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ABSTRACT 
The results of a research study to develop practical procedures for estimating joint probabilities 
of coincident flows at stream confluences and guidelines for applying the procedures to design 
problems are documented in this report.  The study was based on a database of 85 gage pairs 
located throughout the coterminous United States.  Two practical design methods emerged from 
the study.  The first method for determining a set of exceedance probability combinations 
associated with the desired joint probability for design is based on copulas.  The Gumbel-
Hougaard copula was selected as the most appropriate for this application.  Use of the copula 
requires estimation of the Kendall’s τ rank correlation for an ungaged watershed pair.  Tools for 
estimating this parameter based on watershed characteristics are also a product of the 
research.  For a given Kendall’s τ, the appropriate combinations of events on the main and 
tributary streams for a desired joint exceedance probability are provided in tabular form.  The 
second method is the use of the total probability method.  Although the total probability method, 
based on the total probability theorem, is a well-documented procedure, this study provided 
recommended conditional probability matrices needed to apply the theorem.  Both methods 
result in the design conditions representing the joint probability desired by the designer for 
analysis. 
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Executive Summary 
Highway drainage structures are often located near the confluence of two streams where they 
might be subject to inundation by relatively rare hydrologic events from either stream. These 
structures must be designed to meet specified performance objectives for floods.  Because the 
flooding of structures on one stream can be affected by high flows on the other stream, it is 
important to know the relation between the exceedance probabilities for flows emanating from 
the main and tributary streams in a confluent stream pair, that is, the joint probability of the 
coincident flows. 

The joint probability question arises where a structure is located at a site where flows emanating 
from the main (larger) watershed and tributary (smaller) watershed might result in critical 
hydraulic design conditions.  A portion of the tributary stream is influenced by both the discharge 
of the tributary stream and the backwater caused by flows in the main stream.  This portion of 
the tributary stream is referred to as the influence reach.  The location of the structure within the 
influence reach, as well as the joint hydrologic behavior of the confluent streams, will determine 
the importance of the joint behavior of the confluent streams on the appropriate design 
conditions for the structure. 

The objective of this research was to develop practical procedures for estimating joint 
probabilities of design coincident flows at stream confluences and to provide guidelines for 
applying the procedures.  The scope was limited to riverine areas and did not include 
consideration of coastal areas. 

Several general types of strategies were explored for their suitability in addressing the research 
objective.  They were: 1) bivariate probability distributions, 2) univariate probability distributions 
with linking copulas, 3) the total probability method, 4) regression analyses, 5) marginal 
analysis, 6) synthetic design storm cells with rainfall/runoff modeling, and 7) tabular summaries. 
Preliminary qualitative evaluations eliminated all but the first three strategies. 

Three databases were developed to quantitatively evaluate the remaining strategies.  The first 
was a selection of confluent gage pairs from stream gages located in the coterminous United 
States.  Composed of 85 gage pairs, this was the primary database for developing and testing 
the strategies. A second database contained instantaneous flow records from the United States 
Geological Survey (USGS) Instantaneous Data Archive. The third database included watershed 
and meteorological data associated with the confluent gage pairs.   

Two practical methods emerged from the analyses.  The first method involves determining a set 
of exceedance probability combinations associated with the desired joint probability for design 
based on copulas, specifically the Gumbel-Hougaard copula.  The second method requires a 
series of conditional probability matrices for application within the context of the total probability 
method. 

With respect to the first method, the selection of the Gumbel-Hougaard copula was based on 
the evaluation of four bivariate distribution or copula methods: 1) bivariate Gumbel distribution, 
2) bivariate normal distribution (log-transformed), 3) Gumbel-Hougaard copula, and 4) Frank
copula. 

The Gumbel-Hougaard and Frank copulas require estimation of a single parameter for 
application to an ungaged watershed pair to characterize the dependence between the main 
and tributary streams.  This dependence parameter is a function of Kendall’s τ.  This research 
resulted in methods to estimate Kendall’s τ for ungaged watershed pairs based on watershed 
and meteorological characteristics. 
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The bivariate normal and Gumbel (mixed model) distributions require the estimation of five 
parameters: a location and scale parameter for each marginal distribution (main and tributary 
streams) and a dependence parameter.  The dependence parameter is calculated as a function 
of Pearson’s ρ.  Because of the need for additional parameters, the bivariate normal and 
Gumbel (mixed model) distributions are not as easy to use as the copula methods. 

The two copula methods offer advantages over the bivariate normal and mixed model Gumbel 
distributions.  First, the mixed model bivariate Gumbel (mixed model) distribution may only be 
applied when the estimated Pearson’s ρ correlation between the paired watersheds is less than 
two-thirds.  Therefore, it cannot be applied to watersheds when the correlation coefficient 
exceeds two-thirds.  Second, a fundamental advantage of the copula methods over both 
bivariate distributions is that underlying marginal distributions are not assumed.  Therefore, a 
designer may choose any appropriate marginal distribution for both the main and tributary 
streams or two entirely different marginal distributions for the main and tributary streams. 
However, given its frequent application for annual peak flow, the Log Pearson III distribution for 
both the main and tributary streams would likely be a common selection.  Both the normal and 
Gumbel bivariate distributions require that the marginal distributions are normal and Gumbel, 
respectively. 

Considering the fit of the observed gage pair data to the bivariate distributions and copulas, the 
Gumbel-Hougaard method performed better than the normal and Gumbel bivariate distributions 
and the Frank copula.  Considering the fit with observed data, simplicity (need to estimate a 
single dependence parameter), and flexibility (no assumption of the marginal distribution), the 
Gumbel-Hougaard copula was recommended for use.  However, application of this method 
does not require a background in statistics because guidance developed as part of this research 
transformed the method to a series of tables.  These tables provide the designer with a set of 
combinations of main and tributary stream conditions, each having a specified joint probability. 
Each combination is analyzed hydraulically to determine the critical design condition. 

The second method is the total probability method, which is based on the total probability 
theorem.  The key element of this part of the research was the development of a series of 
conditional probability matrices for application within the context of the total probability method. 
Four sets of matrices for high, moderate, mixed, and poor correlation are presented.  Full 
implementation of the total probability method involves evaluating several hydraulic scenarios to 
generate an exceedance probability curve for stage at the design location.  This method may be 
preferred over the copula method if the objective is to evaluate several alternatives over a range 
of possible occurrences in the context of a cost-benefit analysis. 

The preliminary steps in the application of either the copula or total probability methods are 
common to both methods:   

1. Specify the design objective. The designer might be interested in determining
stage and/or velocity at the design location for a given joint annual exceedance
probability (AEP) or return period.  The desired design event or range of events
is specified by the designer.

2. Determine if the project site is within the influence reach.  If not, joint probability
design techniques are not required.

3. Select the joint probability design method: copula-based or total probability.
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If the copula-based method is selected, the design process continues with the following steps: 

1. Assess site-specific dependence (correlation) between the main and tributary
streams as measured by Kendall’s τ.  Tools for estimating Kendall’s τ have been
developed as part of this research.

2. Determine possible flow combinations on the main and tributary streams for a
selected joint exceedance probability and estimated dependence parameter.

3. Estimate the discharges for the identified flow combinations.

4. Analyze the hydraulics of the system using the flow combinations to determine
the critical combination, that is, the one with the most severe (conservative)
conditions for the site.  This is the appropriate design condition for the design
joint annual exceedance probability/return period.

If the total probability method is selected, the design process continues with the following steps: 

1. Construct the marginal exceedance frequency curve for the main stream.  Index
values of the main stream discharge, QM,I, may be used, that is discreet values of
QM that represent a range of QM and the corresponding probability of occurrence
for each range, P(QM,i).

2. Select the conditional probability matrix for the tributary stream stage, yT, for
each value of QMi,i.  The result is the conditional probability of the tributary stage
given a main stream discharge, P[yT|QMi,i].  These matrices have been developed
as part of this research along with guidance for the designer on the selection of
the appropriate matrix for a given site.

3. Develop the linking relationship between main and tributary stream flows and the
resulting stage.  The linking relationship may take the form of a table of stages
computed for various combinations of QT and QM.  A HEC-RAS model of the
confluence and design location is a likely tool.

4. Compute the total probability of occurrence P[yT] for each stage computed in the
linking relationship.

5. Construct the total probability curve.  Select the stage corresponding to the
selected design event.

Supporting data and analyses are presented in several appendices.  The appendices include a 
literature review summary (Appendix A) and a description of the databases (Appendix B). 
Background on bivariate distributions and copulas (Appendix C), the total probability method 
(Appendix D), and other strategies (Appendix E) are provided.  Appendix F provides 
descriptions of the supporting data analyses. 

Appendix G contains an applications guide to demonstrate specific design steps for the copula-
based and total probability methods.  Application of the methods is generally limited to 
watershed pairs satisfying three conditions: 1) neither watershed in the pair is substantially 
affected by regulation, 2) the sum of the watershed areas must be less than 9,000 mi2, and 3) 
the smaller watershed of the pair must have a drainage area greater than 1 mi2.  In some cases, 
the methods developed in this research might be applied beyond these limits if the designer 
considers the risks and benefits of such application in light of the alternative tools that might be 
available. 
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Appendix H provides a step-by-step applications guide in a user friendly format. It is intended to 
be applied to most design situations and objectives, except for situations of high sensitivity or 
vulnerability either for the infrastructure itself or for the traveling public. 
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1. Background 
Highway drainage structures are often located near the confluence of two streams where they 
may be subject to inundation by high flows from either stream. These structures are designed to 
meet specified performance objectives for floods of a specified return period, e.g., the 100-year 
flood.  Because the flooding of structures on one stream can be affected by high flows on the 
other stream, it is important to know the relationship between the joint exceedance probabilities 
on the confluent stream pair, i.e., the joint probability of the coincident flows. 

Accurate estimates of the joint probability of coincident flows at stream confluences are a crucial 
element in the design of efficient and effective highway drainage structures. No accurate 
generally accepted estimation procedure for determining coincident flows exists for use in the 
design of highway structures.  A practical procedure for the determination of joint probabilities of 
design flows at stream confluences is needed and is the subject of this report. 

1.1 Problem Statement 
The joint probability question arises when a structure is located where the hydraulic behavior of 
some combination of the main and tributary streams may result in critical hydraulic design 
conditions.  Specifically, there is a portion of the tributary stream that is influenced by both the 
discharge of the tributary stream and the backwater caused by the main stream.  This is 
referred to as the influence reach.  The location of the structure within the influence reach, as 
well as the joint hydrologic behavior of the confluent streams, will determine the importance of 
the confluent streams on the appropriate design conditions for the structure. 

Three variations of relative importance of the design location are illustrated in Figure 1.1: A) 
structure very close to the confluence, B) structure some distance, x, from the confluence, and 
C) structure beyond the influence reach.  The relative influence of the main and tributary 
streams varies depending on the design location and the watershed characteristics.  Although 
both velocity and stage may be of interest to the designer, the stage is the focus of this 
research. 

For a given distance from the confluence, x, there is a unique maximum for stage, y, for a given 
probability of exceedance at the design location.  Defining the following variables: 

 x = distance from confluence 
 Xmax = maximum range of the zone of influence (influence reach) 
 y = stage 
 QM = discharge on the main stream 
 QT = discharge on the tributary 
 
For the three cases, the stage may be stated as a function of the following: 

Case A)  x/Xmax is close to zero, 

 yA = f(QM+QT) (1.1) 

Case B)  0 < x/Xmax < 1, 

 yB = f(QM+QT, QT) (1.2) 

Case C)  x/Xmax >1, 

 yC = f(QT) (1.3) 

 1 



 

Figure 1.1. Problem Definition Schematic 

For Case A, the structure is sufficiently close to the confluence such that the stage is 
determined by the sum of the flows from the main and tributary streams.  This case essentially 
reduces to an analysis of the flow just downstream of the confluence; therefore, this case is not 
of great interest for this research. 

Case B represents the joint probability problem and the primary focus of this research.  The 
objective in this case is to find the stage, yB, which corresponds to the joint exceedance 
probability appropriate for the design problem.  The stage at location B at any time is a function 
of the flow at the confluence, which establishes the downstream control elevation, and the flow 
in the tributary, which determines the water surface profile from the downstream control to the 
design location.  Alternatively, the stage at location B can be considered a function of the main 
and tributary stream discharges. 

For Case C, the structure is outside of the influence reach and is not representative of the joint 
probability problem so there will be no further discussion of this case.  Case C represents the 
typical univariate riverine hydraulic design condition. 

It is assumed in the characterization of the problem that the design location and, therefore, the 
influence reach are on the tributary (smaller) watershed.  However, the analysis is analogous if 
the design location is on the main stream. 

Considering Case B in more detail, each possible combination of main and tributary stream 
discharge has a joint annual exceedance probability (AEP).  In standard univariate analysis 
(considering a single stream) a more extreme event is simply an event that is larger than the 
event associated with the given AEP.  In a bivariate analysis a more extreme event is one 
where the main and tributary stream discharges are both larger (one can be equal) than given 
values of the main and tributary stream discharges, respectively.  If QM1 and QT1 represent one 
combination of main and tributary stream discharges and QM2 and QT2 represent a second 
combination, the first combination is considered more extreme if: 
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 2M1M QQ ≥  and 2T1T QQ ≥  (1.4) 

where, 
 QM = Discharge on the main stream 
 QT = Discharge on the tributary stream 
 
Given that each combination of main and tributary stream discharges has a joint AEP, there is a 
series of combinations that form an annual exceedance probability isoline as shown in Figure 
1.2.  Characteristic of the exceedance probability isoline is that all points on the line have the 
same joint exceedance probability.  A designer will apply estimated discharge pairs from various 
points on the isoline to determine an appropriate water surface elevation or velocity to consider 
in the design.  Although several combinations of discharge pairs may have the same 
exceedance probability, the one that should be used for design will depend on the site location 
within the influence reach.  Finding that critical combination for a given site may involve 
selecting two or more potential combinations from the appropriate isoline and selecting the one 
that exhibits the most severe consequences at the site.  Developing the tools to accomplish this 
was the objective of this research. 

Figure 1.2. Isoline for Annual Bivariate Exceedance Probability 

1.2 Literature Review 
The literature was reviewed to identify potential strategies for addressing the research objective 
and to find applications in other fields, which might be transferable to hydrology.  The review 
was focused in four areas: 1) bivariate distributions, 2) total probability method, 3) related joint 
probability topics, and 4) storm cell characterization.  Appendix A provides a summary of the 
literature review. 
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1.3 Research Objectives and Scope 
The objective of this research was to develop practical procedures for estimating joint 
probabilities of design coincident flows at stream confluences and guidelines for applying the 
procedures. The scope of this research was limited to riverine areas and did not include 
consideration of coastal areas. 
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2. Research Method 
The research objectives were pursued through the identification of potential strategies and tools 
for application to the joint probability problem, development of a gage pair database to test 
various methods, and preparation of recommendations for application.  In this section, the work 
plan is described along with the potential strategies that were investigated.  The development of 
the gage pair database is also described. 

2.1 Work Plan 
The research work plan was divided into two phases and nine tasks.  At the conclusion of 
Phase I, an interim report and revised Phase II work plan was prepared.  This report marks the 
conclusion of Phase II. 

2.1.1 Phase I 
2.1.1.1 Task 1. Critically Review Literature/Summarize Procedures 
The first task was to critically review the literature pertaining to joint probabilities for flows at 
stream confluences.  The main purpose of this review was to identify and summarize 
procedures used to estimate joint probabilities of coincident events.  The review included the 
hydrologic literature as well as literature that might address coincident events, for example, 
traffic-flow, seismic analyses, and other subject areas that might be characterized by stochastic 
processes. 

2.1.1.2 Task 2. Critically Review Procedures 
Next was to critically review the procedures identified in Task 1 and evaluate the suitability of 
promising procedures for use in hydrologic modeling by highway agencies.  Following this, the 
data requirements, data availability, and level of effort needed to apply each procedure were 
determined. 

2.1.1.3 Task 3. Identify Confluent Stream Sites 
Using available stream gage and other hydrologic data, confluent stream sites with concurrent 
data of sufficient record length to estimate joint probabilities were identified.  It was intended that 
the sites be regionally diverse throughout the United States and include a wide range of basin 
characteristics and hydrologic conditions. 

Based on the hypotheses postulated in Tasks 1 and 2, along with the findings of those two 
tasks, appropriate stream sites, and types of precipitation data, were to be identified for potential 
use.  Depending on the potential utility of radar data, sites with useful radar data might be 
identified. 

2.1.1.4 Task 4. Propose Procedures 
Task 4 was to propose the development of one or more innovative procedures or refinements of 
existing procedures for estimating joint probabilities of design coincident flows. For each 
proposed procedure the availability of data, ease of use, statistical robustness, and accuracy of 
the procedure were to be addressed.  For the proposed procedures identified, the intent was to 
seek balance between data availability, ease of use, statistical robustness, and accuracy.   
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2.1.1.5 Task 5. Submit Interim Report 
An interim report documenting the work completed in Tasks 1 through 4 was prepared.  The 
report included an updated, detailed work plan for completing Phase II of the research as a 
separate appendix. 

2.1.2 Phase II 
2.1.2.1 Task 6. Collect/Compile Data 
Stream gage and other hydrologic data from the sites identified during Task 3 were collected 
and compiled.  Quality control for the data was developed to ensure the integrity of the data and 
the reproducibility of results. 

2.1.2.2 Task 7. Develop Practical Procedures 
Using the Task 6 data, Task 7 was to develop the practical procedures proposed in Phase I for 
estimating joint probabilities of design coincident flows at stream confluences for riverine areas.  
The model types that seemed likely for investigation prior to conducting Phase I included the 
following: 

1. Bivariate probability distributions 

2. Tabular summaries 

3. Regression analyses 

4. Adaptations to the Total Probability Method 

Other model types revealed in the literature search and that survived evaluation in Task 4 would 
be evaluated in this task. 

2.1.2.3 Task 8. Validate Procedures 
Task 8 was to validate and refine the Task 7 procedures.  Development of application guidelines 
was also a part of this task. The guidelines are intended to address the regional applicability of 
the procedures. 

2.1.2.4 Task 9. Final Report 
A final report documenting the entire research effort is prepared in this task.  The final report 
should include illustrative examples showing the application of the procedures and the ranges of 
variables.  This document is the final report. 

2.2 Potential Strategies 
Although four potential strategies were listed in the original work plan in Task 7, the literature 
search and subsequent evaluation resulted in seven strategies that exhibited potential utility.  
They are: 

1. Bivariate probability distributions 

2. Univariate probability distributions with linking copulas 

3. Total probability method 

4. Regression analyses 

5. Marginal analysis 
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6. Synthetic storm cell/runoff modeling 

7. Tabular summaries 

Each is described briefly in the following sections. 

2.2.1 Bivariate Probability Distributions 
The use of bivariate probability distributions for analyzing the joint probability of coincident flows 
is an extension of the established procedure of using univariate distributions to analyze gage 
data for a single stream.  Probably the most well known example of this is the use of the 
Pearson III distribution when analyzing log-transformed annual peaks, that is, Log Pearson III 
analysis.  In that case, discharge data are used to develop the distribution parameters and then 
the fitted distribution is used to define events with a given exceedance probability.  The 
univariate distribution for the main or tributary streams is referred to as the marginal distribution 
in the context of bivariate distributions.  A description of selected univariate distributions is 
provided in Appendix C.1. 

A key element in the evaluation of bivariate distributions is a determination of which bivariate 
distributions, if any, fit coincident stream flows.  Bivariate distributions contain the complete 
structure of the marginal distributions and the correlation between the marginal distributions.  
Although their distribution parameters may differ, the marginal distributions that form the 
bivariate distribution are the same. 

Direct application of bivariate distributions to confluent stream flows was not found in the 
literature review, but applications to flood peaks and volume as well as other paired data were 
identified.  Examples of the Normal (transformed by logarithms or Box-Cox), Gumbel, and 
generalized extreme value (GEV) bivariate distributions (Bogardi, et al., 1975; Sackl and 
Bergmann, 1987; Shiau, 2003; Morris and Calise, 1987; Raynal and Salas, 1987; Loganathan, 
et al., 1987) were published in the literature.  Weibull and exponential bivariate distributions 
have been applied, but generally not to flow data.  See, for example, Prior-Jones and Beiboer 
(1990).  Based on the literature review, the bivariate Gumbel and normal (log) distributions were 
further investigated.  Detailed analysis and application of the bivariate distributions to the 
confluent flooding problem is presented in Appendix C.2. 

2.2.2 Univariate Probability Distributions with Linking Copulas 
An alternative method is to apply univariate marginals with the dependence structure between 
the two marginal distributions expressed through a copula.  A useful feature of copulas is that 
they are independent of the marginal distributions.  Although not applied to flows at confluent 
streams, water resources applications of this method are illustrated by De Michele, et al. (2005), 
Favre, et al. (2004), and Zhang and Singh (2006). 

