right) = 0.97
\]

calculate yield on gross for the Whitmore plane

\[
P_y := \phi_y F_y A_g R_{DL,LL} = 3696 \text{ kip}
\]

\[
P_n := \phi_u F_u A_n R_{DL,LL} = 3232.06 \text{ kip}
\]

calculate the block shear resistance

\[
P_{bs} := \phi_{bs, new} \left(0.58 F_u A_vn + F_u A_{tn} \right) R_{DL,LL}
\]

if \(F_u A_vn \leq F_y A_{vg} \)

\[
= 2346.39 \text{ kip}
\]

otherwise

\[
= \phi_{bs, new} \left(0.58 F_y A_{vg} + F_u A_{tn} \right) R_{DL,LL}
\]

the resistance is the minimum of the Whitmore yield on gross, Whitmore fracture on net, and block shear

\[
C_{LRFR} := \min \left(P_y, P_n, P_{bs} \right) = 2346.39 \text{ kip}
\]

\[
\frac{\phi_s C_{LRFR} - \gamma_{DL} P_{3DL}}{\gamma_{LL} P_{3LL}} = 9.31
\]

\[
RF_{LRFR} := \frac{1.75}{1.35}
\]

\[
RF_{LRFROpr} = 12.07
\]

Calculate the proposed LFR rating factors

calculate yield on effective Whitmore plane

\[
\beta := 0.15
\]

\[
A_e := \begin{cases} A_n + \beta A_g & \text{if } A_n + \beta A_g \leq A_g \\ A_g & \text{otherwise} \end{cases}
\]

\[
P_y := F_y A_e = 4020 \text{ kip}
\]
calculate block shear resistance

\[
P_b = \begin{cases}
0.85 \cdot \left(0.58 \cdot F_y \cdot A_{vg} + F_u \cdot A_{tn}\right) & \text{if } A_{tn} \geq 0.58 \cdot A_{vn} \\
0.85 \cdot \left(0.58 \cdot F_u \cdot A_{vn} + F_y \cdot A_{tg}\right) & \text{otherwise}
\end{cases}
\]

the capacity is the minimum of the yield on effective Whitmore area or block shear

\[
C_{\text{min}} := \min(P_y, P_{bs}) = 2070.35 \text{kip}
\]

\[
RF_{\text{LFRinv}} := \frac{C_{\text{LFR}} - \gamma_{DL_{LFR}} P_{3DL}}{\gamma_{LL_{LFR}} P_{3LL}} = 7.27
\]

\[
RF_{\text{LFRopr}} := RF_{\text{LFRinv}} \cdot \frac{2.17}{1.3} = 12.14
\]

Summarize Rating Factors Using the Three Methods for Member 3

<table>
<thead>
<tr>
<th></th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>$RF_{\text{FHWAinv}} = 8.45$</td>
<td>$RF_{\text{FHWAopr}} = 10.95$</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>$RF_{\text{LRFRinv}} = 9.31$</td>
<td>$RF_{\text{LRFRopr}} = 12.07$</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>$RF_{\text{LFRinv}} = 7.27$</td>
<td>$RF_{\text{LFRopr}} = 12.14$</td>
</tr>
</tbody>
</table>
Calculate LRFR rating factors using existing FHWA Guidance method

Gross Yielding

\[V_{ny} := \phi_{vy} \left(0.58 \cdot F_y \right) \cdot 78.0 \cdot \tan \omega \cdot \Omega = 3180 \cdot \text{kip} \]

Shear Fracture

\[V_{nu} := \phi_{vu} \left(0.58 \cdot F_u \right) \cdot \left[78.0 - 19 \cdot \left(1 + \frac{1}{8} \right) \right] \cdot \tan \omega = 2890 \cdot \text{kip} \]

The capacity is the minimum resistance between shear yielding and fracture

\[C_{FHWA} := \min(V_{ny}, V_{nu}) = 2890.14 \cdot \text{kip} \]

\[R_{FFHWA} := \frac{C_{FHWA} - \gamma_{DL} \cdot P_{HDL}}{\gamma_{LL} \cdot P_{HLL}} = 16.72 \]

\[R_{FFHWA}^{\text{opr}} = \frac{1.75}{1.35} \]

\[R_{FFHWA}^{\text{opr}} = 21.67 \]
Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

\[\frac{P_{HDL}}{P_{HLL}} = 2.44 \]

\[R_{DL_LL} := 1 - 0.1 \left(\frac{2.44 - 1}{5} \right) = 0.97 \]

Gross Yielding

\[V := \phi_{vg} \left(0.58 \cdot F_y \right) \cdot 78.0 \cdot \tau_g \cdot \Omega_{new} \cdot R_{DL_LL} = 3866 \text{kip} \]

Shear Fracture

\[V := \phi_{vu} \left(0.58 \cdot F_u \right) \left[78.0 - 19 \left(1 + \frac{1}{8} \right) \right] \cdot \tau_g \cdot R_{DL_LL} = 2807 \text{kip} \]

The capacity is the minimum resistance between shear yielding and fracture

\[C_{LFR} := \min(V_{ny}, V_{nu}) = 2806.9 \text{kip} \]

\[\frac{RF_{LFR_{opr}}}{RF_{LFR_{inv}}} = \frac{C_{LFR} - \gamma_{DL} \cdot P_{HDL}}{\gamma_{LL} \cdot P_{HLL}} = 14.39 \]

\[RF_{LFR_{opr}} := RF_{LFR_{inv}} \frac{1.75}{1.35} \]

\[RF_{LFR_{opr}} = 18.66 \]

Calculate the proposed LFR rating factors

Gross Yielding

\[V := \left(0.58 \cdot F_y \right) \cdot 78.0 \cdot \tau_g \cdot \Omega_{new} = 3981 \text{kip} \]

Shear Fracture

\[V := 0.85 \left(0.58 \cdot F_u \right) \left[78.0 - 19 \left(1 + \frac{1}{8} \right) \right] \cdot \tau_g = 3071 \text{kip} \]

The capacity is the minimum resistance between shear yielding and fracture

\[C_{LFR} := \min(V_{ny}, V_{nu}) \]

\[\frac{RF_{LFR_{opr}}}{RF_{LFR_{inv}}} := \frac{C_{LFR} - \gamma_{DL} \cdot P_{HDL}}{\gamma_{LL} \cdot P_{HLL}} = 14.36 \]

\[RF_{LFR_{opr}} := RF_{LFR_{inv}} \frac{2.17}{1.30} \]

\[RF_{LFR_{opr}} = 23.96 \]
Summarize Rating Factors Using the Three Methods for Horizontal Shear

<table>
<thead>
<tr>
<th>Method</th>
<th>Inventory</th>
<th>Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing FHWA Method</td>
<td>$RF_{FHWA_{inv}} = 16.72$</td>
<td>$RF_{FHWA_{opr}} = 21.67$</td>
</tr>
<tr>
<td>Proposed LRFR Method</td>
<td>$RF_{LRFR_{inv}} = 14.39$</td>
<td>$RF_{LRFR_{opr}} = 18.66$</td>
</tr>
<tr>
<td>Proposed LFR Method</td>
<td>$RF_{LFR_{inv}} = 14.36$</td>
<td>$RF_{LFR_{opr}} = 23.96$</td>
</tr>
</tbody>
</table>

Vertical Plane Stress Check
unnecessary as plate cannot mobilize through chord splice