The Archimedean copula family is desirable for hydrologic analyses because it is easily 
constructed, includes a large family of copula types, and applies whether the correlation is 
positive or negative (Nelsen, 2006).  The Archimedean family includes the Gumbel-Hougaard, 
Ali-Mikhail-Haq, Frank, Cook-Johnson copulas, which are assessed in this research, and other 
copula families.  Shiau, et al. (2006) notes the common use of the Clayton copula in hydrology.  
One application was the relation between flood peak and flood volume.  Mathematical 
descriptions of selected Archimedean copulas are presented in Appendix C.3. 

Based on the literature, several univariate marginal distributions have been used with copulas 
including the Normal (transformed by logarithms or Box-Cox), Gumbel, and generalized extreme 
value (GEV).  However, because copulas can be used with any marginal distribution and the 
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Pearson Type III (log transformed) distribution is commonly applied to annual peak flow data, 
the Log Pearson III method was also considered for this research. 

2.2.3 Total Probability Method 
The total probability method, based on the total probability theorem, has been applied at river 
confluences (e.g. Dyhouse, 1985; Pingel and Ford, 2004).  For application of the total probability 
theorem for joint probability, one can use the procedure described in EM 1110-2-1415 (USACE, 
1993). 

The procedure is applied for two conditions: main stream flow as the dominant variable and 
tributary flow as the dominant variable.  The condition yielding the higher stage for the 
probability of interest is taken as the design condition.  In the development that follows, the 
dominant variable is assumed to be the main stream flow, QM.  The procedure also requires that 
there is some function, referred to as a linking relationship, that is used to calculate the tributary 
stage, yT, such that: 

 yT = f(QT,QM) (2.1) 

where, 
 yT = Tributary stage 
 QT = Tributary flow 
 QM = Main stream flow 
 
Typically, this linking relationship is provided with a HEC-RAS model of the confluence with QT 
and QM as inputs.  Using these definitions, the total probability theorem may be stated as 
follows: 

 [ ] ]Q[P]Q|y[PyP i,Mi,M

n

1i
TT ∑

=

=  (2.2) 

where, 
 P[yT]  = probability that yT will occur 
 P[yT|QM,i] = probability that yT will occur given QM,i 
 P[QM,i]  = probability that QM,i will occur 
 i  = index 
 
The values for P[QM,i] may be developed from a flow-duration curve, but for the ungaged 
situations anticipated by this research, it would be developed from the marginal distribution for 
the main stream annual peak flow. 

The total probability method is potentially more computationally intensive than the methods 
using the bivariate distributions or the univariate distributions with copulas.  However, the total 
probability method produces a complete probability distribution function for tributary stage, yT, 
as described in Equation 2.2.  The design exceedance probability for the site is used to 
determine the design stage.  By contrast, the bivariate distribution and copula methods assume 
that a given joint exceedance probability for flow yields (by evaluation of several critical 
combinations) the equivalent exceedence probability for stage. 
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2.2.4 Regression Relations 
This section addresses application of regression relations to directly determine appropriate 
design conditions for the joint probability at stream confluences.  A method for regression 
equations might be to calculate the desired probability of exceedance on the main stream, given 
the joint probability of exceedance, from the probability of exceedance on the tributary and 
appropriate watershed and meteorological variables.  For example: 

 Pe,M = f(Pe,T, watershed variables, meteorological variables) (2.3) 

where, 
 Pe,M = probability of exceedance to be used on the main stream (M) 
 Pe,T = probability of exceedance desired for the tributary (T) 
 
A series of critical combinations, with the same joint exceedance probability, would be derived 
from Equation 2.3 by supplying the needed watershed and meteorological variables along with a 
series of values for Pe,T.  This would result in a series of Pe,M values.   

Research efforts are needed to develop the type of equations represented by Equation 2.3.  
However, the research team was not optimistic that this strategy would be successful and 
focused project resources in other areas.  No further attention was given to this strategy. 

2.2.5 Marginal Analysis 
Marginal analysis is a strategy based on considering the probability of exceedance of the 
combined tributary and main stream flow at the confluence and then allocating this flow, in 
various combinations, between the confluent streams.  The concept is represented by the 
following equation: 

 QM = QM+T,Pe - QT (2.4) 

where, 
 QM = residual flow on the main stream 
 QT = flow on the tributary 

 QM+T,Pe = flow below the confluence of the two streams for exceedance probability Pe 
 
QM+T,Pe is calculated based on any applicable hydrological technique using the combined (main 
and tributary) watershed characteristics.  Equation 2.4 is then used successively with a series of 
QT values of known exceedance probability to calculate the corresponding values of QM.  For a 
given Pe, the values of QM would be a maximum of QM,Pe and range downward and the values of 
QT would be a maximum of QT,Pe and range downward.  These paired values are then evaluated 
to determine which results in the most severe circumstances.   

Application of this strategy requires no further research.  It is also not useful for addressing the 
joint probability problem as described by Case B (Equation 1.2 in Section 1.1).  By focusing 
attention on discharge probabilities at the confluence, it does not consider other possibilities on 
the influence reach other than those that sum to a selected quantity at the confluence. 

Furthermore, for Case A (Equation 1.1 in Section 1.1) it is immaterial to what extent the tributary 
and main stream contributes to a given return period flow at the confluence.  In this case, all that 
matters is the flow, and therefore the stage, at the confluence.  Therefore, the marginal analysis 
procedure adds no new insight to that assessment and no further consideration will be made of 
this method in addressing coincident flooding.  An application of the method is illustrated on the 

 9 



 

prototype watersheds as summarized in Appendix E.1.  The technique may have utility for other 
applications. 

2.2.6 Synthetic Storm Cell/Runoff Modeling 
This strategy employs traditional rainfall/runoff modeling tools based on the selection of an 
appropriate storm cell to drive the modeling process.  The strategy involves selecting a storm or 
storms appropriate for the location and exceedance probability of interest.  The storm cell 
characteristics would include the storm size, spatial distribution, and temporal distribution.  For 
practicality, it may be necessary to assume the storm is stationary. 

Next, the design storm cell would be applied as an input to a rainfall/runoff model.  Any suitable 
runoff model capable of accepting spatially and temporally varied rainfall could be used.  HEC-
HMS is an example of a widely available model meeting this criterion.  Assuming the storm is 
stationary, an assumption regarding the location of the storm cell with respect to the watershed 
is required.  A possible assumption is that the centroid of the storm cell is located above the 
centroid of the combined watershed areas. 

Research is needed to establish the appropriate storm cell characteristics, size, duration, 
intensity, etc., for given probabilities of exceedance and geographic region.  Analysis of radar 
data may be a tool for achieving this. Research is also needed to determine if more than one 
cell type, for a given location and probability of exceedance, could result in the desired runoff 
conditions.  Working with multiple storm types would represent a significant investment of time.  
Even with multiple storm types, the designer must accept the assumption embedded in all 
rainfall/runoff modeling methods: the T-year precipitation results in the T-year runoff. 

This method relies heavily on the success in deriving appropriate storm cell(s) for design.  
Storm cells differ with respect to the precipitation mechanisms and region of the country 
although these distinctions are not completely independent.  Selected parts of the literature that 
address this topic are described in Appendix A.4. 

Because of the complex nature of storms, the research team was not optimistic that 
characterization of storm cells for the purpose of analyzing confluent streams was an attainable 
goal within the context this research effort.  Therefore, no further consideration of this method 
was undertaken. 

2.2.7 Tabular Summaries 
Tabular summaries are one of the most common tools currently in use for addressing the joint 
probability of coincident flows.  Such tables may simply be a summarization of the results of a 
more complex methodology and prepared for ease of application or they may represent the 
culmination of substantial data analyses with no underlying causal linkages. 

Table 2.1, taken from AASHTO (2000), is an example of a tabular summary that is widely used.  
However, no documentation of the source of this table was found, though it is believed to have 
been developed by the Norfolk District of the U.S. Army Corps of Engineers in the mid 1970s.  
Because of the uncertainty regarding the source of Table 2.1, it is unclear whether it should 
have the wide application it does.  Application of tabular summaries requires determination of 
necessary watershed characteristics to enter the table appropriate for the hydrologic region.  In 
the case of Table 2.1, the only required data is the area ratio.  The table is presumed to be 
equally applicable across the country.  The joint probability is then determined based on the 
table values. 
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Table 2.1. Tabular Summary of Joint Probabilities of Coincident Flow 

Area Ratio 
Frequencies for Coincident Flow 

10-year Design 100-year Design 
Main 

Stream Tributary Main 
Stream Tributary 

10,000 to 1 1 10 2 100 
10 1 100 2 

1,000 to 1 2 10 10 100 
10 2 100 10 

100 to 1 5 10 25 100 
10 5 100 25 

10 to 1 10 10 50 100 
10 10 100 50 

1 to 1 10 10 100 100 
10 10 100 100 

To implement a tabular strategy this research must analyze, choose, and develop empirical 
relations similar to those shown in Table 2.1.  A tabular method may be appropriate for regions 
or situations where statistical relations cannot be quantified, but appear to exist. 

2.3 Database 
This research included the development of three databases.  The first database was a collection 
of confluent gage pairs from the coterminous United States.  A second database included 
instantaneous flow records from the USGS Instantaneous Data Archive. The third database 
included watershed and meteorological data associated with the confluent gage pairs.   

2.3.1 Gage Pairs 
A primary resource for the research was a database of confluent gage pairs from the set of 
USGS stream gages within the coterminous U.S.  The screening criteria to select the gage pairs 
were as follows: 

1. Geographic distribution throughout the coterminous 48 states

2. Area ratios within the range of 1:1 through 1,000:1

3. Drainage areas within the range of 1 to 10,000 mi2

4. 25-yr minimum record length

5. Gage location captures substantial portion of drainage area to the confluence

6. Gage record does not indicate regulation

7. 10-mile maximum distance between gages in a gage pair

The location and distribution of 93 database gage pairs identified is shown on Figure 2.1 and 
listed in Table B.1 (Appendix B.1).  Information for each gage included the main stream station 
name, main stream drainage area, tributary stream station name, and tributary stream drainage 
area, as well as the longitude and latitude of each gage. 
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Figure 2.1. Gage Pairs and Hydrologic Units 

As described in Appendix B.1, eight gage pairs were dropped from the database for various 
reasons, leaving 85 pairs for this research.  Drainage area distributions for the main and 
tributary streams are summarized in Table 2.2.  

 

Table 2.2. Gage Pair Drainage Area Distribution 

Area (mi2) 

Number of 
Main Stream 

Gages 

Number of 
Tributary 
Stream 
Gages 

1-10 2 11 
10-100 7 31 
100-500 42 34 
500-1000 12 5 

1000-10000 22 4 
Total 85 85 

 
For each gage pair, the ratio of drainage areas and distance between gages were computed.  
The area ratio distribution is summarized in Table 2.3.  Because methods based on drainage 
area ratio are currently in use, it was desirable to secure a dataset with a wide range of 
representative values. 
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Table 2.3. Gage Pair Drainage Area Ratio Distribution 

Area Ratio 
Number of 
Gage Pairs 

1-2 28 
2-5 32 

5-10 7 
10-100 9 
100-500 9 

Total 85 
 

2.3.2 Instantaneous Data 
Instantaneous data (15 to 60 minute increment) were available for watersheds in 15 states at 
the time the dataset was assembled.  The intent was to collect and review a subset of data from 
20 gages in the Instantaneous Data Archive (IDA).  The Panel recommended collecting these 
data from gage pairs rather than individual gages so that pair wise comparisons could be 
conducted.  Data were collected for the 11 pairs (22 gages) summarized in Appendix B.2. 

The selected pairs were chosen to emphasize the smaller watersheds in the dataset while 
maintaining geographic diversity.  It was believed that the instantaneous data would be less 
informative for the larger watersheds because they do not respond as rapidly as smaller 
watersheds. 

2.3.3 Watershed and Meteorological Data 
Complementing the discharge data for the gage pairs were various watershed and 
meteorological data elements that were compiled for this study. 

2.3.3.1 Watershed Data 
Watershed characteristics sought for the study are listed in Table 2.3.  The first column lists the 
characteristics and the second column lists the sources of data from which these characteristics 
were computed. 

Table 2.4. Sources for Watershed Characteristics 
Watershed Characteristic Source 

Drainage area USGS stream gages dataset 
Latitude/longitude of watershed centroid Computed from NHDPlus dataset 
Maximum flow length Computed from NHDPlus dataset 
Watershed channel slope Computed from NHDPlus dataset 
Distance between centroids for each gage pair Computed from NHDPlus dataset 

 
Gaged drainage area values were obtained from a USGS spatial database (Stewart, et al., 
2006) of 23,426 current and historical stream gages.  Additional watershed characteristics were 
derived from NHDPlus (EPA and USGS, 2007).  NHDPlus includes stream network features 
from the National Hydrography Dataset (NHD) and elevation data from the National Elevation 
Dataset (NED).  Stream networks are based on the 1:100,000 scale (medium resolution) NHD 
and elevation data are based on 30-meter grid resolution NED.  A complete description of 
NHDPlus is provided in the NHDPlus User Guide (EPA and USGS, 2007).  NHDPlus data were 
obtained from http://www.horizonsystems.com/nhdplus/.  Additional details on the derivation of 
watershed variables are provided in Appendix B.3. 
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A time of concentration for each watershed was estimated using the Kirpich formula.  However, 
many of the watersheds did not exhibit characteristics appropriate for the Kirpich formula.  For 
example, many were much larger than is appropriate for the formula.  Nevertheless, it was 
considered useful to explore measures of watershed “size” other than drainage area to use in 
the evaluation of correlation structures between gage pairs.  Since the Kirpich formula uses a 
channel length and slope in computing a response time, the Kirpich equation was used for all 
watersheds, but was renamed “slope-length parameter” so that the quantity would not be 
confused with time of concentration.  As described later, this parameter did exhibit utility in the 
research.  See Appendix B.3 for more information. 

2.3.3.2 Meteorological Data 
Two meteorological characteristics were compiled: mean annual precipitation at each watershed 
centroid and the 2-yr 24-h precipitation for each watershed centroid.  These data were retrieved 
from the USGS database containing watershed attributes for approximately 13,000 unregulated 
gages.  Not all attributes are available for all gages, but the attributes of interest are: mean 
annual precipitation (PRECIP) and 2-yr/24-hour rainfall intensity (I24100). 

When unavailable from the USGS database, mean annual precipitation (MAP) was estimated 
from the precipitation map in NOAA “Climatography of the U.S. No. 81 – Supplement #3” that 
covers the period from 1961 to 1990. 

When unavailable, the 2-yr 24-h precipitation was retrieved from NOAA Atlas 14 (Bonnin, et al., 
2006a, 2006b) for areas covered by that tool.  For those locations not covered by NOAA Atlas 
14, NOAA Atlas 2 (NOAA, 1973) was used in the western U.S. and TP40 (NOAA, 1961) in the 
eastern U.S. 
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3. Data Evaluation 
Coincident sets of flow data for each gage pair were required for the study.  Because flooding 
data are typically analyzed based on annual rather than partial duration series, the use of the 
annual series was adopted.  This research was primarily based on two sets of annual peak 
series flow data for each gage pair.  These datasets are referred to as the “Peaks on Main”  
(POM) dataset and the “Peaks on Tributary”  (POT) dataset.  They were developed for each 
gage pair by first deriving an annual peak series on one of the gages (the primary gage).  For 
the POM dataset, the main stream (larger drainage area) gage was the primary gage and for 
the POT dataset the tributary gage was the primary gage.  Then, each peak value recorded for 
the primary gage was paired with the “coincident“ value occurring at the same time on the other 
(complementary) gage in the pair. 

Instantaneous peak values at a gaging station are typically used to create annual series of peak 
flows.  However, a potentially significant limitation of creating gage pair datasets based on 
instantaneous data (readings typically ranging from every fifteen minutes to every hour) is the 
relative lack of such data at most gaging locations.  Another issue was how “coincident” flow 
should be defined.  Should the coincident flow be defined as flows at both gages occurring at 
the exact same time or should “coincident” be defined to be within some time window in the 
hope of capturing a local hydrograph peak on both gages in the pair? 

The research team decided to use daily flow data because there simply were not enough 
instantaneous data available from a large enough set of gages over sufficient periods of record 
to quantitatively evaluate joint probability methods.  With the decision to use daily data, 
“coincident” was defined as the daily flows on both gages occurring on the same day.  The 
justification and potential effects of these decisions are described in this chapter. 

The choice to use annual series daily data was driven by the broad availability of daily data and 
the need for a consistent definition of a coincident occurrence.  However, there was concern 
that the use of daily flow data would not represent the true relation between main and tributary 
stream flows, especially for smaller watersheds.  Three evaluations were conducted to address 
the following issues: 

1. Annual versus partial duration series 

2. Definition of a coincident peak 

3. Mean daily versus instantaneous data 

The assessments were primarily based on prototype gage pairs (a subset of the 85 pair 
database) that are representative of the database and have sufficient data and data types to 
support the analyses.  Three gage pairs (GP) representing a range of watershed areas and 
distinct regions of the country were initially selected: New Jersey (GP06), Washington (GP43), 
and Texas (GP76).  These watershed pairs are shown in Figures 3.1, 3.2, and 3.3, respectively.   

For some of the analyses, the group of prototype watershed pairs was expanded, primarily to 
include a greater representation of smaller watersheds.  The prototype gage pairs are 
summarized in Table 3.1.  Commentary on each follows: 

• Gage Pair 05 (GP05): Tributary gage serves one of the smallest drainage areas 
in the gage pair database.  This pair has one of the longest instantaneous data 
records available. 

• Gage Pair 06 (GP06): Watersheds represent an intermediate size range. 
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Figure 3.1. Gage Pair 06 (New Jersey) 

Figure 3.2. Gage Pair 43 (Washington) 
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Figure 3.3. Gage Pair 76 (Texas) 

 

Table 3.1. Prototype Gage Drainage Areas 

Gage Pair State USGS Gage ID 
Drainage 
Area (mi2) 

05 New Jersey 01403060 784 
05 New Jersey 01403150 2 
06 New Jersey 01445500 106 
06 New Jersey 01446000 36.7 
08 Maryland 01590000 8.5 
08 Maryland 01590500 6.9 
21 Michigan 04140500 117 
21 Michigan 04141000 1.2 
43 Washington 12082500 133 
43 Washington 12083000 70.3 
76 Texas 08164450 289 
76 Texas 08164503 178 

 

• Gage Pair 08 (GP08): Both the main and tributary watersheds are relatively 
small.  There are no instantaneous data available for the main stream and less 
than a year record on the tributary stream. 

• Gage Pair 21 (GP21): Tributary gage serves the smallest drainage area in the 
gage pair database.  There are no instantaneous data available for either the 
main or tributary streams. 
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Tributary watershed

Main watershed
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• Gage Pair 43 (GP43): Watersheds represent an intermediate size range. 

• Gage Pair 76 (GP76): Watersheds represent an intermediate to large size range. 

3.1 Annual Versus Partial Duration Series 
The use of annual series data dominates flood frequency analyses in the United States, 
although partial duration series may also useful.  When considering whether to focus on annual 
or partial duration series for this research, two concerns regarding partial duration series 
became apparent: 1) such data are less widely available and 2) the data are prepared 
inconsistently from state to state. 

The periods of record for the annual and partial duration series for the prototype gage pairs 06, 
43, and 76 and the corresponding number of peak observations are summarized in Table 3.2.   
In all cases, the partial duration series data available had a shorter period of record.  At one 
gage, 08164503 from Texas, the partial duration series record contained only annual peaks 
raising doubt as to whether or not this dataset represents a true partial duration series.  The 
other five partial duration series records have between 1.9 to 3.5 observations per year. 

Table 3.2. Instantaneous Annual and Partial Duration Series Availability 

 Main Gage Tributary Gage 
Coincident1 

Peaks Notes 
Gage Pair 06 01445500 01446000   

Annual Duration 
Series 

WY 1922-2006 
(n=85) 

WY 1923-1995, 
2003-2006 

(n=77) 

65% (n=50)  

Partial Duration 
Series 

WY 1922-1996 
(n=196 over 75 

yrs, 2.6/yr) 

WY 1923-1995 
(n=141 over 73 

yrs, 1.9/yr) 

36% (n=71) Some years in 
both gages only 
have annual 
peaks. 

Gage Pair 43 12082500 12083000   
Annual Duration 
Series 

WY 1943-2006 
(n=64) 

WY 1943-2006 
(n=64) 

53% (n=34)  

Partial Duration 
Series 

WY 1943-1995 
(n=187 over 53 

yrs, 3.5/yr) 

WY 1943-1995 
(n=136 over 53 

yrs, 2.6/yr) 

56% (n=105)  

Gage Pair 76 08164450 08164503   
Annual Duration 
Series 

WY 1978-2006 
(n=29) 

WY 1978-2006 
(n=29) 

45% (n=13)  

Partial Duration 
Series 

WY 1980-1991, 
1995 

(n=26 over 13 
yrs, 2/yr) 

WY 1980-1991, 
1995 

(n=13 over 13 
yrs, 1/yr) 

19% (n=5) Tributary does not 
appear to have a 
true partial 
duration dataset. 

1. For the purposes of this table, coincident peaks are said to occur when the annual peak on 
tributary stream occurs within plus or minus one day of the annual peak on the main stream. 

 

The frequency of “coincident” peaks in the annual and partial duration series data are also 
summarized in Table 3.2.  The definition of “coincident” is treated later in this chapter, but for the 
purpose of this discussion, a coincident peak is defined as whether the tributary peak in the 
same dataset occurs within plus or minus one day of the main stream peak.  For the New 
Jersey pair (Pair 06), 50 of the 77 annual peaks (65 percent) met this definition.  In the partial 
duration series, the frequency of coincidence dropped to 71 of 196 or 36 percent.  This drop in 

 18 



 

coincidence appears to result because portions of the partial duration series record at both 
gages appear to only contain annual peaks for several years. 

For the Washington pair (Pair 43) 34 of 64 annual peaks (53 percent) were coincident.  The 
percentage of coincidence in the partial duration series data was approximately the same at 56 
percent (105 of 187).  The partial duration series for both gages in this pair appear more 
complete than for the New Jersey pair. 

For the Texas pair (Pair 76), which has the shortest period of record of the three gage pairs 
analyzed, 13 of 29 annual peaks (45 percent) were coincident.  As with the New Jersey pair, the 
percentage of coincidence dropped for the partial duration series to 19 percent (5 of 26).  As 
was suspected of the New Jersey gage pair, the partial duration series record for the tributary 
(gage 08164503) does not appear to be a true partial duration series because it only contains 
annual peak data for the period of record.  Therefore, the frequency of coincidence is lower for 
the partial duration series, at least in part, because of the data are incomplete. 

Typically, partial duration series data are not as widely available and have not received the 
same scrutiny as have annual series data.  In the case of the New Jersey and Texas gage 
pairs, portions of the partial duration series appear to be populated with only the annual peak 
data for that year.  While that is possible for an isolated year, the pattern seems to hold for 
many consecutive years suggesting a variation in methodology for preparing the partial duration 
series data from state to state or even gage to gage.  By contrast, the Washington gage pair 
partial duration series data appear to be more consistently compiled.  Consequently, the 
frequency of coincidence does not substantially drop between the annual series and partial 
duration series as is observed for the New Jersey and Texas gage pairs. 

Annual series data are more consistently scrutinized, more widely distributed, and more 
frequently applied than partial duration series data.  In addition, widely applied hydrological 
methods for design are based on annual series data.  Therefore, annual series data are used in 
this research project. 

3.2 Definition of Coincident Flow 
A coincident flow pair is the flow on the main stream and the flow on the tributary stream that 
occur simultaneously.  When considering instantaneous flow records (measurements typically at 
fifteen to sixty minute intervals), the coincident flow at the complementary gage is the flow that 
occurs at the exact same time as the instantaneous peak is occurring on the primary gage.  
Similarly, when considering daily average flow records, the coincident flow at the 
complementary gage is the flow that occurs at the same day as the daily average peak is 
occurring on the primary gage. 

Because stream flow hydrographs may maintain flows close to peak values over a period of 
minutes, hours, or days, depending on the size and other characteristics of the watershed, as 
well as the intensity, duration, and spatial extent of the precipitation event, an overly strict 
definition of “coincident” might miss the true correlative relation between adjacent watersheds.  
Conversely, an overly loose definition might also result in a misinterpretation of correlation. 

To examine the potential implications of alternative definitions of coincident flow, twelve events, 
four from each prototype gage pair, with both instantaneous and mean daily data were selected 
for analysis.  The instantaneous peak flows are summarized in Table 3.3.  For each case, the 
main stream flow is the annual peak for that water year.  In most cases, the tributary flow is also 
an annual peak, though the peaks do not occur at exactly at the same time.  With the exception 
of the June 23, 2003 event for Gage Pair 06, the peaks occurred on the same calendar day. 
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Based on a fitted Log Pearson III distribution, the estimated return period for each peak flow for 
each gage is also summarized in Table 3.3.  In some cases, such as the October 9, 2005 event 
for Gage Pair 06, both flows exhibit an equivalent return period.  However, in other cases, such 
as the October 19, 1998 event for Gage Pair 76, substantially different return periods are 
observed.  The hydrographs for the events listed in Table 3.3 are shown in Figures 3.4a through 
3.6d. 

Table 3.3. Instantaneous Peak Data for Selected Events 

Pair 

Main stream Tributary 

Notes Date 

Peak 
Flow 
(ft3/s) 

Return 
Period 
(yrs) Date 

Peak 
Flow 
(ft3/s) 

Return 
Period 
(yrs) 

06 6/22/2003 1040 3 6/23/2003 530 2 Annual peak for both gages 
06 9/18/2004 1490 10 9/18/2004 1330 38 Annual peak for both gages 
06 4/3/2005 1520 11 4/3/2005 1080 16 Annual peak for both gages 
06 10/9/2005 1280 6 10/9/2005 798 6 Annual peak for both gages 
43 12/9/1987 9200 4 12/9/1987 7220 7 Annual peak for both gages 
43 10/16/1988 4130 <2 10/16/1988 389 <2 Annual peak for main 
43 1/9/1990 14500 19 1/9/1990 9440 26 Annual peak for both gages. 

IDA incomplete for tributary 
43 11/24/1990 11000 7 11/24/1990 9030 20 Annual peak for main, 

partial peak for tributary 
(partial peak dataset shows 
10000) 

76 10/14/1997 8760 4 10/14/1997 5860 3 Annual peak for main 
76 10/19/1998 63400 >500 10/19/1998 7110 3 Annual peak for both gages 

(IDA incomplete for main) 
76 5/3/2000 2610 2 5/3/2000 1740 <2 Annual peak for main (daily 

data missing for main) 
76 9/1/2001 10000 4 9/1/2001 10600 7 Annual peak for both gages 

(tributary peak greater than 
main peak) 

 
The June 2003 event for Gage Pair 06 is illustrated in Figure 3.4a.  The lines represent the 
instantaneous hydrograph and the individual points represent the mean daily flow values.  
Because of the watershed characteristics (drainage areas for the main and tributary gages are 
106 and 36.7 mi2) and storm characteristics, the instantaneous hydrograph and daily mean 
values are reasonably consistent.  However, neither the instantaneous nor daily peaks are  
“coincident” in the sense that they did not occur simultaneously even though the hydrographs 
appear to be generally coincident.  Both the instantaneous and mean daily peak for the main 
stream occurred on June 22, 2003 while both the instantaneous and mean daily peak for the 
tributary stream occurred the following day. 

An October 1988 event for Gage Pair 43 is depicted in Figure 3.5b.  In this case, the 
instantaneous and mean daily peaks for both the main and tributary gages all occur on the 
same day (October 16).  However, the instantaneous peak for gage 1208300 occurs several 
hours after the instantaneous peak on gage 12082500 with the value at that time at 
approximately 60 percent of the peak. 

Variations in the relative consistency between peaks in both the mean daily data and 
instantaneous data are shown in Figures 3.4a through 3.6d.  In addition, gaps in the 
instantaneous records are revealed in Figures 3.5c (Pair 43), 3.6a (Pair 76), and 3.6b (Pair 76).  
Data gaps and short records are two limitations on the use of instantaneous data. 
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Figure 3.4a. Gage Pair 06 June 20-28, 2003 

Figure 3.4b. Gage Pair 06 September 18-24, 2004 
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Figure 3.4c. Gage Pair 06 April 1-11, 2005 

Figure 3.4d. Gage Pair 06 October 8-20, 2005 
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Figure 3.5a. Gage Pair 43 December 9-16, 1987 

Figure 3.5b. Gage Pair 43 October 15-22, 1988 
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Figure 3.5c. Gage Pair 43 January 8-13, 1990 

Figure 3.5d. Gage Pair 43 November 23-28, 1990 
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Figure 3.6a. Gage Pair 76 October 12-17, 1997 

Figure 3.6b. Gage Pair 76 October 18-24, 1998 
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Figure 3.6c. Gage Pair 76 May 2-8, 2000 

Figure 3.6d. Gage Pair 76 August 31-September 5, 2001 
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As is documented in the next section, mean daily data will be used in this research to evaluate 
the potential joint probability strategies and their application.  Therefore, it is appropriate to 
define coincident flows as those mean daily flows from the main and tributary streams occurring 
on the same day.  Consideration was given to a broader definition that considered coincident 
peaks to be within plus or minus one day of each other.  Application of this definition did not 
substantially change the correlative relations. 

If sufficient instantaneous data had been available to use for this study, defining coincident as 
flows occurring at exactly the same instant may not have adequately represented the correlative 
relation between the two gages.  The figures in this section illustrate that some time window, 
possibly plus or minus two hours, would have been required to create representative coincident 
flow datasets.  

3.3 Mean Daily Versus Instantaneous Data 
Mean daily flow data were widely available; instantaneous data were not.  Therefore, it was 
important to determine whether mean daily data could reasonably be used as an alternative to 
instantaneous data.  If mean daily data behave similarly to instantaneous data, the daily data 
could be used for this research.  Three questions were addressed: 

1. Does the mean daily flow record correlate with instantaneous peaks?

2. Does an annual peak series derived from instantaneous records correlate with an
annual peak series derived from daily records?

3. Will paired main/tributary datasets show similar correlations whether derived from
daily versus instantaneous records?

The questions were addressed by detailed analysis of a selection of prototype watersheds 
intended to be representative of the paired database.  Additional gage pairs with smaller 
watersheds were also considered because it was suspected that if the use of daily data would 
be problematic, such problems would most likely be revealed with smaller watersheds.   

3.3.1 Mean Daily Flow/Instantaneous Peak Correlation 
Comparison of the instantaneous hydrographs with mean daily data in Figures 3.4a through 
3.6d revealed that in some cases, for example in Figure 3.4a, the mean daily and instantaneous 
peaks are relatively close, while in other cases, such as in Figure 3.5b they are not.  As might 
be expected, the mean daily flow values on peak days are substantially lower than the 
instantaneous peaks when there is a rapid rise or decline in flow.  However, the daily peaks do 
generally occur on the same day as the instantaneous peak and track much of the 
instantaneous hydrograph relatively well.  In order to use mean daily data, these data must 
retain the same statistical properties, for example, correlation relations, as the instantaneous 
data even if they are not the same numerical values. 

One measure is whether the set of instantaneous annual peaks is correlated with the mean 
daily data occurring on the same day.  The result of correlation (Pearson’s ρ) analyses for three 
prototype gages is shown in Table 3.4.  Overall, there is strong correlation between the annual 
peaks and the corresponding mean daily flow with the lowest correlation being 0.874. 
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Table 3.4. Correlation Between Instantaneous Annual Peaks and Same-day Mean 
Daily Flow 

Pair Gage Observations Correlation 
06 01445500 57 0.956 
06 01446000 57 0.979 
43 12082500 90 0.967 
43 12083000 90 0.874 
76 08164450 29 0.986 
76 08164503 29 0.998 

 

3.3.2 Annual Series Correlation 
Another means of evaluating whether the mean daily data can be relied on to retain the 
statistical character of the flood hydrographs is to correlate the annual peak series data from 
instantaneous data with the annual peak series data from mean daily data.  For this 
comparison, the instantaneous annual peak series data is the traditional series prepared by the 
USGS.  The annual peak series from mean daily data were derived from the daily flow record as 
part of this study.  The correlation is assessed through two quantitative measures, Pearson’s ρ 
and Kendall’s τ.  (See Appendix C.5 for a description of these measures.) 

Plots of annual peaks derived from instantaneous and mean daily data for the main and 
tributary gages of Gage Pair 05 are displayed in Figures 3.7 and 3.8, respectively.  A high 
correlation for the main stream gage, which has a drainage area of 784 mi2, is shown in Figure 
3.7.  Although correlation is indicated, a weaker relationship between instantaneous and daily 
data for the 2 mi2 tributary watershed is shown in Figure 3.8.  The same evaluation was 
completed for five additional gage pairs. The correlation plots for these pairs are found in 
Appendix F.  The results are summarized in Table 3.5 and include the p-value (level of 
significance) for the correlation estimates.  All of the p-values are low indicating the results are 
statistically significant. 

The correlation results are plotted against the watershed drainage area in Figure 3.9.  For 
Pearson’s ρ, the correlation is 0.8 or greater for all of the gages except for the two smallest 
watersheds.  Similarly, Kendall’s τ is 0.7 or greater for all but the two smallest watersheds.  
Although climate and other factors will influence these observations, the data suggest that the 
annual series based on daily data is highly correlated with annual series based on 
instantaneous data for watersheds greater than about 6.5 square miles.  Lower correlations, 
though not appreciably lower in some cases, are observed for smaller watersheds. 

Seven gages from seven gage pairs in the study database are smaller than 6.5 mi2.  The 
smallest watershed is the tributary in Gage Pair 21 at 1.2 mi2.    A concern with the use of daily 
data is a loss of information, particularly for smaller watersheds.  The results summarized in 
Table 3.5 and Figure 3.9 suggest that conclusions based on daily data for smaller watersheds 
should be cautiously interpreted, but that correlations are good for larger watersheds.  Further 
analyses of small watersheds were conducted (see Appendix F.1.3.2).  Based on these 
assessments, it was concluded that the use of daily data for smaller watersheds (1.0 to 6.5 mi2) 
was appropriate. 
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Figure 3.7. Daily and Instantaneous Peaks for 01403060 (Gage Pair 05) 

Figure 3.8. Daily and Instantaneous Peaks for 01403150 (Gage Pair 05) 
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Table 3.5. Daily Data Correlation with Instantaneous Data 

   
Drainage 
Area (mi2) 

Number of 
Obser-
vations Pearson’s ρ Kendall's τ p-value (ρ) p-value (τ) 

Gage 
Pair 05 

Main 784 67 0.978 0.846 0.00E+00 0.00E+00 
Tributary 2 27 0.690 0.382 6.90E-05 5.60E-03 

Gage 
Pair 06 

Main 106 85 0.970 0.868 0.00E+00 0.00E+00 
Tributary 36.7 42 0.802 0.705 1.80E-10 0.00E+00 

Gage 
Pair 08 

Main 8.5 42 0.909 0.699 0.00E+00 0.00E+00 
Tributary 6.9 25 0.920 0.858 7.50E-11 0.00E+00 

Gage 
Pair 21 

Main 117 32 0.987 0.907 0.00E+00 0.00E+00 
Tributary 1.2 27 0.677 0.644 1.10E-04 4.10E-06 

Gage 
Pair 43 

Main 133 64 0.968 0.834 0.00E+00 0.00E+00 
Tributary 70.3 64 0.874 0.718 0.00E+00 0.00E+00 

Gage 
Pair 76 

Tributary 289 29 0.986 0.927 0.00E+00 0.00E+00 
Tributary 178 29 0.998 0.969 0.00E+00 0.00E+00 

 

Figure 3.9. Daily–Instantaneous Correlation versus Drainage Area 

3.3.3 Paired Dataset Correlation 
Correlations between the Peak on Main (POM) and Peak on Tributary (POT) paired datasets 
generated from instantaneous data and those generated from daily data were compared.  Does 
the use of daily data obscure a correlation between the flows on the main stream and the 
tributary, if one exists? 

To compile the POM datasets using instantaneous data, the annual peak series for the main 
stream was identified from the annual series data.  In most years, the specific time of the peak 
is not recorded in the annual peak series data.  Therefore, the instantaneous record for the main 
stream was acquired and searched for the peak value.  The time of peak was recorded.  Next, 
the tributary instantaneous record was searched for the flow that occurred at the same time.  
These data are plotted in Figure 3.10 for Gage Pair 05.  With 21 data pairs in the POM dataset, 
the Pearson’s ρ is –0.062 and the Kendall’s τ is 0.203.  A correlation between the main and 
tributary streams is not apparent. 
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Similarly, the instantaneous annual peak series for the tributary was identified for the POT 
dataset.  The instantaneous record for the tributary was acquired and searched for the peak 
value.  The time of peak was recorded.  Next, the main stream instantaneous record was 
searched for the flow that occurred at the same time.  These data are summarized in Figure 
3.11 for Gage Pair 05.  With 27 data pairs in the POT dataset, the Pearson’s ρ is 0.062 and the 
Kendall’s τ is -0.076.  Again, a correlation between the main and tributary streams is not 
apparent for this dataset. 

Performing the analogous evaluation for Gage Pair 05 using daily data results in Figures 3.12 
and 3.13 for the POM and POT datasets, respectively.  As with the instantaneous data, neither 
figure suggests a correlation between the main and tributary gages. 

The correlation statistics for the instantaneous and mean daily data are summarized in Table 
3.6.  Although, the daily data correlation estimates differ numerically from the instantaneous 
data correlation estimates, both sets of analyses show low correlation between the two gages.  
This observation is reinforced by the high p-values in the table that indicate the estimates of 
Pearson’s ρ and Kendall’s τ are not significantly different from zero. 

Completing the same assessment on other gage pairs would likely be worthwhile, but there 
were insufficient instantaneous data available to systematically do so.  In the analysis of Gage 
Pair 05 the daily and instantaneous data both indicate no correlation between the tributary and 
main stream flows.  However, a broader conclusion that agreement can be expected in other 
pairs cannot be drawn from the analysis of one pair. 

Figure 3.10. Peak on Main Dataset (Instantaneous Data, Pair 05) 
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Figure 3.11. Peak on Tributary Dataset (Instantaneous Data, Pair 05) 

Figure 3.12. Peak on Main Dataset (Daily Data, Pair 05) 
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Figure 3.13. Peak on Tributary Dataset (Daily Data, Pair 05) 

 

Table 3.6. Correlation Between Main and Tributary (Gage Pair 05) 
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 POM POT POM POT 
n 21 21 27 27 
Pearson’s ρ -0.062 0.062 0.004 0.244 
Kendall's τ 0.203 -0.076 0.118 0.086 
p-value (ρ) 7.9E-01 7.9E-01 9.8E-01 2.2E-01 
p-value (τ) 2.1E-01 6.5E-01 4.0E-01 5.5E-01 
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4. Bivariate Distributions and Univariate Distributions
with Copulas

Bivariate distributions are a subset of multivariate distributions involving two random variables. 
A bivariate distribution is characterized by a distribution function, which is a scalar-valued 
function of a vector-valued random variable (in this case two random variables).  In the limit of 
each random variable, a univariate distribution function results, termed the marginal distribution. 
So, for a distribution function H(x,y) there are two marginal distributions, F(x) and G(y).  Most 
bivariate distributions have the same type of marginal distributions, that is, the same distribution 
function although with different parameter values.  An extended discussion of the bivariate 
normal and Gumbel distributions is provided in Appendix C.2. 

Copulas are a more general approach to bivariate (or multivariate) problems.  The term copula 
refers to a function, called the dependence function, used to link two univariate distributions in 
such a way as to represent the bivariate (or multivariate) dependence between the two random 
variables.  The potential of a copula is realized in that the copula is independent from the form 
of the univariate marginal distributions.  Therefore, the marginal distributions can be chosen 
such that they provide a best-fit of the univariate random variables, with the copula used to 
model the dependence behavior.  Many copulas are available for application to bivariate (and 
multivariate) random variables. Those of interest to hydrologists typically fall into the 
Archimedean family of copulas.  For two random variables, X and Y with cumulative distribution 
functions of FX(x) and FY(y), respectively, define U = FX(X) and V = FY(Y).  Then, U and V are 
uniformly distributed random variables and u will denote a specific value of U and v will denote a 
specific value of V.  An extended discussion of copulas is provided in Appendix C.3. 

The discussion of bivariate distributions and univariate distributions with copulas are combined 
in this chapter because of the similar nature of the analyses.  The bivariate distributions 
evaluated are the log-transformed bivariate normal distribution and the Gumbel bivariate 
distribution.  Along with these, the Gumbel-Hougaard (GH) and Frank copulas are examined. 
Development of the tools for application of bivariate distributions and univariate distributions 
with copulas is also described in the following sections. 

4.1 Fitting the Distributions 
Determination of which bivariate distributions or copulas might be most useful for addressing the 
joint probability problem depends, in part, on how well they fit observed data.  Fits were 
evaluated using four of the prototype gage pairs: 05, 06, 43, and 76.  Summary statistics for the 
annual peak series data for each gage were computed and listed in Table 4.1.  Computed 
statistics for the concurrent daily mean datasets for both the peak on main (POM) and peak on 
tributary (POT) data are listed in Table 4.2.  Significance values for various parameters are 
shown.  Where these p-values are less than 0.01, the hypothesis that the computed parameter 
is not zero can be accepted at the 99 percent confidence level.  The distribution fitting 
evaluation included: 1) a graphical evaluation/tabular application of the four methods and 2) a 
quantitative assessment of best-fit. 

4.1.1 Graphical Assessment and Application 
The fit of the data to the various distributions is assessed visually with a plot of the theoretical 
nonexceedance versus the empirical nonexceedance probability as computed by Equation C.39 
(Appendix C).  Figure 4.1 is an example of a plot using data from the POM dataset for Gage 
Pair 06.  Additional examples are presented in Appendix C.6.  A perfect fit is indicated when all 
data points fall on the 1:1 line. 
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Table 4.1. Annual Peak Summary Statistics 
 Pair 05 Pair 06 Pair 43 Pair 76 

Statistic 01403060 01403150 01445500 01446000 12082500 12083000 08164450 08164503 
Number of Observations (n) 67 27 85 42 64 64 29 29 
Mean 17267 109 880 496 5175 3831 7561 5376 
Standard Deviation 8189 58.6 351 246 2533 1647 8027 4192 
Skew 2.51 1.72 0.782 1.26 1.69 0.923 3.00 1.74 
         
Mean logs (natural) 9.67 4.56 6.7 6.09 8.45 8.16 8.57 8.33 
Stand. Dev. logs  (natural) 0.417 0.549 0.395 0.491 0.453 0.458 0.832 0.735 
Skew logs (natural) 0.183 -0.732 0.0371 -0.064 0.0626 -0.657 0.301 0.019 
         
Gumbel location, µ 13582 82.6 722 385 4035 3090 3949 3489 
Gumbel scale, σ 6385 45.7 274 192 1975 1284 6259 3268 
 

Table 4.2. Summary Statistics for Daily Data Concurrent Pair Datasets 
 Pair 05 Pair 06 Pair 43 Pair 76 
 POM POT POM POT POM POT POM POT 
Concurrent Events (n) 27 27 43 42 64 64 29 29 
Pearson's ρ 0.00173 0.244 0.639 0.778 0.724 0.722 0.553 0.832 
p-value 0.993 0.219 4.20E-06 1.28E-09 1.33E-11 1.58E-11 1.86E-03 2.27E-08 
Pearson's ρ (natural logs) 0.165 0.194 0.676 0.753 0.705 0.752 0.782 0.686 
p-value 0.409 0.331 6.42E-07 8.82E-09 7.99E-11 7.60E-13 5.29E-07 4.06E-05 
Kendall's τ 0.110 0.0856 0.518 0.547 0.504 0.534 0.660 0.484 
p-value 0.427 0.532 1.07E-06 3.67E-07 4.36E-09 4.86E-10 4.51E-08 2.35E-04 
Gumbel mixed model θ 0.003 0.388 0.962 n/a n/a n/a 0.843 n/a 
Gumbel logistic model m 1.001 1.150 1.664 2.122 1.903 1.897 1.496 2.440 
         
GH θ 1.124 1.094 2.075 2.208 2.016 2.146 2.941 1.938 
Frank θ 1.000 0.775 6.070 6.660 5.810 6.390 9.790 5.450 
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Figure 4.1. Fit for Gage Pair 06 (POM) 

The ordinate in Figure 4.1 is computed from Equation C.21 for the Gumbel mixed model 
bivariate distribution and a numerical integration of Equation C.26 for the log-normal bivariate 
distribution.  The ordinates for the copula methods are computed from Equation C.30 for the 
Gumbel-Hougaard copula and from Equation C.34 for the Frank copula. 

An example of the joint distribution for Gage Pair 06 (POM) is represented in Figure 4.2.  The 
abscissa and ordinate axes represent the cumulative nonexceedance probabilities for the main 
and tributary streams, respectively.  The curves represent isolines of nonexceedance 
probabilities for each methodology.  Taking the 0.7 isoline, for example, the probability of an 
event on the main stream and on the tributary being less than any given point on the line is 0.7.  
The individual data points are the estimated univariate nonexceedance values based on the 
Weibull plotting position formula. 

The joint distribution plot implies a symmetrical distribution.  However, the abscissa and ordinate 
axes only represent the univariate cumulative distribution function (CDF) for one of the 
variables.  The other axis represents the cumulative nonexceedance probability for the 
complementary data in the dataset, not the annual peak series.  For example, the abscissa 
represents the univariate CDF for the main stream because this dataset was created by 
identifying the annual peaks on the main stream and pairing those with the concurrent values on 
the tributary.  The concurrent tributary values may or may not be annual peaks.   Similarly, the 
ordinate axis for the POT dataset represents the univariate CDF while the abscissa does not.  
Without adjustment, treating both axes as univariate CDFs will result in an overestimate of the 
joint probability.  Additional discussion of this issue is provided in Section 4.4. 
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Figure 4.2. Joint Distribution for Gage Pair 06 (POM) 

For design, the exceedance probability isolines are desired.  Figure 4.3 is an example plot for 
Gage Pair 06 (POM) for the 10-percent exceedance probability.  That is, for an event to be 
considered more extreme the condition on both the main and the tributary would be equaled or 
exceeded.  (The abscissa and ordinate in Figure 4.3 represent nonexceedance probabilities as 
in Figure 4.2.) 

Table 4.3 is an example of possible combinations of events from which the critical condition for 
a particular design location is obtained.  The nonexceedance probabilities in the table are 
representative points calculated from the relation shown in Figure 4.3.  For example, a 
nonexceedance probability of 0.5 on the main stream corresponds to a nonexceedance 
probability of 0.893 for the log-normal curve.  (The numerical precision is achieved by 
computation, not reading the graph.)  The designer evaluates the possible combinations from 
the preferred method to determine the combination of main and tributary flows that results in the 
most severe conditions.  That combination is the design or “critical” combination. 

To determine the appropriate discharges for each possible combination, the probability of 
exceedance must be transformed to a discharge.  For the Gumbel mixed model bivariate 
distribution, the Gumbel univariate distribution is implicit and used for computing discharge.  
Similarly, for the normal bivariate distribution (log transformed), the univariate normal 
distribution is implicit and used for computing discharge. 

Since copulas are independent of a marginal distribution, any appropriate marginal distribution 
is selected to convert exceedance probabilities to discharges.  Log-Pearson Type III (LP3) 
would generally be a good choice because it is commonly taken to be applicable to flood flows 
and many of the USGS regression equations are based on quantiles determined using LP3. 
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Figure 4.3. 10-percent Exceedance Probability for Gage Pair 06 (POM) 

 

Table 4.3. 10-percent Exceedance Combinations for Gage Pair 06 (POM) 
 Main stream Tributary1 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Log-normal (1) 0.500 2.0 0.893 9.3 
Log-normal (2) 0.813 5.3 0.813 5.3 
Log-normal (3) 0.890 9.1 0.540 2.2 
     
Bivariate Gumbel (1) 0.500 2.0 0.890 9.1 
Bivariate Gumbel (2) 0.825 5.7 0.825 5.7 
Bivariate Gumbel (3) 0.880 8.3 0.636 2.7 
     
GH copula (1) 0.500 2.0 0.896 9.6 
GH copula (2) 0.846 6.5 0.846 6.5 
GH copula (3) 0.896 9.6 0.520 2.1 
     
Frank copula (1) 0.500 2.0 0.893 9.3 
Frank copula (2) 0816 5.4 0.816 5.4 
Frank copula (3) 0.890 9.1 0.557 2.3 

1Not the annual series nonexceedance probabilities and return periods.  These are conservative. 
 

4.1.2 Best-Fit Distribution 
The recommendation for a statistically based method should be based, in part, on which 
distribution best fits the observed data.  The root mean squared error (RMSE) was adopted to 
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compare the four strategies.  Because the focus of this study is on extreme events, only events 
with a probability of exceedance less than 0.5 were considered for this evaluation. 

Theoretical and empirical values for the bivariate distribution function, as illustrated in Figure 4.1 
for Gage Pair 06 (POM), were used for the comparison.  The RMSE results are summarized in 
Table 4.4 for each of the four strategies for both the POM and POT datasets.  Except for the 
bivariate Gumbel strategy, all 85 gage pairs are represented in the analysis.  The bivariate 
Gumbel (mixed model) is limited to paired data where the Pearson’s ρ is less the two-thirds, 
meaning this distribution was not defined for those gage pairs with a higher correlation. 

Table 4.4. Summary of RMSE Computations 

Parameter 

Bivariate 
Gumbel 
(POM) 

Bivariate 
Normal 
(POM) 

Gumbel-
Hougaard 

(POM) 
Frank 
(POM) 

Bivariate 
Gumbel 
(POT) 

Bivariate 
Normal 
(POT) 

Gumbel-
Hougaard 

(POT) 
Frank 
(POT) 

Average 0.036 0.034 0.027 0.035 0.033 0.033 0.026 0.034 
Median 0.038 0.032 0.023 0.030 0.031 0.030 0.023 0.031 
Minimum 0.016 0.013 0.010 0.015 0.014 0.013 0.009 0.015 
Maximum 0.064 0.076 0.079 0.080 0.069 0.109 0.071 0.086 
n 31 85 85 85 23 85 85 85 

For both the POM and POT datasets, the Gumbel-Hougaard copula results in the lowest 
average error of the four strategies, indicating the best fit.  The same result is observed for the 
median and minimum errors.  For the maximum error, the table reports that the bivariate 
Gumbel is the lowest for both the POM and POT datasets followed by the Gumbel-Hougaard.  
However, inspection of the data revealed that the RMSE error (Gage Pair 48) that is the largest 
for the Gumbel-Hougaard method is undefined for the bivariate Gumbel method because the 
Pearson’s ρ is greater than two-thirds.  Therefore, the RMSE analyses show that the Gumbel-
Hougaard copula is the best-fit alternative. 

4.2 Correlation Parameter Estimation 

4.2.1 Objective 
Application of bivariate distributions and copulas to the joint probability problem at ungaged 
watershed pairs requires an estimate of the correlation between the two watersheds.  The 
objective of this part of the research effort was to develop relations to estimate Pearson’s ρ and 
Kendall’s τ from watershed and meteorological characteristics.  

4.2.2 Data 
Observed values of Pearson’s ρ and Kendall’s τ were computed from the POM and POT 
datasets for each gage pair.  Recall that the POM dataset is the collection of annual peaks 
(daily data) on the main stream and the simultaneous (daily) flow on the tributary stream.  The 
POT dataset is the collection of annual peaks on the tributary stream and the simultaneous 
(daily) flow on the main stream.  Of interest is whether different conclusions regarding 
correlation result from the POM versus POT datasets. 

4.2.2.1 Watershed, Meteorological, and Hydrological Data 
Variables considered for testing in the analyses included watershed, meteorological, and 
hydrological parameters collected for this research.  They are: 
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1. Watershed variables 

1.1 Hydrologic unit code 

1.2 Main and tributary watershed area (AM and AT) 

1.3 Main and tributary longest path length 

1.4 Main and tributary longest path elevation drop 

1.5 Main and tributary longest path slope 

1.6 Main and tributary length-slope parameter (TLS) 

1.7 Main/tributary area ratio (RA) 

1.8 Length-slope parameter ratio (RLS) 

1.9 Total area (ATOT) 

1.10 Gage separation distance (dg) 

1.11 Watershed centroid separation distance (dc) 

2. Meteorological variables 

2.1 Mean annual precipitation (PM) (Average of value at main and tributary) 

2.2 24-h 2-yr storm (P24-2) (Average of value at main and tributary) 

3. Hydrological variables 

3.1 Main Q2/Tributary Q2 ratio 

3.2 Main Q100/Tributary Q100 ratio 

4.2.2.2 Estimated Correlation Parameters 

The observed correlation parameters, Pearson’s ρ and Kendall’s τ, were calculated from the 
POM and POT datasets for each gage pair.  The definition of these two parameters and the 
method to estimate each are provided in Appendix C.5.  Tabular summaries of the statistics for 
the two datasets are presented in Appendix B.4. 

Initial trials for developing relations for the correlation parameters revealed a broad scatter in the 
data.  Obvious relations with the watershed, meteorological, and hydrological data were not 
apparent.  This led to a close examination of selected gage pairs to consider if there would be 
any benefit to a modified definition of coincident event (same day).  A search for outliers was 
also conducted. 

The gage pairs selected for closer examination were identified by comparing the correlation 
parameters at each gage pair in the POM dataset with the values in the POT dataset.  Gage 
pairs with substantial differences were examined manually. 

A coincident event was defined as those flows occurring on the same day in both the tributary 
and main stream.  Broadening that definition to include the highest value in either a two or 
three-day window had been considered, but was rejected.  This decision was reconsidered to 
evaluate if any effect on the results might be expected.  In addition, discharge outliers were 
identified and removed. 

Changes made to the datasets because of these adjustments are detailed in Appendix C.7.1.  
The adjustments did not fundamentally change the analyses and the original definition of a 
coincident event was retained. 
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4.2.2.3 Correlation Matrix 
Several of the independent variables considered for these analyses are cross-correlated, 
suggesting that caution is required when selecting a suite of variables for the relations.  For 
example, area ratio and length-slope ratio are highly correlated and should not be used in the 
same relation.  Similarly, mean annual precipitation and mean 24-h 2-yr storm are significantly 
correlated. 

A correlation analysis between the dependent variables (ρ and τ) and independent variables 
(watershed, meteorological, and hydrological) was performed.  Results are summarized in 
Tables 4.5a and 4.5b.  Although none of the variables exhibit a correlation with Pearson’s ρ and 
Kendall’s τ greater than 0.5, the area ratio and length-slope parameter ratio exhibit the highest 
correlation with Pearson’s ρ and Kendall’s τ. 

4.2.3 Correlation Parameter Regressions 
Several analysis strategies were pursued to determine reasonable functional forms for 
estimating the correlation parameters Pearson’s ρ and Kendall’s τ: 

• Filtering.  Eliminating gage pairs based on characteristics that render them 
unsuitable for use in regression or considered to be outliers.  However, none 
were identified. 

• Functional adjustments.  Transforming gage pair characteristics to improve the 
estimating accuracy of the regression equations. 

• Grouping.  Subdividing the dataset into groups that might exhibit characteristics 
fundamentally different from group to group. 

• Alternative functional forms.  Experimenting with equation forms other than log-
space linear regression. 

• Best-fit and envelope relations. 

A detailed description of the analyses and their results is provided in Appendix C.7.  Overall, 
regression analysis success was limited as measured by equation R2 values.  However, 
equations developed after subdividing the data based on the size of the tributary watershed 
showed promise.  The two groups are based on the tributary (smaller) watershed area: 

1. Drainage area of the tributary watershed is less than 400 mi2.  If the drainage 
area of the larger watershed is greater than 2000 mi2, the larger watershed 
drainage area is taken as 2000 mi2. 

2. Drainage area of the tributary watershed is greater than 400 mi2. 

The recommended best-fit equations based on these two groups are summarized below.  
Separate equations were developed for the POM and POT datasets.  See Appendix C.7 for 
more detail. 
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Table 4.5a. Correlation Matrix for the Peaks on Main (POM) Dataset 

 

Main 
Area 
(mi2) 

Main 
Long. 
Path 

Length 
(mi) 

Main 
Long. 
Path 
Elev. 
Drop 
(ft) 

Main 
Long. 
Path 
Slope 
(ft/ft) 

Main 
LS 

Param-
eter (h) 

Trib. 
Area 
(mi2) 

Trib. 
Long. 
Path 

Length 
(mi) 

Trib. 
Long. 
Path 
Elev. 
Drop 
(ft) 

Trib. 
Long. 
Path 
Slope 
(ft/ft) 

Trib. LS 
Param-
eter (h) 

Area 
Ratio 
(nd) 

Total 
Area 
(mi2) 

Cen-
troid 

Sepa-
ration 
(mi) 

LS 
Param-

eter 
Ratio 
(nd) 

Mean 
Annual 
Precip. 

(in) 

Mean 
I24-2 
(in) 

Pear-
son's ρ 

Ken-
dall's τ 

Main Area (mi2) 1.000                  

Main Longest Path 
Length (mi) 0.806 1.000                 

Main Longest Path 
Elev. Drop (ft) -0.020 -0.133 1.000                

Main Longest Path 
Slope (ft/ft) -0.256 -0.431 0.610 1.000               

Main LS 
Parameter (h) 0.721 0.886 -0.366 -0.462 1.000              

Trib. Area (mi2) 0.183 0.356 -0.033 -0.195 0.297 1.000             

Trib. Longest Path 
Length (mi) 0.163 0.474 -0.045 -0.227 0.421 0.841 1.000            

Trib. Longest Path 
Elev. Drop (ft) -0.051 -0.157 0.786 0.463 -0.348 0.072 0.095 1.000           

Trib. Longest Path 
Slope (ft/ft) -0.117 -0.308 0.640 0.568 -0.433 -0.279 -0.356 0.606 1.000          

Trib. LS 
Parameter (h) 0.176 0.517 -0.290 -0.332 0.576 0.717 0.891 -0.231 -0.453 1.000         

Area Ratio (nd) 0.504 0.348 -0.004 -0.150 0.269 -0.205 -0.276 -0.136 0.073 -0.207 1.000        

Total Area (mi2) 0.979 0.833 -0.026 -0.281 0.740 0.379 0.327 -0.033 -0.168 0.313 0.432 1.000       

Centroid 
Separation (mi) 0.741 0.805 -0.112 -0.339 0.773 0.282 0.273 -0.127 -0.232 0.356 0.338 0.756 1.000      

LS Parameter 
Ratio (nd) 0.407 0.368 -0.094 -0.200 0.320 -0.222 -0.309 -0.180 0.062 -0.228 0.804 0.338 0.315 1.000     

Mean Annual 
Precip. (in) -0.116 -0.163 0.202 0.153 -0.155 -0.118 -0.148 0.161 0.222 -0.172 -0.025 -0.133 -0.126 -0.010 1.000    

Mean I24-2 (in) -0.023 0.066 -0.112 -0.198 0.119 -0.117 -0.028 -0.110 -0.143 0.027 0.010 -0.046 0.039 0.092 0.591 1.000   

Pearson's ρ -0.278 -0.389 0.232 0.319 -0.355 -0.039 0.026 0.261 0.096 -0.057 -0.433 -0.270 -0.384 -0.531 0.114 -0.023 1.000  
Kendall's τ -0.208 -0.331 0.153 0.257 -0.250 -0.018 0.048 0.153 0.012 0.023 -0.344 -0.199 -0.341 -0.375 0.154 0.093 0.852 1.000 
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Table 4.5b. Correlation Matrix for the Peaks on Tributary (POT) Dataset 

 

Main 
Area 
(mi2) 

Main 
Long. 
Path 

Length 
(mi) 

Main 
Long. 
Path 
Elev. 
Drop 
(ft) 

Main 
Long. 
Path 
Slope 
(ft/ft) 

Main 
LS 

Param-
eter (h) 

Trib. 
Area 
(mi2) 

Trib. 
Long. 
Path 

Length 
(mi) 

Trib. 
Long. 
Path 
Elev. 
Drop 
(ft) 

Trib. 
Long. 
Path 
Slope 
(ft/ft) 

Trib. LS 
Param-
eter (h) 

Area 
Ratio 
(nd) 

Total 
Area 
(mi2) 

Cen-
troid 

Sepa-
ration 
(mi) 

LS 
Param-

eter 
Ratio 
(nd) 

Mean 
Annual 
Precip. 

(in) 

Mean 
I24-2 
(in) 

Pear-
son's ρ 

Ken-
dall's τ 

Main Area (mi2) 1.000                  

Main Longest Path 
Length (mi) 0.806 1.000                 

Main Longest Path 
Elev. Drop (ft) -0.020 -0.133 1.000                

Main Longest Path 
Slope (ft/ft) -0.256 -0.431 0.610 1.000               

Main LS 
Parameter (h) 0.721 0.886 -0.366 -0.462 1.000              

Trib. Area (mi2) 0.183 0.356 -0.033 -0.195 0.297 1.000             

Trib. Longest Path 
Length (mi) 0.163 0.474 -0.045 -0.227 0.421 0.841 1.000            

Trib. Longest Path 
Elev. Drop (ft) -0.051 -0.157 0.786 0.463 -0.348 0.072 0.095 1.000           

Trib. Longest Path 
Slope (ft/ft) -0.117 -0.308 0.640 0.568 -0.433 -0.279 -0.356 0.606 1.000          

Trib. LS 
Parameter (h) 0.176 0.517 -0.290 -0.332 0.576 0.717 0.891 -0.231 -0.453 1.000         

Area Ratio (nd) 0.504 0.348 -0.004 -0.150 0.269 -0.205 -0.276 -0.136 0.073 -0.207 1.000        

Total Area (mi2) 0.979 0.833 -0.026 -0.281 0.740 0.379 0.327 -0.033 -0.168 0.313 0.432 1.000       

Centroid 
Separation (mi) 0.741 0.805 -0.112 -0.339 0.773 0.282 0.273 -0.127 -0.232 0.356 0.338 0.756 1.000      

LS Parameter 
Ratio (nd) 0.407 0.368 -0.094 -0.200 0.320 -0.222 -0.309 -0.180 0.062 -0.228 0.804 0.338 0.315 1.000     

Mean Annual 
Precip. (in) -0.116 -0.163 0.202 0.153 -0.155 -0.118 -0.148 0.161 0.222 -0.172 -0.025 -0.133 -0.126 -0.010 1.000    

Mean I24-2 (in) -0.023 0.066 -0.112 -0.198 0.119 -0.117 -0.028 -0.110 -0.143 0.027 0.010 -0.046 0.039 0.092 0.591 1.000   

Pearson's ρ -0.224 -0.293 0.166 0.268 -0.269 -0.031 0.079 0.233 0.082 -0.002 -0.335 -0.217 -0.289 -0.375 0.163 0.200 1.000  
Kendall's τ -0.134 -0.170 0.145 0.254 -0.179 0.034 0.136 0.173 -0.041 0.055 -0.280 -0.119 -0.145 -0.273 0.136 0.176 0.828 1.000 
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For the 73 watershed pairs in Group One, drainage area ratio was recommended as the 
independent variable to estimate correlation at ungaged sites.  The best-fit equation for 
estimating Pearson’s ρ for the POM case was (R2 = 0.443): 

 ( ) 20.0
AR96.0 −=ρ  (4.1) 

where, 
 ρ = Pearson’s ρ, dimensionless 
 RA = drainage area ratio, dimensionless 
 
The best-fit equation for estimating Pearson’s ρ for the POT case was (R2 = 0.310): 

 ( ) 10.0
AR86.0 −=ρ  (4.2) 

 
For Kendall’s τ, the POM analysis resulted in the best-fit equation of (R2 = 0.340): 

 ( ) 15.0
AR69.0 −=τ  (4.3) 

where, 
 τ = Kendall’s τ, dimensionless 
 
The best-fit equation for estimating τ for the POT case was (R2 = 0.255): 

 ( ) 11.0
AR66.0 −=τ  (4.4) 

 
All of the coefficients and exponents in Equations 4.1 through 4.4 have p-values less than 0.05 
except for the 0.96 coefficient in Equation 4.1.  Therefore, the coefficient for Equation 4.1 is not 
considered significantly different from one. 

The main stream drainage area ranged from 8.5 to 8,753 square miles and the drainage area 
ratio ranged from 1 to 474.  Capping the main stream drainage area for Group One was 
recommended because area ratios computed using these larger basins appeared to be 
misleading in predicting correlation between the main and tributary flows.  This observation 
suggests that there is a practical limit for drainage area ratio beyond which there is no further 
decrease in correlation between confluent drainage areas.  This practical limit might relate to the 
spatial extent of storms causing rare flood events.  (The R2 for the regression relation also 
improved.) 

The adjusted dataset, with the capping implemented, included main stream drainage areas 
ranging from 8.5 to 2,000 square miles and drainage area ratios ranging from 1 to 400.  
Furthermore, if RA is estimated to be greater than 400, then 400 should be used in the 
equations. 

The study database did not include gage pairs where the smaller drainage area was less than 
one square mile.  Therefore, the results of this research might not apply for watershed pairs with 
this characteristic.  However, a professional engineer must exercise judgment on a site-specific 
basis to determine if Equations 4.1 through 4.4 might be appropriate or if alternative tools exist 
for such cases.  It might be reasoned, for example, that treating a tributary watershed with a 
drainage area less than one square mile as one square mile when computing the drainage area 
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ratio would result in a lower area ratio and, therefore, a conservative estimate of the correlation 
parameter. 

For the 12 watershed pairs in Group Two, a meteorological parameter was more useful than 
drainage area for estimating the correlation parameters.  The hypothesis is that these 
watersheds are sufficiently large that the entire drainage area does not contribute to coincident 
events to the same degree as the drainage area of smaller watersheds.  Mean annual 
precipitation, PM, was selected as the independent variable.  See Appendix C.7 for more detail. 

The best-fit equation for estimating Pearson’s ρ for the POM dataset was (R2 = 0.651): 

 ( ) 75.0
MP046.0=ρ  (4.5) 

where, 
 PM = Mean annual precipitation, in 
 
For the POT dataset, the best-fit equation for Pearson’s ρ was (R2 = 0.593): 

 ( ) 42.0
MP16.0=ρ  (4.6) 

The best-fit equation for estimating Kendall’s τ for the POM dataset was (R2 = 0.531): 

 ( ) 76.0
MP035.0=τ  (4.7) 

For the POT dataset, the best-fit equation for Kendall’s τ was (R2 = 0.503): 

 ( ) 46.0
MP12.0=τ  (4.8) 

All of the coefficients and exponents in Equations 4.5 through 4.8 have p-values less than 0.05. 

For Group Two watershed pairs, the mean annual precipitation, PM, ranges from 15 to 52 in.  If 
PM is estimated to be greater than 52 inches, then 52 should be used in the equation.  If PM is 
estimated to be less than 15 inches, then 15 should be used.  Although outside the range of 
mean annual precipitation in the study database, Equations 4.5 through 4.8 are still considered 
valid.  For PM less than 15, the estimated correlation is anticipated to be conservative and for PM 
greater than 52, the estimated correlation approaches one and further increases in correlation 
will not change the specified combinations significantly.   

In addition to the best-fit equations, envelope equations were also developed as described in 
Appendix C.7.6.  Because the best-fit equations exhibit relatively low R2 values, envelope 
equations were developed as a design option where the designer could be confident that the 
correlation would not be underestimated.  The use of these equations for design is described in 
the applications guides in Appendix G and Appendix H.  See Appendix F.2 for a discussion of 
the implications of watershed regulation. 

The recommended envelope equations take the form of the best-fit equations with a constant to 
increase the estimated correlation estimate.  The constant was selected to envelope 90 percent 
of the data. 

Group One, Pearson’s ρ, POM: 

 ( ) 19.0R96.0 20.0
A +=ρ −  (4.9) 

Group One, Pearson’s ρ, POT: 

 ( ) 18.0R86.0 10.0
A +=ρ −  (4.10) 
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Group One, Kendall’s τ, POM: 

 ( ) 23.0R69.0 15.0
A +=τ −  (4.11) 

Group One, Kendall’s τ, POT: 

 ( ) 23.0R66.0 11.0
A +=τ −  (4.12) 

Group Two, Pearson’s ρ, POM: 

 ( ) 20.0P046.0 75.0
M +=ρ  (4.13) 

Group Two, Pearson’s ρ, POT: 

 ( ) 13.0P16.0 42.0
M +=ρ  (4.14) 

Group Two, Kendall’s τ, POM: 

 ( ) 21.0P035.0 76.0
M +=τ  (4.15) 

Group Two, Kendall’s τ, POT: 

 ( ) 09.0P12.0 46.0
M +=τ  (4.16) 

Coincident flooding events are the result of the complex interaction between the storm and 
watershed characteristics.  Therefore, low R2 values for predictive equations for correlation 
between watershed pairs is not surprising.  The availability of both best-fit and envelope 
equations allows a designer to assess the risks at a given site and choose between best-fit and 
more conservative envelope equations. 

The following observations are apparent from the effort to develop regression relations: 

1. “Observed” correlations computed from the gage pair data are sensitive to 
outliers, record length, and other limitations in the record.  This sensitivity 
contributed to the difficulty in defining regression relations.  However, the 
observed correlations did not seem to be sensitive to changing the window for 
defining a peak from 1 day to 3 days. 

2. In many cases, filtering of the data improves the coefficient of determination (R2), 
that is, the amount of variance described by the model, but does not substantially 
change the regression model parameters.  This suggests the model parameters 
are robust. 

4.2.4 Correlation Parameter Groupings 
An alternative method of estimating the correlation parameter for a pair of confluent watersheds 
based on groupings of data was also evaluated.  (See Appendix C.8 for detailed description of 
the analyses.)  After several trials, the data were grouped based on whether the area ratio was 
greater or less than 7 and the total drainage area was greater or less than 350 mi2. 

The number of observations, the mean, standard deviation, and the 90th percentile (90% of the 
values in the group are less than) for each subgrouping are summarized in Tables 4.6 and 4.7 
for Pearson’s ρ and in Tables 4.8 and 4.9 for Kendall’s τ.  Correlation between the main and 
tributary, expressed by Pearson’s ρ or Kendall’s τ, decreases with increasing area ratio and 
increasing total area.  Because of the small number of observations for RA > 7 and ATOT < than 
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350 mi2 comparisons between this grouping and others are not meaningful.  The same pattern 
is observed in all four tables. 

A t-test was performed to determine whether the mean values represent distinct populations.  
Except for those comparisons that included the grouping with only 2 observations (RA > 7 and 
ATOT < 350 mi2), the differences were significant at the 5-percent level (Appendix C.8). 

Table 4.6. Pearson’s ρ (POM) 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.85 0.74 
Standard Deviation 0.11 0.18 
90th Percentile 0.95 0.93 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.88 0.50 
Standard Deviation - 0.24 
90th Percentile - 0.75 

Table 4.7. Pearson’s ρ (POT) 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.84 0.76 
Standard Deviation 0.12 0.14 
90th Percentile 0.95 0.91 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.67 0.63 
Standard Deviation - 0.17 
90th Percentile - 0.85 

Table 4.8. Kendall’s τ (POM) 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.68 0.57 
Standard Deviation 0.12 0.17 
90th Percentile 0.81 0.77 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.56 0.39 
Standard Deviation - 0.14 
90th Percentile - 0.54 

Table 4.9. Kendall’s τ (POT) 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.65 0.58 
Standard Deviation 0.13 0.15 
90th Percentile 0.80 0.75 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.44 0.45 
Standard Deviation - 0.13 
90th Percentile - 0.57 
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The recommended correlation parameters are summarized in Table 4.10.  A designer would 
determine if a representative (mean) or envelope (90th percentile) estimate is appropriate given 
the risks involved in the design.  If a representative correlation is most appropriate, the mean 
value from the applicable group is selected.  If a conservative analysis is appropriate, the 
envelope value is recommended. 

For Pearson’s ρ, the designer must also consider whether the POM or POT value is most 
appropriate.  The designer can choose to select the more conservative (largest) of the two.   For 
Kendall’s τ, there is little difference between the results of the POM and POT analyses, so the 
largest of the two is recommended and included in Table 4.10. 

Table 4.10. Correlation Parameters Based on Grouping 

Parameter Method 
Drainage Area 

Ratio ATOT < 350 mi2 ATOT > 350 mi2 

Pearson’s ρ 
(POM) 

Representative RA < 7 0.85 0.74 
RA > 7 - 0.50 

Envelope RA < 7 0.95 0.93 
RA > 7 - 0.75 

Pearson’s ρ 
(POT) 

Representative RA < 7 0.84 0.76 
RA > 7 - 0.63 

Envelope RA < 7 0.95 0.91 
RA > 7 - 0.85 

Kendall’s τ 
(POM and 
POT) 

Representative RA < 7 0.68 0.58 
RA > 7 - 0.45 

Envelope RA < 7 0.81 0.77 
RA > 7 - 0.57 

 

There were insufficient data available to estimate correlation where drainage area ratio exceeds 
7 and total drainage area is less than 350 mi2.  It might be reasonable to expect that estimates 
for watershed pairs in this group would be less than estimates for the group with the same total 
area, but an area ratio less than 7.  It might also be reasonable to expect that estimates in this 
group would exceed estimates for the group with the same area ratio, but a greater total area.  
Rather than speculating, it is recommended that if a watershed pair has a drainage area ratio 
greater than 7 and a total area less than 350 mi2, the correlation parameter be taken from the 
group where drainage area ratio is less than 7 and the total area is less than 350 mi2.  This is 
expected to be a conservative approach. 

4.2.5 Recommended Method 
Two methods for estimating correlation parameters for ungaged watershed pairs were 
developed; one is based on regression equations and one is based on data groupings.  Both 
methods are considered valid and a designer may choose to use either based on discretionary 
judgment or unique characteristics of a site.  However, if a designer lacks a preference the data 
groupings method is recommended. 

As described in Appendix C.8.3, the regression method exhibited slightly smaller root mean 
square errors in some cases when estimating the correlation parameters for the study database.  
However, when the designer has no preference the data groupings method is recommended for 
three reasons: 
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1. It is slightly simpler to apply especially for Kendall’s τ where the distinction 
between POM and POT conditions is eliminated. 

2. No adjustments to the data are required before or after computing drainage area 
ratio. 

3. It is consistent with the conditional probability matrix selection table used in the 
total probability method (Chapter 5).  Both the selection table and the data 
groupings method are based on area ratio and total drainage area. 

4.3 Event Combination Development 
Using the Gumbel-Hougaard copula and noting that copulas are independent of the marginal 
distributions, potential combinations for the 10-, 25-, 50-, 100-, and 500-yr joint design 
frequency events can be directly computed.  The equations needed are the dependence 
parameter and copula for Gumbel-Hougaard.  The dependence parameter is calculated using 
Equation C.31 and the copula is provided in Equation C.30 (Appendix C.3.1).   The exceedance 
probability equation, Equation C.8 from Appendix C, is used to determine combinations of 
events that represent the same exceedance probability. 

For example, consider that Kendall’s τ has been estimated as 0.5 and calculate the tributary 
return period given the 100-yr joint return period (0.01 exceedance probability) is of interest and 
the main stream exceedance probability is 0.02.  Equation C.31 may be written to compute the 
generating function, θ: 

0.2
5.01

1
1

1
=

−
=

τ−
=θ  

The tributary exceedance probability is calculated by simultaneously applying the general 
exceedance probability equation (Equation C.8) and the Gumbel-Hougaard copula (Equation 
C.30).  Equation C.8 is repeated below with the following substitutions (see Appendix C for 
more detailed explanation: Cθ(u,v) = H(x,y), u = FX(x), and v = FY(y).  

)v,u(Cvu1=P y,x θ
∩ +−−  

∩
y,xP  is the joint exceedance probability; u is the marginal probability of nonexceedance for the 

main stream; v is the marginal probaility of nonexceedance for the tributary stream, and Cθ(u,v) 
is the copula.  Substituting the values for the example, 01.0P y,x =∩  and u = 0.98, yields the 
following relation with two unknowns: 

)v,u(Cv98.01=01.0 θ+−−  

The Gumbel-Hougaard equation (Equation C.30) provides a second relation.  For the example, 
the known values of u and θ are substituted as follows: 

( ) ( ) ( )[ ]{ } ( ) ( )[ ]{ }0.2
11 0.20.2 )vln()98.0ln(exp)vln()uln(expv,uC −+−=−+−−= θθθ

θ  

Trial and error solution for the example results in v = 0.9853 (nonexceedance probability) for the 
tributary.  Equivalently, this is an exceedance probability of 1-0.9853 = 0.0147 and a return 
period of 1/0.0147 = 68 years.  Therefore, when Kendall’s τ = 0.5, the combination of a 50-yr 
event on the main stream and a 68-yr event on the tributary stream represents an event with a 
joint exceedance probability of 0.01.  
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Results for the 10-, 25-, 50-, 100-, and 500-yr joint design frequency events for a range of 
Kendall’s τ estimates are provided in Tables 4.11, 4.12, 4.13, 4.14, and 4.15, respectively.  If 
Kendall’s τ is estimated by one of the regression equations, the result is rounded to the nearest 
0.1.  Then, the appropriate table (4.11 through 4.15) is consulted to determine the potential 
combinations for hydraulic analysis.  The column labeled “equal” represents the return period on 
both the main and tributary streams that is equivalent to the joint return period. 

Potential combinations are also provided in Tables 4.16, 4.17, 4.18, 4.19, and 4.20 based on 
the Kendall’s τ estimates generated from the groupings analysis.  Within each table, the row 
labeled with the value of Kendall’s τ for the project site contains combinations of events the 
designer might analyze with the hydraulic model to determine which is most critical for the 
design objective.  The column labeled “equal” represents the return period on both the main and 
tributary streams that is equivalent to the joint return period. 

Use of the combination tables is illustrated by continuing the previous example where a joint 
probability of exceedance of 0.01 (100-yr) is of interest and the Kendall’s τ has been determined 
to be 0.5.  The designer consults Table 4.14 for the 100-yr joint exceedance probability.  
Interpreting the top heading of numeric values as main stream return periods, the corresponding 
tributary stream return periods are taken from the row for τ = 0.5.  The following combinations 
are apparent (main, tributary): (2,100); (5,98); (10,95); (25,87); (50,68), (59,59).  Next, the roles 
of main stream and tributary stream are reversed resulting in the following additional 
combinations (main, tributary): (100,2); (98,5); (95,10); (87,25); and (68,50).  The process of 
selecting and evaluating combinations is illustrated in detail in Appendix G. 

Table 4.11. 10-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 Equal 
0.2 9 7 3 4 
0.3 10 8 5 5 
0.4 - 9 6 6 
0.5 - 10 8 6 
0.6 - - 9 7 
0.7 - - 10 8 
0.8 - - - 9 
0.9 - - - 9 

Table 4.12. 25-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 Equal 
0.2 23 20 13 7 8 
0.3 24 22 17 11 11 
0.4 25 24 21 16 13 
0.5 - 25 23 20 15 
0.6 - - 24 22 17 
0.7 - - 25 24 19 
0.8 - - - 25 21 
0.9 - - - - 23 
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Table 4.13. 50-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 25 Equal 
0.2 47 41 30 21 7 15 
0.3 49 46 39 31 15 20 
0.4 50 49 45 40 25 25 
0.5 - 50 48 45 34 30 
0.6 - - 50 48 42 34 
0.7 - - - 50 47 39 
0.8 - - - - 49 43 
0.9 - - - - 50 46 

 

Table 4.14. 100-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 25 50 Equal 
0.2 95 86 67 53 32 12 28 
0.3 98 94 84 74 54 28 39 
0.4 100 98 94 88 73 48 49 
0.5 - 100 98 95 87 68 59 
0.6 - - 100 99 95 83 68 
0.7 - - - 100 99 93 77 
0.8 - - - - 100 99 85 
0.9 - - - - - 100 93 

 

Table 4.15. 500-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 25 50 100 Equal 
0.2 485 452 395 354 294 239 167 132 
0.3 496 486 462 439 398 353 286 189 
0.4 499 497 489 480 459 431 381 243 
0.5 - 500 498 496 488 474 445 293 
0.6 - - - 500 498 494 481 341 
0.7 - - - - 500 499 497 385 
0.8 - - - - - - 500 426 
0.9 - - - - - - 500 464 
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Table 4.16. 10-yr Joint Return Periods (Groupings) 

    
Return Period on One 

Stream 

   
Kendall’s 

τ 1.25 2 5 Equal 

Best-fit 

RA < 7 ATOT < 350 mi2 0.68 - 10 9 8 
RA < 7 ATOT > 350 mi2 0.59 - 10 9 7 
RA > 7 ATOT < 350 mi2      
RA > 7 ATOT > 350 mi2 0.45 10 9 7 6 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - 10 9 
RA < 7 ATOT > 350 mi2 0.77 - - 10 8 
RA > 7 ATOT < 350 mi2      
RA > 7 ATOT > 350 mi2 0.57 - 10 8 7 

Table 4.17. 25-yr Joint Return Periods (Groupings) 
    Return Period on One Stream 

   
Kendall’s 

τ 1.25 2 5 10 Equal 

Best-fit 

RA < 7 ATOT < 350 mi2 0.68 - - 25 24 19 
RA < 7 ATOT > 350 mi2 0.59 - 25 24 22 17 
RA > 7 ATOT < 350 mi2       
RA > 7 ATOT > 350 mi2 0.45 25 24 22 18 14 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - -  25 22 
RA < 7 ATOT > 350 mi2 0.77 - - - 25 21 
RA > 7 ATOT < 350 mi2       
RA > 7 ATOT > 350 mi2 0.57  25 24 22 17 

Table 4.18. 50-yr Joint Return Periods (Groupings) 
    Return Period on One Stream 

   
Kendall’s 

τ 1.25 2 5 10 25 Equal 

Best-fit 

RA < 7 ATOT < 350 mi2 0.68 - - - 50 48 38 
RA < 7 ATOT > 350 mi2 0.59 - 50 49 48 40 33 
RA > 7 ATOT < 350 mi2        
RA > 7 ATOT > 350 mi2 0.45 50 49 47 43 30 27 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - -  50 43 
RA < 7 ATOT > 350 mi2 0.77 - - - 50 49 41 
RA > 7 ATOT < 350 mi2        
RA > 7 ATOT > 350 mi2 0.57 - 50 49 48 40 33 
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Table 4.19. 100-yr Joint Return Periods (Groupings) 
    Return Period on One Stream 

   
Kendall’s 

τ 1.25 2 5 10 25 50 Equal 

Best-fit 

RA < 7 ATOT < 350 mi2 0.68 - - - 100 98 92 75 
RA < 7 ATOT > 350 mi2 0.59 - - 100 98 94 80 67 
RA > 7 ATOT < 350 mi2         
RA > 7 ATOT > 350 mi2 0.45 100 99 96 92 80 58 54 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - - 100 99 86 
RA < 7 ATOT > 350 mi2 0.77 - - -  100 98 83 
RA > 7 ATOT < 350 mi2         
RA > 7 ATOT > 350 mi2 0.57 - 100 99 98 93 79 66 

 

Table 4.20. 500-yr Joint Return Periods (Groupings) 
    Return Period on One Stream 

   
Kendall’s 

τ 1.25 2 5 10 25 50 100 Equal 

Best-fit 

RA < 7 ATOT < 350 mi2 0.68 - - - - 500 499 495 376 
RA < 7 ATOT > 350 mi2 0.59 - - 500 499 497 491 476 331 
RA > 7 ATOT < 350 mi2          
RA > 7 ATOT > 350 mi2 0.45 500 499 495 490 477 456 417 269 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - - - - 500 430 
RA < 7 ATOT > 350 mi2 0.77 - - - - - 500 499 414 
RA > 7 ATOT < 350 mi2          
RA > 7 ATOT > 350 mi2 0.57 - - 500 499 496 490 473 327 

4.4 Complementary Data in Paired Datasets 
As noted in Table 4.3, the tributary nonexceedance probabilities and return periods are not 
based on the annual peak series, but are based on a series of observations that are coincident 
with the peak series on the main stream.  In this POM example, the main stream gage is the 
primary gage and the tributary gage is the complementary gage.  This distinction between the 
annual peak series of data and the complementary series of data might be important in some 
cases when the designer converts a nonexceedance probability (or return period) to a discharge 
for hydraulic analysis.  The importance of this issue is illustrated using two gages from the 
research database. 

Compilation of the POM datasets started with the annual peak series of the main stream 
(primary) gage and then paired each of those observations with the same day observations from 
the tributary stream (complementary) gage.  Similarly, compilation of the POT datasets started 
with the annual peak series of the tributary (primary) gage and then paired each of those 
observations with the same day observations from the main stream (complementary) gage. 

Three different annual series (all based on mean daily flow) for the main stream gage 
(01403060) from Gage Pair 05 are displayed in Figure 4.4.  The series labeled “annual” is the 
complete record of annual maximum peaks (n=67) available for the gage.  The series labeled 
“POM” are the values in the peak on main (POM) dataset.  Since this gage is the primary gage 
in Gage Pair 05 when compiling the POM dataset, the POM series is also composed only of 
annual peaks.  However, a smaller number of observations (n=27) are represented because the 
periods of record between the main and tributary gages must overlap.  Even though the number 
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of observations is much less, the plotting positions for the Annual and POM series describe the 
same curve.  The series label “POT” represents the complementary data from gage 01403060 
that is coincident with the annual peaks from the tributary gage, which is the primary gage when 
the POT dataset is compiled.  The plotting positions for this series follow a much different curve 
as shown in the figure. 

When a joint probability strategy produces a probability of exceedance (or nonexceedance), it 
must be correctly interpreted to infer the appropriate discharge for design.  Using gage 
01403060 (Figure 4.4) as an example, a 0.1 exceedance probability on the POT series indicates 
a discharge of 12,500 ft3/s while that same exceedance probability on the annual series 
indicates a discharge twice the magnitude at 25,000 ft3/s. 

The same analysis for the tributary gage from Gage Pair 06 (01446000) is summarized in 
Figure 4.5.  In this case, it is expected that the annual (n=42) and the POT (n=42) describe the 
same relation.  In fact, they are identical.  However, the POM series (n=43), where the data are 
from the complementary gage, again shows a different curve, though not as distinct as 
previously observed. 

Gage pair 05 has a much lower correlation than Gage Pair 06, which may explain the much 
greater difference between the curves for Gage Pair 06.  The higher correlation in Gage Pair 06 
makes it more likely that the same annual peaks will be included in all three series.  An attempt 
was to try to relate the difference between the annual series and the complementary data series 
as a function of correlation between the paired watersheds.  However, no relations were 
derived. 

Figure 4.4. Flood Frequency Curves for Gage 01403060 (GP05) 
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Figure 4.5. Flood Frequency Curves for Gage 01446000 (GP06) 
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5. Total Probability Method 
The overall process of applying the total probability method is summarized in Appendix D.1.  
This chapter addresses the development of conditional probability matrices (CPMs) for use 
within the context of the total probability method.  CPMs were developed from the expected 
correlation between the main and tributary streams derived from analyses of the gage pair 
database. 

The data included annual maximum flow series records for 170 gages, as well as, peak on main 
(POM) and peak on tributary (POT) coincident flow datasets for 85 gage pairs.  The total 
number of flow pairs included in the dataset was 3,382 for the POM database and 3,348 for the 
POT database.  All data were derived from the mean daily flow records, as previously 
described. 

5.1 Pair Count Matrices 
Pair count matrices are a data presentation tool that facilitates assessment of coincident flow 
data.  Annual exceedance probability (AEP) pair count matrices were developed for each gage 
pair.  Each row and column in a matrix is based on a “bin” that holds a range of AEP values.  
Bin ranges were defined to provide a useful categorization of flows and are summarized in 
Table 5.1. 

Table 5.1. AEP Bins 
Bin number Bin AEP Bin AEP range 

1 0.500 0.316 > AEP >= 1.000 
2 0.200 0.141 > AEP >= 0.316 
3 0.100 0.063 > AEP >= 0.141 
4 0.040 0.028 > AEP >= 0.063 
5 0.020 0.014 > AEP >= 0.028 
6 0.010 0.004 > AEP >= 0.014 
7 0.002 0.000 > AEP >= 0.004 

 

The pair count matrices for Gage Pair 06 are summarized in Tables 5.2a and 5.2b for the POM 
and POT databases, respectively.  Highly correlated flows result in most flow pairs near the 
diagonal of the matrix.  Uncorrelated flows result in most flow pairs in the first column (POM) or 
first row (POT) of the matrix.  Gage Pair 06 exhibits a high degree of correlation with many flow 
pairs located on the diagonal.  Additional examples of gage pair count matrices are found in 
Appendix D. 

Aggregate pair count matrices (one matrix for the POM case and one matrix for POT case) were 
also generated by summing the pair count matrices for multiple gage pairs.  An overview of the 
behavior of multiple gage pairs might become apparent from viewing the aggregate matrices as 
a whole or by subdividing the aggregate pair count matrices by various filter criteria.  The goals 
of applying filter criteria to generate aggregate pair count matrices were to: 

• Identify watershed characteristics to which the correlation between main and 
tributary flows is sensitive. 

• Identify sub ranges of watershed characteristics that result in unique aggregate 
pair count matrices that represent varying degrees of correlation between main 
and tributary flows. 

 56 



 

Table 5.2a. Pair Counts for Gage Pair 06 (POM) 
  Tributary AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
stream 
AEP 

0.500 30 3 1     34 
0.200 3 2 1     6 
0.100   1 1    2 
0.040 1       1 
0.020        0 
0.010        0 
0.002        0 

  34 5 3 1 0 0 0 43 
 

Table 5.2b. Pair Counts for Gage Pair 06 (POT) 
  Tributary AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
stream 
AEP 

 

0.500 28 7 1     36 
0.200  2 1   1  4 
0.100   1 1    2 
0.040        0 
0.020        0 
0.010        0 
0.002        0 

  28 9 3 1 0 1 0 42 
 

Watershed characteristics used to filter gage pairs included: 

• Drainage area. 

• Drainage area ratio. 

• Hydrologic unit code (HUC). 

• Geographic region. 

• Length/slope time parameter. 

• Length/slope time parameter ratio. 

The aggregate pair count matrices resulting from filtering were inspected visually for suitability 
as predictors of flow correlation.  If varying the range of watershed characteristics did not result 
in a substantial change in the trend of correlation, then those characteristics were considered 
poor indicators of correlation. If varying the range of watershed characteristics resulted in a 
substantial change in correlation, then those characteristics were considered good indicators of 
correlation. 

Simultaneous filtering based on the total drainage area and drainage area ratio resulted in 
aggregate pair count matrices that were the most revealing of the degree of correlation between 
main and tributary flows.  Filtering based on both total drainage area and drainage area ratio 
(main stream to tributary) proved more effective than filtering on either of these characteristics 
alone.  For pairs of small watersheds, correlation was observed in the form of AEP pairs near 
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the diagonal of the count matrix.  For large watersheds, lower drainage area ratio appeared to 
be associated with higher correlation. 

Other filtering strategies were examined.  Filtering based strictly on HUC was attempted but 
revealed that there are simply not enough flow pairs in the dataset to adequately define the 18 
hydrologic regions in the study.  Hydrologic regions were grouped in an attempt to identify any 
systematic dependency of the structure of the count matrix on geographic region.  The following 
general geographic regions (HUCs in parentheses) were defined: East coast (01-03), Midwest 
(04-12), arid Southwest (13-16), and West coast (17-18).  Filtering based on geographic region 
alone did not reveal any obvious differences between regions.  Further filtering, based on 
drainage area or other characteristics, was complicated by the lack of flow pairs for a single 
geographic region. 

Length/slope time parameter and length/slope time parameter ratio were also evaluated as a 
filter.  The rationale for using length/slope time parameter was that this characteristic may better 
account for the response time of the watershed than drainage area.  However, using a 
length/slope time parameter filter resulted in less well-defined pair count matrices than using 
drainage area.  It is likely that the suitability of length/slope time parameter for filtering of AEP 
pairs is limited to small watersheds in which spatial distribution of rainfall during a storm event is 
more nearly uniform, and therefore the timing of peak runoff is a stronger function of 
length/slope time parameter. 

5.2 Conditional Probability Matrices 
Conditional probability matrices (CPMs) were developed based on aggregated pair count 
matrices that offered the greatest utility in capturing gage pair correlation.  The selected filter 
ranges for the pair count matrices are summarized in Table 5.3.  Of the 85 gage pairs used in 
this assessment, 2, 4, 53, and 26 pairs fell in the 1 to 50, 50 to 100, 100 to 1000, and 1000 or 
greater categories, respectively.  Because the number of gage pairs is limited, it was not 
possible to generate pair count matrices for each of the combinations of total area and area 
ratio shown in the table.  Instead, four pair matrices were identified according to qualitative 
degrees of correlation: high, moderate, mixed, and poor. 

Table 5.3. CPM Selection Table – Degree of Correlation 
Area 
ratio 

Total area (sq. mi.) 
1 to 50 50 to 100 100 to 1000 1000 or greater 

1 to 10 High Moderate Mixed Mixed 
10 to 100 High Moderate Mixed Poor 

100 or greater High Moderate Poor Poor 
 
The database used for this study did not include data pairs where the smaller watershed 
drainage area was less than one square mile.  Therefore, the results of this research may not 
apply for watershed pairs with this characteristic.  However, a professional engineer must 
exercise judgment on a site-specific basis to determine if Table 5.3 is appropriate or if better 
alternatives exist.  It might be reasoned, for example, that treating a tributary watershed with a 
drainage area less than one square mile as one square mile when computing the drainage area 
ratio would result in a lower area ratio and, therefore, selection of the same or a more 
conservative (higher correlation) CPM matrix. 

The high, mixed, and poor pair count matrices were the result of aggregating the gage pairs that 
exhibit the combinations of total area and area ratio indicated in Table 5.3.  The mixed 
conditional probability matrix was named because of evidence of a mixed population of 
moderately correlated and uncorrelated events.  In the pair count matrices, this is seen as a 
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strong trend of pairs clustered near the diagonal of the matrix, along with a strong trend of pairs 
with AEP = 0.5.  

There were insufficient gage pairs to define the moderate pair count matrix. To resolve this, the 
moderately correlated pair count pattern observed within the mixed pair count matrix was 
adopted as the pattern for the moderate matrix.  In so doing, the moderate case provides a 
reasonable transition between the high and mixed cases.  

The four aggregated pair count matrices were converted to CPMs by normalizing the pair 
counts in each matrix cell to the total number of counts for the row (POM) or column (POT). 
The resulting CPMs are summarized in Tables 5.4a through 5.7b.  For the POM CPMs, the AEP 
for the main stream flow bin is given and the conditional probabilities for the tributary stream 
flow bins are given in each row.  Similarly, for the POT CPMs, the AEP for the tributary stream 
flow bin is known and the conditional probabilities for the main stream flow bins are given in 
each column. 

Minor adjustments to the resulting CPMs were then made to remove outliers and smooth the 
empirical distributions to provide well-behaved concurrent density functions. These adjustments 
were based on visual inspection of the matrices. 

The high CPMs (Tables 5.4a and 5.4b) indicate that the design AEP condition is given by 
concurrent main and tributary flows of both AEP equal to the design AEP. This special case 
does not require total probability computations. Instead, for example, the AEP = 0.01 design 
condition is given by AEP =0.01 on the main stream and AEP = 0.01 on the tributary stream. 

The poor CPMs (Tables 5.7a and 5.7b) were generated by populating the cells with the 
accumulated concurrent flow probability represented by the AEP bins.  Smaller terms in these 
matrices could be aggregated with larger terms to reduce the number of non-zero cells (and 
required hydraulic model runs). 

Application of the CPMs within the total probability method is illustrated with an example in 
Appendix G. 

Table 5.4a. CPM for Highly Correlated Flows (POM) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 1 1 
0.200 1 1 
0.100 1 1 
0.040 1 1 
0.020 1 1 
0.010 1 1 
0.002 1 1 
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Table 5.4b. CPM for Highly Correlated Flows (POT) 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 1        
0.200  1       
0.100   1      
0.040    1     
0.020     1    
0.010      1   
0.002       1  

 Sum 1 1 1 1 1 1 1  

Table 5.5a. CPM for Moderately Correlated Flows (POM) 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.9 0.1      1 
0.200 0.4 0.5 0.1     1 
0.100 0.2 0.3 0.4 0.1    1 
0.040  0.2 0.3 0.4 0.1   1 
0.020   0.2 0.3 0.4 0.1  1 
0.010    0.2 0.3 0.4 0.1 1 
0.002     0.2 0.4 0.4 1 

Table 5.5b. CPM for Moderately Correlated Flows (POT) 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 0.9 0.4 0.2      
0.200 0.1 0.5 0.3 0.2     
0.100  0.1 0.4 0.3 0.2    
0.040   0.1 0.4 0.3 0.2   
0.020    0.1 0.4 0.3 0.2  
0.010     0.1 0.4 0.4  
0.002      0.1 0.4  

 Sum 1 1 1 1 1 1 1  

Table 5.6a. CPM for Mixed Correlated Flows (POM) 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.9 0.1      1 
0.200 0.5 0.4 0.1     1 
0.100 0.3 0.3 0.3 0.1    1 
0.040 0.3 0.1 0.2 0.3 0.1   1 
0.020 0.3  0.1 0.2 0.3 0.1  1 
0.010 0.3   0.1 0.2 0.3 0.1 1 
0.002 0.3    0.1 0.3 0.3 1 
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Table 5.6b. CPM for Mixed Correlated Flows (POT) 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 0.9 0.5 0.3 0.3 0.3 0.3 0.3  
0.200 0.1 0.4 0.3 0.1     
0.100  0.1 0.3 0.2 0.1    
0.040   0.1 0.3 0.2 0.1   
0.020    0.1 0.3 0.2 0.1  
0.010     0.1 0.3 0.3  
0.002      0.1 0.3  

 Sum 1 1 1 1 1 1 1  

Table 5.7a. CPM for Poorly Correlated Flows (POM) 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.200 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.100 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.040 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.020 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.010 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.002 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 

Table 5.7b. CPM for Poorly Correlated Flows (POT) 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 0.684 0.684 0.684 0.684 0.684 0.684 0.684  
0.200 0.175 0.175 0.175 0.175 0.175 0.175 0.175  
0.100 0.078 0.078 0.078 0.078 0.078 0.078 0.078  
0.040 0.035 0.035 0.035 0.035 0.035 0.035 0.035  
0.020 0.014 0.014 0.014 0.014 0.014 0.014 0.014  
0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010  
0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004  

 Sum 1 1 1 1 1 1 1  
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6. Conclusions and Recommendations 
The research summarized in this report advances the state of the art for deriving appropriate 
discharges for coincident flooding on confluent streams.  Previously, drainage area ratio had 
been the primary factor in describing coincident flooding and it was unclear how broadly 
applicable that guidance (see Section 2.2.7) was to be considered.  Employing gaged data from 
across the coterminous United States, a better understanding of the factors influencing joint 
probability was achieved along with recommendations for design tools for practitioners and two 
applications guides (Appendix G and Appendix H). 

Simplifying assumptions were made at various junctures of the research including those 
required because of the limits of data availability and study resources.  Suggestions for further 
research are provided to address some of these assumptions. 

6.1 Factors Influencing Joint Probability 
Stream flow at a given point in a surface water network is a function of many 
hydrometeorological variables.  Methods for estimating peak stream flow for design purposes 
strip the great many variables down to typically one (usually drainage area) to four or five 
depending on the methodology.  Errors in predicting stream flow can be substantial even in the 
case of a single stream. 

In the confluent stream case, the joint probability of flooding is based on all of those 
hydrometeorological variables for the separate watersheds plus the interrelation between the 
two.  As previously noted, the drainage area ratio between the two watersheds has historically 
been the primary tool for providing that linkage. 

This research examined a range of watershed and meteorological variables in an effort to gain 
insight into the problem.  As part of the analyses for estimating Kendall’ τ and Pearson’s ρ for 
the bivariate and copula strategies, the factors determined to be most useful were drainage area 
ratio, total drainage area, and mean annual precipitation.  Like the drainage area ratio, the 
length slope parameter ratio, provides a measure of the relative size of the paired watersheds.  
In fact, drainage area ratio and length slope parameter ratio are highly correlated and both 
demonstrated some value for estimating correlation.  Although the length slope parameter ratio 
was slightly better, the improvement was not sufficient to recommend this parameter over area 
ratio.  Area ratio is preferred because it is more easily estimated and has been previously linked 
with correlation relations. 

While developing the conditional probability matrices for use in the total probability method, 
drainage area ratio and total area provided the greatest insight.  While not identical results, 
there is overlap with the conclusions from the bivariate and copula analyses. 

The joint probability problem was framed assuming the design point and influence reach are on 
the tributary (smaller) stream.  However, the tools developed from this study may also be used 
when the design point and influence reach are on the main stream. 

6.2 Recommended Tools 
Two general areas of investigation yielded practical tools ready for application by practitioners.  
One is a direct method for determining a set of exceedance probability combinations associated 
with the desired joint probability for design based on copulas with univariate marginals.  The 
second is a series of conditional probability matrices for use in the total probability method. 
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6.2.1 Copulas 
As discussed in Section 4.1, the best-fit statistical method of the four distributions/copulas 
considered in detail was the Gumbel-Hougaard copula.  In addition to data fit, other factors 
considered were ease of use and robustness of the methodology. 

The Gumbel-Hougaard and Frank copulas require estimation of a single parameter for 
application to an ungaged watershed pair to characterize the dependence between the main 
and tributary streams.  This dependence parameter is a function of Kendall’s τ.  This research 
resulted in methods to estimate Kendall’s τ for ungaged watershed pairs based on watershed 
and meteorological characteristics. 

The bivariate normal and Gumbel (mixed model) distributions require the estimation of five 
parameters: a location and scale parameter for each marginal distribution (main and tributary 
streams) and a dependence parameter.  The dependence parameter is calculated as a function 
of Pearson’s ρ.  Because of the need for additional parameters, the bivariate normal and 
Gumbel (mixed model) distributions are not as easy to use as the copula methods. 

The two copula methods offer advantages over the bivariate normal and mixed model Gumbel 
distributions.  First, the mixed model bivariate Gumbel (mixed model) distribution may only be 
applied when the estimated Pearson’s ρ correlation between the paired watersheds is less than 
two-thirds.  Therefore, it cannot be applied to watersheds when the correlation coefficient 
exceeds two-thirds.  Second, a fundamental advantage of the copula methods over both 
bivariate distributions is that underlying marginal distributions are not assumed.  Therefore, a 
designer may choose any appropriate marginal distribution for both the main and tributary 
streams or two entirely different marginal distributions for the main and tributary streams.  
However, given its frequent application for annual peak flow, the Log Pearson III distribution for 
both the main and tributary streams would likely be a common selection.  Both the normal and 
Gumbel bivariate distributions require that the marginal distributions are normal and Gumbel, 
respectively. 

Considering the fit of the observed gage pair data to the bivariate distributions and copulas, the 
Gumbel-Hougaard method performed better than the normal and Gumbel bivariate distributions 
and the Frank copula.  Considering the fit with observed data, simplicity (need to estimate a 
single dependence parameter), and flexibility (no assumption of the marginal distribution), the 
Gumbel-Hougaard copula was recommended for use.  However, application of this method 
does not require a background in statistics because guidance developed as part of this research 
transformed the method to a series of tables.  These tables provide the designer with a set of 
combinations of main and tributary stream conditions, each having a specified joint probability.  
Each combination is analyzed hydraulically to determine the critical design condition.  
Application guides for designers are provided in Appendix G and Appendix H. 

6.2.2 Total Probability Method 
The second method is the total probability method, which is based on the total probability 
theorem.  The key element of this part of the research was the development of a series of 
conditional probability matrices for application within the context of the total probability method 
described in Section 4.2.  Four sets of matrices for high, moderate, mixed, and poor correlation 
are presented.  Full implementation of the total probability method involves evaluating several 
hydraulic scenarios to generate an exceedance probability curve for stage at the design 
location.  This method may be preferred over the copula method if the objective is to evaluate 
several alternatives over a range of possible occurrences in the context of a cost-benefit 
analysis.  An application guide for designers is provided in Appendix G. 
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6.3 Suggested Research 
As with any research effort, this study was conducted with resource constraints established at 
the outset.  Several decisions pertaining to the type of data used and how it was to be analyzed 
were made and documented.  In addition, during the course of the research, unanticipated 
issues arose.  Suggestions for additional research work are as follows: 

1. Expanded use of instantaneous data. 

One of the primary reasons for focusing on daily rather than instantaneous data 
was the lack of instantaneous data.  The USGS is gradually making more of 
these data available through the Instantaneous Data Archive (IDA).  As the 
availability of these data expands, the comparison with daily data can be 
expanded with the potential for eventually using all instantaneous data.  
However, record lengths will likely limit the use of instantaneous data to some 
degree. 

2. Expansion of results to watershed pairs where the smaller watershed has a 
drainage area less than 1 mi2. 

The study database did not include watershed pairs with these smaller 
watersheds.  Although it may be reasonable to extend the proposed tools to 
these cases, there is no evidence this is true. 

3. Expansion of the watershed pairs to include larger drainage area ratios, 
especially for pairs with a combined watershed area less than 350 mi2. 

The study database did not include watershed pairs with an area ratio greater 
than 500 and only two with an area ratio greater than 7 when the combined area 
is less than 350 mi2.  It appears likely that larger ratios will not show substantial 
reductions in correlations, but it would be useful to verify this hypothesis.  For 
smaller combined watersheds, area ratios above 7 (and below 500) may have 
some effect on the correlation, but insufficient data were available to quantify the 
effect as part of this study. 

4. Evaluation of alternative copulas. 

Because of their use in other hydrologic applications, two Archimedean copulas 
were featured in this study: Gumbel-Hougaard and Frank.  Other copulas and 
other copula families from the non-Archimedean group may be of interest. 

5. Development of better relations between watershed and meteorological 
characteristics and measures of correlation. 

The relations developed in this study were statistically weaker than would 
ultimately be desired.  This was addressed, in part, by the development of best-ft 
and envelope equations and by estimates based on data groupings.  Further 
testing may yield benefits. 

6. Quantification of the relation between annual series data and complementary 
data series. 

In the POM datasets, the tributary series is complementary to the main stream 
peaks, but is not the tributary annual series.  Conversely, in the POT datasets, 
the main stream series is complementary to the tributary peaks, but is not the 
main stream annual series.  A predictive tool for estimating the difference 
between the complementary and annual series was not developed as part of this 
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study, but would help quantify the degree of conservatism embedded in the 
copula tables. 

7. Consideration of how the problem formulation changes for design objectives 
other than stage, e.g. velocity. 

Exceedance probability for stage may not be equivalent to exceedance 
probability for velocity or other design considerations.  How the formulation of the 
problem might change is a useful investigation.  However, use of the total 
probability method, which considers all possible events, might be important for 
addressing other design objectives. 

8. Further evaluation of the degree to which watershed regulation may affect 
application of the joint probability methods developed in this research. 
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The research team conducted a comprehensive literature review of coincident flooding and 
potentially related topics.  Literature was reviewed for: 

1. Applications of bivariate probability distributions to water resource problems:

1.1 Confluent streams 

1.2 Rain on snow events (precipitation and temperature) 

1.3 Interior flooding (high tailwater and local rainstorm) 

1.4 IFIM (fish habitat) depth and velocity 

1.5 Dam safety (flood and earthquake) 

1.6 Groundwater contamination (flow and contaminant release) 

2. Applications of bivariate probability distributions to other disciplines:

2.1 Traffic engineering 

2.2 Seismic events 

2.3 Signal processing 

2.4 Biometry 

2.5 Coastal storms and offshore structural design 

3. Other joint probability characterizations.

4. Characterization of low-frequency (0.5 to 0.01 annual exceedance probability)
precipitation spatial distributions, including radar-based estimates of precipitation
fields.

5. Issues of hydrologic scale (runoff and rainfall).

A summary of the findings is provided in the following sections. 

A.1 Bivariate Distributions 
Numerous applications of bivariate distributions are found in the literature and are useful where 
subject variables are correlated.  The most common distributions appear to be the Gumbel and 
normal bivariate distributions, but uses of the generalized extreme value (GEV), exponential, 
and Weibull distributions are found.  Applications in water resources and other fields are 
discussed. 

An alternative method of characterizing multivariate dependence is to use univariate 
distributions and combine them by use of a copula.  Copulas are functions that connect 
multivariate probability distributions to their univariate marginal probability distributions.  The 
advantage of copulas is that they provide greater flexibility in specifying the marginal 
distributions compared with true bivariate distributions. 

A.1.1 Water Resources 
Bogardi, et al. (1975) examined design of flood protection at the confluence of a tributary and a 
main water body (river, lake, or sea).  Using the normal probability distribution, they tested their 
method on a levee system on a tributary/main river system in central Hungary. 

Sackl and Bergmann (1987) described flooding events through application of a bivariate normal 
distribution to flood peaks and volumes. Flood peak and flood runoff volume were transformed 
so that the coefficient of skew of the marginal distributions approached zero.  With an 
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unspecified dataset, they illustrated plotting of iso-probability density function lines as well as 
lines of probability of exceedance for different quadrants. 

Shiau (2003) applied the bivariate extreme value distribution with Gumbel marginal distributions 
to model extreme flood events characterized by flood runoff volume and flood peak.  Shiau 
applied the methodology to the Pachang River in Taiwan where a correlation coefficient of 0.403 
between flood volume and peak was estimated.  A set of curves of nonexceedance probability 
for the coincident events was developed. 

Morris and Calise (1987) estimated flooding probabilities for a tributary river where the stage-
flow relation on the tributary was influenced by backwater on the main river.  A bivariate 
probability density function was used to describe the dependence between the main stream 
stage and the tributary stream discharge.  Despite auto-correlation between daily values, Morris 
and Calise assumed there were a greater number of independent values in a 20-year daily 
record than using only annual maximums from 20 years (also assures concurrent events are 
captured).  A three dimensional rating surface was used to summarize tributary flow and main 
river stage on the x- and y-axes with the resultant tributary stage represented on the z-axis.  
Multiple two-dimensional splines were used to interpolate between selected stage/flow 
combinations for which backwater calculations were completed.  The total probability theorem 
was used to determine the probability of any tributary stage height.  These daily probabilities 
were then converted to annual probabilities.  The method was applied to the confluence of the 
Meramec River and the Mississippi River using daily flow and stage from a 56-year period of 
record. Tributary flows were log-transformed prior to fitting the bivariate normal distribution. 
HEC-2 was used to compute 50 tributary stage heights. This number was expanded to a 46 by 
21 stage matrix grid using splines. 

Raynal and Salas (1987) conducted a flood-frequency analysis downstream from the 
confluence of the Bear River and Dry Creek near Wheatland, California.  They used a bivariate 
generalized extreme value (GEV) distribution to model the flow below the point of confluence. 
The bivariate cumulative distribution function was evaluated numerically.  Raynal and Salas 
compared several methods for approximating the total flow below the point of confluence. 
These methods included: 1) adding flows that actually occurred, 2) assuming complete 
dependence, 3) assuming complete independence, and 4) using the joint distribution with a 
correlation coefficient of 0.86.  Return periods for observed flows were similar to return periods 
estimated for complete dependence and the joint distribution.  Results suggested that the 
correlation coefficient reasonably quantifies the degree of dependence between events.  Raynal 
and Salas also suggested the bivariate normal distribution may be suitable for coincident events 
with greater than moderate dependence between events. 

To develop boundary conditions for an estuarine numerical hydrodynamic model, Loganathan, 
et al. (1987) proposed to develop the joint probability distribution for stream flows and tides 
where stream flows and tides were not statistical independent.  A joint distribution of stream flow 
and tidal height was developed using a Box-Cox transformation of the underlying variables and 
fitting the result to a bivariate normal distribution.  The method was applied to 628 paired tidal 
stage/stream flow data points where the Rappahannock River flows into the Chesapeake Bay. 
An empirical joint probability distribution, an empirical probability distribution assuming 
independence between variables, and a theoretical joint probability distribution were computed. 
The joint distribution yielded a greater tidal stage level for the same stream flow than values 
obtained by assuming independence. 

Beersma and Buishand (2004) addressed drought in The Netherlands where water can be 
supplied by direct precipitation or supplemented with flow from the Rhine River.  Drought 
typically occurs when a precipitation deficit is combined low river discharges.  Beersma and 
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Buishand modeled the joint distribution of precipitation deficit and low stream flow using a 
transformed bivariate normal distribution and a bivariate Gumbel distribution with a logistic 
dependence model. These models were related to copulas in order to derive the dependency 
structure.  As an alternative method, nearest-neighbor resampling was used to construct a long 
synthetic record. This record was used to derive an empirical cumulative distribution function.  
For a 95-year record, discharge deficit on the Rhine and maximum annual precipitation deficit 
were calculated.  Different distributions predicted different degrees of association between the 
two deficits. The bivariate normal predicted a week relation between large values, 
underestimating the joint exceedance probability of extreme values.  The coincident occurrence 
of large values was better described by the limiting Gumbel distribution.  The work of Beersma 
and Buishand highlighted the need to ensure the joint probability distribution captures 
dependence at low-frequency values as well as median values. In addition, a resampling 
method could possibly provide means to estimate joint probabilities in a framework similar to the 
use of a historical time series. 

Ashkar, et al. (1998) addressed the bivariate analysis of low-flow events focusing on volume 
and duration.  They considered two types of bivariate distributions whose marginals were 
exponential.  They found the exponential marginals to be effective in characterizing the Lepreau 
River in Canada for use in hydroelectric planning.  They further noted the exponential 
distribution to be practical because only one parameter must be estimated. 

Prior-Jones and Beiboer (1990) explored bivariate probability analysis as applied to offshore 
structures in the North Sea.  They examined wave and current probabilities using the bivariate 
Weibull distribution.  Because their objective was an initial exploration of the subject, no 
definitive conclusions were offered. 

Coles and Tawn (1994) investigated the probability of structure failure in response to interaction 
of multiple dependent variables.  They outlined a procedure of: 1) identifying functional relations 
between design parameters and environmental variables, 2) describing dependency between 
variables, 3) establishing thresholds over which analysis is valid, and 4) determining the design 
parameter given the most likely parameter values for a given return period.  They primarily 
focused on coastal flooding in response to storm surge, tides, and waves.  The degree of 
flooding was dependent not only on the static sea height, but also on the quantity of water 
topping sea walls (surge and waves) during a given unit time. 

Svensson and Jones (2004) investigated the possibility of elevated flood risk in response to 
dependence between sea surge and river flow in estuaries around Britain.  Sea surge and river 
flows are both linked to mid-latitude cyclones.  Daily mean flows for 72 rivers were matched with 
daily maximum storm surge levels as estimated from 19 observation points.  A measure 
intended to assess the dependence between extremes was used to explore the relation 
between flow and surge at each site as well as spatial relations between each site for each 
single variable.  Coles, et al. (1999) used the same dependence measure.  A bootstrapping 
method was used to estimate confidence intervals for the dependence measure. 

Several authors explored ways of linking marginal distributions using copulas.  De Michele, et 
al. (2005) applied a copula from the Gumbel family for peak flow and volumes for dam spillway 
analysis.  Favre, et al. (2004) used a similar method for a run-of-river hydroelectric facility 
examining peak flow and volume.  Salvadori and De Michele (2004) investigated copulas in 
hydrologic applications. 

Recently, Zhang and Singh (2006) used copulas for bivariate distributions of flood peak and 
volume, as well as flood volume and duration.  They also compared the use of copulas with the 
Gumbel (mixed model) and the bivariate Box-Cox transformed normal distributions.  At two 
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sites, one in Louisiana and one in Quebec, the copula-based distributions were found to be in 
better agreement with plotting position based frequency estimates. 

Adamson, et al. (1999) applied a Monte Carlo method to bypass theoretical difficulties of 
bivariate distributions.  The Gibb’s sampler method was presented as a means to construct a 
bivariate distribution from only the conditional distributions.  In essence, bivariate pairs were 
determined by generating an alternating sequence of each bivariate variable (for example, X0, 
Y0, X1, Y1…) where each sequential value depends on the former.  The method was applied to 
the Mekong River in Laos where seasonal flow is dominated by a single annual flood 
hydrograph corresponding to the monsoon.  Annual maximum peak discharge, flow volume, and 
flow duration were determined from a 79-year record.  Adamson, et al. demonstrated the 
application of flood damage estimation as a function of primary damage attributed to large 
discharges and secondary damage attributed to duration.  

A.1.2 Other Fields 
Akkaya and Yucemen (2002) developed a risk model for earthquake damage.  The model 
incorporates spatial and temporal correlations between strain energy in the earth’s crust.  An 
earthquake of a given magnitude is assumed to occur when the total strain energy over the 
potential rupture plane exceeds a given threshold.  The model stochastically simulates strain 
energies along fault lines according to normal and lognormal models.  The model was 
compared to data from the North Anatolian Fault Zone. 

Coles, et al. (1999) investigates methods for quantifying dependencies in maximum 
temperatures arising from different processes driven by the same phenomenon or by the same 
process observed at different spatial locations.  A method for measuring dependence of 
extremes is to calculate the conditional probability of observing an extreme value in one process 
given an extreme value of a concurrent process.  This dependence function was related by 
Coles, et al. to standard models for bivariate extremes.  While three different datasets were 
used to illustrate concepts, a time series of annual maxima temperatures at two sites in England 
was the only dataset that includes spatial dependencies.  Application of the dependency 
function indicated a high degree of spatial dependency, encouraging use of a bivariate extreme 
value model. 

Gazis and Edie (1968) provided a summary of models applied to transportation networks.  The 
focus at that time was on simple analytic models because much of the theoretical work in 
operational research had not yet been applied to transportation engineering. 

McNeil (1970) reviewed models used by traffic analysts and assumptions underlying those 
models, then developed appropriate distributions for modeling traffic queuing processes. 

Cowan (1979) developed the distributional properties of merging traffic by studying the arrival 
processes of automobiles.  He characterized the problem by considering the arrival of random-
sized “bunches” of cars, separated by random time gaps. 

Gordon (1995) used a Pareto process to represent the arrival rates of network traffic packets. 
Stochastic models were generated to represent network traffic and evaluate the dependability of 
particular pieces of networking equipment. Fractional Brownian motion, fractional ARIMA, and 
chaotic maps were studied. 

Bunker and Troutbeck (2003) developed statistics using the models of Cowan (1975) to 
represent the merging characteristics of incoming freeway traffic.  

Jagerman et al. (1997) provided a summary of stochastic and analytic modeling practice in the 
telecommunications field.  
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A.2 Total Probability Method 
The total probability method is a well-established tool used in water resources analyses.  It is 
described in various guidance documents for the U.S. Army Corps of Engineers (USACE 1987; 
USACE 1993). 

Dyhouse (1985) conducted a joint probability analysis on the Illinois River to determine the 
feasibility of enhancing the levee system.  Backwater from the Mississippi River influences 
Illinois River levels, complicating stage-frequency calculations.  The total probability theorem 
was used to determine the probability of a certain tributary river stage elevation.  Several 
measures of dependency were applied to coincident events (Mississippi River stage and Illinois 
River flow) that indicated the events were virtually independent.  The method was applied to a 
40-year data record and HEC-2 was used to develop water-surface profiles on the Illinois River 
for varying combinations of Mississippi River stage and Illinois River flow.  To avoid calculating 
profiles for every possible combination of events, a set of curves was constructed from which 
values could be interpolated.  To obtain consistent results, Dyhouse noted that one must select 
the “dominant” variable to establish the duration curve.  Depending on the distance from the 
Mississippi River on the tributary, the Mississippi River stage level is not always the dominant 
variable on which the tributary stage was conditioned.   

Pingel and Ford (2004) determined the expected value of annual damage for a location with 
interior flooding using the total probability theorem.  Unlike a standard flooding analysis, the 
degree of interior flooding is dependent on runoff generated in the catchment as well as 
externally variable control on the catchment discharge rate, in this case, the stage of a river 
receiving the runoff.  Pingel and Ford used a joint probability framework in which all possible 
degrees of exterior control were considered instead of only considering a worst case.  
Specifically, for a case in which interior runoff and the exterior control were independent, they 
calculate a discrete probability distribution for interior stage height using the total probability 
theorem.  The method was applied to a 40 km2 watershed in Sacramento, California in which a 
levee blocks the natural drainage into the Lower American River.  Pingel and Ford illustrated 
multiple steps in calculation of the interior stage probability function using actual observations 
and information calculated from standard hydrology and hydraulics models.  The method was 
directly relevant to cases in which multiple, but statistically independent, conditions dictated a 
process outcome.  

A.3 Other Joint Probability Methods 
Tabular relations for addressing joint probability were found.  The most common relation is 
exemplified in AASHTO (2000).  Many other state and local agency guidance documents 
display the same tabular relation thought to be developed for a site-specific condition by the 
Corps of Engineers. 

Wilson (1980) studied the probability of concurrent flooding at the confluence of the Mississippi 
and Meramec Rivers near St. Louis, Missouri. He used an exhaustive search technique to map 
all combinations of observed annual maximum stage on both rivers. The Mississippi and 
Meramec River stages were simulated by operating HEC-2 using every combination of 
discharge from each river. These results were used to develop a refined method by which the 
critical combination of discharges could be identified. 

Morris and Wilson (1987) estimated flooding probabilities for a tributary river where the stage-
flow relation on the tributary is influenced by backwater.  A “critical combination method” is used 
to determine the highest stage on the tributary in each year of record.  To avoid computing 
computationally intensive backwater calculations for every daily combination of main river stage 
and tributary flooding, critical combinations were selected.  That is, for each year in the record, 
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the peak tributary flow and corresponding main stream stage were identified.  These 
combinations were used to develop a three-dimensional “rating” surface relating main stage and 
tributary flow on the x- and y-axes to tributary stage height on the z-axis.  Daily stage and flow 
data were substituted into the rating surface to identify the peak tributary stage each year.  The 
method was applied to the Meramec River where it enters the Mississippi River.  A two-tailed 
Student’s t test indicated dependence between Meramec River flow and Mississippi River stage.  
Once annual peak stages were identified, a log Pearson Type III distribution was fitted to the 
series to determine exceedance probabilities for tributary stage. 
Koltun and Sherwood (1998) performed an analysis of Ohio streams to generate joint probability 
relations.  This study has limited direct application because they assumed data were 
independent if the drainage area ratio was greater than 10:1 and they paired streams whether 
or not they were adjacent to one another. 

Singh (2000) provided a description of entropy theory and how it can be applied in water 
resources.  As described by Singh, entropy theory is a versatile, robust, and efficient technique 
to determine the least biased probability distribution of a random variable.  

Fernandez and Salas (1999a and 1999b) presented a method for estimating the return period of 
hydrologic events and the associated risk of failure when the underlying hydrologic series are 
auto-correlated.  When annual peak flows were analyzed, they were not considered to be auto-
correlated.  However, if partial duration series or other types of “events” were considered, the 
potential for auto-correlation should be considered. 

Alila and Mtiraoui (2002) considered heterogeneous flood frequency distributions composed of a 
mixture of two or more subpopulations in which floods are generated by different processes.  All 
flood event magnitudes were considered independent, but not necessarily mutually exclusive, 
on an annual basis.  They examined three standard means of dealing with mixtures.  Inherently, 
a mixture assumes independence between populations.  As implemented, their method only 
involved peak events when no additive effects must be considered.  For the Gila River Basin, 
Arizona, Alila and Mtiraoui fit observed annual floods with a heterogeneous distribution 
composed of two lognormal distributions.  The method is only applicable to cases of 
independent events, but is useful in cases where flooding could be caused by more than one 
process in a given year.  A common example would be snowmelt in spring and thunderstorms in 
summer. 

The particle-tracking runoff model of Cleveland, et al. (2005) used simple hydraulics to model 
the movement of runoff “particles” across a watershed represented by a digital elevation model.  
Rainfall-runoff dynamics were simple. Adjacent watersheds could be modeled using this method 
to assist understanding of the correlation, or conditional probability structure of runoff between 
confluent watersheds. 

A.4 Storm Cell Characterization and the Use of Radar 
The literature search included investigation of the characterization of storm cells and how an 
understanding of storms may inform the issue of flooding at confluent watersheds.  Three major 
topic areas were included: 1) regional variation in storm characteristics across the United 
States, 2) the spatial and temporal characterization of storm cells, and 3) the use of radar for 
describing storm cell characteristics and their regional variation. 

A.4.1 Regional Variation in Storms 
There are at least two precipitation patterns that produce exceptional precipitation events that 
lead to extreme flows in the United States.  The first pattern is driven by moderate intensity 
rainfalls over extremely long periods (days), a generally stratiform precipitation pattern, which 
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can be observed in the western United States, for example, California, Oregon, and 
Washington.  These events can easily encompass an area greater than 10,000 km2 and cause 
coincident flood flows on downstream confluences from river basins being hundreds of 
kilometers from each other.  This specifically describes the California flood events of 1995 and 
1997.  

The other precipitation pattern, which contributes flood flows over most of the United States, is 
the convective complex (mesoscale), which generally leads to very high precipitation over a 
shorter period (hours), and usually over a relatively small area.  When these events occur near 
mountain ranges, the process of accelerated runoff collection because of the steep slope of the 
terrain can produce large flows in a short time frame, leading to the term “flash flood.” 

Flood events occurring on the west coast of the United States are generally comprised of area 
wide precipitation events that are stationary.  The exception to this is the southern west coast 
where flood events are more dominated by highly convective situations where surface heating 
and warmer saturated air becomes more of a factor.  This holds true for the southern tier states 
that are generally removed from the polar jet stream.  Precipitation extremes for these regions 
are more of a summer event that is driven by heat and convection created from the diurnal 
heating process.  

The inner mountain areas of the west, including the Rocky Mountains, could be described as a 
mixture of both orographic and convective events.  The floods of record, such as the Big 
Thompson Flood, are often caused by a summertime convective system characterized by short 
duration and extreme precipitation rates.  As one moves east away from the influence of the 
Pacific Ocean, the main mechanism for flood producing events is largely convective.  However, 
there are notable exceptions such as the Great Flood of 1993 in the central part of the nation 
that consisted of convective elements produced by the meeting of cooler air carried by a 
consistent jet stream with the warmer moist air being pulled up from the Gulf of Mexico. 

Numerous publications describe unique characteristics of specific storms.  A sampling of 
representative publications of this type illustrates variations in storms across the U.S., as well as 
the similarities within certain regions.  Other publications highlight a national comparison of 
storm and flood characteristics. 

O’Connor and Costa (2004) identified topographic and climate features that result in high unit 
flows.  They identified the top ten percent of peak annual discharges uninfluenced by 
anthropogenic modifications from 18,735 USGS gaging stations with at least five years of 
record.  Flows were converted to flow per unit area.  Maps were generated delineating basins 
with one or more 90th percentile unit discharges.  Areas of high topographic relief combined with 
areas subject to high rainfall produced the highest unit discharges.   Their work provided an 
interesting overview of the spatial pattern of flooding, but was limited in value to the current 
research since it does not indicate the cross-correlation in flow among gages at the same time. 

Caracena, et al. (1979) provided a meteorological investigation and description of the synoptic 
and meso-synoptic characteristics that contributed to the Big Thompson storm on 31 July 1976.  
The storm complex that contributed to the Big Thompson flood was convective and enhanced 
by orographic uplift as the moist air was forced up the eastern slope of the Front Range.  The 
orographic uplift created destabilization.  A continuous flow of moist air continued the process 
for an extended period.  Microphysical processes such as latent heat exchange caused by the 
condensation of cloud water acted as an engine to fuel even greater development of the 
convective complex.  Radar underestimated rainfall estimates.  The radar beam was 
overshooting the maximum reflectivity region, which yielded the lower reflectivity. 
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Maddox et al. (1978) compared two noteworthy flash flood events and analyzed the similarities.  
The two events were the Big Thompson Canyon flood of 31 July 1976 and the Rapid City floods 
of 9 June 1972.  Both events produced 10 to 15 inches of precipitation during the evening 
hours.  Contributing mechanisms were associated with a somewhat stationary negatively tilted 
upper-level ridge.  Weak southeasterly steering winds allowed the storms to remain over the 
same area for two to four hours.  Orographic lift contributed, as moisture was released due to 
the cloud condensation process. 

Elsner, et al. (1989) documented the weather patterns and characteristics of a convective storm 
in Milwaukee, Wisconsin on 6 August 1986.  The study was designed to determine the 
meteorological precursors to this heavy rain-producing event.  The event produced 6 inches of 
rain over a 2-hour period.  The importance of this work was the furthering of evidence that 
heavy precipitation rates can occur within convective complexes that have relatively warm cloud 
tops.  This is different from what is found in meso-convective complexes (MCCs) that are often 
thought to account for extreme rain-producing events.  In MCCs, the cloud is usually very deep 
and the cloud structure exhibits very cold cloud tops.  The mechanism for this event was not 
orographically induced, but rather stimulated by sheer atmospheric dynamics.  An interesting 
side note was that radar observations underestimated the rate of precipitation. 

Randerson (1976) described the meteorological characteristics of the Las Vegas flood of July 
1975.  The areal extent of this event was 550 km2 and it comprised two heavy rain-producing 
systems within the geographical area.  The area included several washes and creeks that 
combined to provide a confluent flow to flood Las Vegas.  Three inches of rainfall were 
estimated over a two to four hour period.  The greatest precipitation amount captured by a rain 
gage was one inch.  Radar data were used to estimate the three-inch maximum (in two different 
areas).  Exact reasons why this event occurred were not offered, though it was thought that a 
strong moisture gradient was making its way into the area.  Surface heating was probably 
sufficient to initiate the instability and produce vertical velocities necessary to convert moisture 
vapor to condensate.  This rainfall amounts were produced without any assistance from 
orography or mechanical lifting.  Vertical motion was initiated from surface heating, which then 
created further instability attributed to the latent heat release as the available moisture was 
being processed into condensate. 

Masutani and Leetmaa (1999) provided a meteorological explanation of the floods of 1995 in 
California, and further developed the relation between El Nino and California wintertime rainfall.  
The flood events of 1995 differed from the common conception on the linkage between El Nino 
and floods in California.  Sea surface temperature anomalies (SSTAs) were observed in the 
central Pacific during the winter of 1994/1995.  During the warmest SSTAs (two standard 
deviations above normal) in November and December, no flooding or significant weather events 
occurred.  The SSTAs weakened considerably by the March 1995 flood event.  A link is 
explained between the tropical inter-seasonal oscillation (TIO) and March flooding in California.  
The TIO indicated that the region of heating moved from the middle of the Indian Ocean to the 
central Pacific Ocean.  General Circulation Model (GCM) experiments showed that heating over 
both the Indian and central Pacific Oceans affects rainfall over California, but in opposite ways.  
The event of 1995 caused widespread precipitation with many instances of floods on rivers over 
a large region (>50 miles).  Though many of the rivers are controlled by reservoir operations, 
the general event produced many examples of flooding on confluent streams. 

Maddox, et al. (1980) determined meteorological characteristics from 61 flash-flood events in 
the western United States.  The study was intended to assist forecasters in identifying these 
events through storm typing and general pattern recognition.  Maddox, et al. explained that the 
meteorological characteristics of flash floods and heavy precipitation events that occurred over 
the western United States were often considerably different than those associated with flash 
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floods in the eastern United States.  Western events had substantially less rainfall amounts than 
the eastern events, and the western events tended to occur during the afternoon and early 
evening, rather than after dark as in the east.  

A.4.2 Spatial and Temporal Characterization of Storm Cells 
Storms are created by a variety of influences.  An understanding of the contribution of 
mesoscale (50 kilometers) and synoptic (100’s of kilometers) influences on precipitation 
characteristics such as the duration, spatial distribution, and intensity of precipitation is 
necessary to characterize storm cells.  Several references have been made in the literature to 
storm cell characterization. 

Casson and Coles (2000) assessed joint distribution of wind speeds at pairs of sites, thus 
indicating the degree of spatial cross-correlation. Because of the severe damage caused by 
hurricane winds, accurate estimates of hurricane wind severity are essential.  Although such 
extreme winds are difficult to measure, atmospheric pressure records are more complete and 
provide a basis for modeling the spatial-temporal patterns of wind.  To examine spatial 
dependencies, they calculated a spatial dependency measure (following Coles, et al., 1999) 
between sites 50, 250, and 1000 nautical miles apart assuming the sites can be related by a 
joint distribution. They assumed asymptotic dependence; the likelihood of coincident extreme 
events increased as the event magnitude became larger.  They examined 534 hurricane events 
occurring along the Gulf coast and eastern seaboard of the U. S.  The assessment of spatial 
dependence revealed strong dependence at 50 miles for all regions and strong dependence at 
250 miles in the northeast.  The research provided a possible method to relate point 
measurements of rainfall to assess degree of spatial cross correlation between sites during a 
storm event.  In addition, the paper provided insight into behavior (extent, typical trajectories, 
etc.) of large storms in the eastern United States. 

De Lannoy, et al. (2005) attempted to parameterize a stochastic rainfall simulator at the 
mesoscale based on an analysis of the direction, velocity, and dimensions of frontal storm 
systems in the Netherlands.  The authors obtained radar images with a 2.4 km spatial resolution 
spanning a 480 km square over the Netherlands at 15-minute intervals for 20 precipitation 
events.  To track movement, a method was used that identified the optimal correlation between 
time lagged images.  Dimensions of the irregularly shaped storms were quantified most 
successfully using a geometric method that established a coordinate system parallel and 
perpendicular to the storm and then found the point of intersection with the major axis of the 
coordinate system.  The approach illustrated a possible method to describe the cross-
correlation of rainfall inputs to adjacent watersheds. The main requirement would be to have a 
suitable record of storms producing significant rainfall. 

Because of a lack of reliable discharge records, design floods in the Huai River basin were 
approximated from precipitation data.  Svensson (1999) conducted statistical and correlation 
analyses to identify extreme rainfall characteristics in terms of intensity, duration, and range.  
For a 79,000 km2 area in the Huai River Basin, daily data were obtained for 78 rain gages for 
1957 through 1986.  Auto-correlation was calculated for 14 sites for lags from 1 to 20 days.  
Cross-correlations were calculated between 78 sites for lag zero (to assess shape and 
orientation) and lag one (to asses movement).  From the auto-correlation analysis, rainfall was 
seasonal with most rain arising from cold fronts between June and September.  The largest 
storm events were a result of typhoons.  For lag zero cross-correlation between stations, maps 
were developed to indicate the degree of correlation at a given distance in multiple directions.  
There was a 0.6 correlation over a 50 km range with stronger correlation on a northeast axis.  
The work provided an example of cross-correlation analysis between rainfall amounts.  Given 
that most rainfall is a result of frontal systems and typhoons, there is a relatively strong spatial 
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correlation on an event basis. A similar analysis could be carried out in a region of interest to 
assess the likelihood of flooding in adjacent watersheds. 

Fernandez, et al. (1999) investigated the temporal and spatial variability of precipitation in a 625 
km2 area in central west Argentina using a dense hydrometeorological network of 24 stations.  
Precipitation zones were defined and procedures for the regional analysis of convective storms 
and development of a standard project storm were presented. 

Matsubayashi and Takagi (1987) attempted to establish the relation between the probabilistic 
characteristics of point and areal rainfalls.  They demonstrated that the shift of the probability 
density function of point rainfall towards lower rainfall intensity might give a good approximation 
to that of area rainfall. 

Wilson (1986) developed a spatial-temporal stochastic precipitation model for a small watershed 
in central Missouri.  The size of the simulated area was approximately 40 square miles. This 
work required defining the cross-correlations between adjacent meteorologic stations and 
developing the joint probability distributions for sampling and generating precipitation 
sequences. 

Hershfield (1973) presented the substance and limitations of methods used to estimate extreme 
rainfall-event probabilities. He also assembled a number of references on the subject of 
“extreme-value statistics.”  In the work, Hershfield presented the term “return period” and the 
relation between risk of exceedance and return period.  The use of such terms as “once-in-a-
century” has a rational basis if it is based on a long series of observations.  However, the use of 
the term 100-yr storm is only justified if it refers to a probability estimate based on a series of 
data from a rain gage and represents only a relatively small area nearby the rain gage.  The 
100-yr term is not applicable for describing the magnitude of a storm over a substantial-size 
area because of a general lack of procedure for determining the exceedance probability of a 
major rainstorm over such an area.  This observation is most important when studying the link 
between rainfall and runoff production and the frequency of areal rainfall patterns, which is of 
vital concern in flood events. 

A.4.3 Use of Radar for Storm Cell Characterization 
For determining joint probabilities for design coincident flows at confluences, a method of 
extracting precipitation data from radar might be useful.  In the past, radar based precipitation 
estimation has led to an underestimation of precipitation.   However, in many cases it has 
provided a suitable surrogate in the absence of a rain gage network in a particular area.  Radar 
has also provided significant information on storm characteristics, particularly, the area engaged 
and the hot spots within the storm. 

The use of National Weather Service (NWS) WSR-88D Doppler-derived rainfall to address the 
need for spatial, temporal and quantitative rainfall estimation in hydrologic modeling is growing.  
Brandes, et al. (1991) identified the basic opportunities to use the WSR-88D to a variety of 
applied research and operational needs.  The national network of WSR-88D radar is shown in 
Figure A.1 and demonstrates that most of the United States is covered by the radar network.  
Many portions of the country are covered by overlapping radar that insures the observation of 
most significant extreme precipitation events. 

Hunter (1996) described the capabilities, limitation and opportunities for improvement of WSR-
88D rainfall estimations for hydrological and operational applications.  Seo (1998) elaborated on 
these opportunities and generally supported the accuracy of the radar-derived temporal and 
spatial rainfall fields when used in combination with surface rain gage network data.   Their work 
supports the use of the spatial and temporal derived rainfall fields, but identified that the early 
radar-rainfall derived fields lacked quantitative accuracy. 
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Vieux and Bendient (1998) studied the use of radar, specifically the WSR-88D radar for 
estimating rainfall.  Their objective was to explain how radar observations could provide 
misleading precipitation amounts, especially underestimation.  The authors investigated why the 
WSR-88D provided low estimates of precipitation.  For example, in a case in Texas, the radar 
was only 23 km from the area in question and data could be used at the lowest levels.  This 
would be a “best-case” scenario for radar estimation of rainfall.  Yet, the radar still 
underestimated rainfall.  The authors tried various Z-R relationships, and found a different Z-R 
relationship worked better than that prescribed at the time by the National Weather Service.  
This highlighted the uncertainty of using radar for precipitation estimation, especially in extreme 
events.  The differences in Z-R were attributed to the higher rainfall rates.  The paper concluded 
that rain gages should be used to calibrate the radar-rainfall estimates. 

Figure A.1. National WSR-88D Doppler Radar Network in the United States 

Henz (1996a, 1996b, 1996c) investigated the use of an atmosphere-truthed radar-rainfall 
estimation method to improve the quantitative aspects of the radar-rainfall estimation process. 
His method is based on the relationship of the peak observed rainfall rate of a thunderstorm to 
the portions of the storm that exhibit radar reflectivity of 50 dBZ or greater.  A logarithmic down-
stepped technique is used to assign rain rates to radar reflectivity of 30 dBZ to 50dBZ.  The 
technique was used to provide estimates of hail size and damage paths, as well as quantitative 
rainfall estimation in operational flash flood prediction programs in Denver, Colorado and 
Phoenix, Arizona.  The technique was also used in the reconstruction of historical flooding 
events.  The atmosphere-truthed method provided excellent correlation to gage-observed 
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rainfall fields in dense ALERT networks maintained by flood control districts in Denver and 
Phoenix. 

Seo, et al. (2000) updated his earlier findings and offered real-time adjustments of range-
dependant bias in the WSR-88D rainfall fields that significantly reduced the error introduced by 
the distance of the storm from the radar.  In a similar study, Wang, et al. (2000) provided a 
detailed comparison of the mean areal precipitation estimates for watersheds obtained from 
operational and historic rain gage networks and radar-derived rainfall fields.  They investigated 
the impacts of each dataset on the simulated runoff modeled in each of eight watersheds of 
varying sizes.  Their conclusions provided convincing evidence that radar-derived and gage-
adjusted rainfall provided the best runoff simulations and was superior to either radar or rain 
gage datasets without the support of the other.  This conclusion was independent of the size of 
the basins.  

Hardegree, et al. (2003) produced a multi-watershed evaluation of WSR-88D radar-precipitation 
products at agricultural research station watershed research locations in Idaho, Arizona, 
Oklahoma, Georgia, and Mississippi.  They evaluated the utility of these data for hydrologic and 
natural resources modeling applications.  The WSR-88D precipitation estimates under-
estimated gage readings in all locations except Arizona.  However, they found the utility of the 
data for modeling extreme precipitation events, erosion, and runoff was significantly enhanced 
when gage-adjusted radar derived rainfall fields were used for individual storm events and 
specific watersheds. 

Jorgerson and Julian (2005) tested the operational value of using WSR-88D radar rainfall 
estimates with gage-adjustment for the peak flow forecasting of two 1995 flood events on the 
Hassayampa River in Arizona.  They used the rainfall fields as input to the CASC2D distributed 
watershed model to predict the magnitude and timing of the peak flow.  The model successfully 
predicted the peak flow and added four to five hours notice to the timing of the peak flow event. 

Christopherson and Henz (2006) performed a detailed meteorological and hydrologic evaluation 
of an October 6, 2005 extreme precipitation event in Minneapolis Minnesota.  Henz used an 
atmosphere-truthed radar-rainfall relationship to perform a GIS-based radar estimation of the 
rainfall fields at a grid resolution of 1 km by 1 km per 5 to 6 minute time step.  The rainfall field 
developed was compared to four independent rainfall observation sites from nearby first order 
National Weather Service observation gages.  An example of the verification is shown in Figure 
A.2 for 15-minute time steps.  The verification noted a 5 percent over-estimate of the observed 
rainfall by the radar-derived rainfall. 

The gridded and summed rainfall field is shown in Figure A.3 for the basins and sub-basins 
used in the XP SWMM model.  Alternative rainfall fields were entered into the XP SWMM model 
in 15-minute time steps: rain gage only, radar/gage-adjusted, and radar/atmosphere-truthed.  
Model simulations indicated that the atmosphere-truthed rainfall fields provided the best runoff 
simulation. 

The consensus of these papers was that radar-estimated rainfall provides reliable spatial and 
temporal definition of rainfall events and gage-adjusted radar rainfall provides reliable 
quantitative rainfall estimates that improve model simulation of runoff, especially for extreme 
precipitation events. 
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Figure A.2. Sample Verification for the Minneapolis October 6, 2005 Flood Event 

Figure A.3. Atmosphere-truth Rainfall Field in the Minneapolis Simulations 

 
                   

 Octob e  ,  005

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

6:16 6:28 6:46 6:58 7:12 7:30 7:47 8:00 8:17 8:30 8:47 9:00 9:17 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:14
Time (CDT)

Ra
in

fa
ll

Ra dar Rainfal l  Est.

O bse rved  Ra in

 A-13 



A.5 Bibliography 
AASHTO, 2000. Model Drainage Manual, Chapter 13. 

Adamson, P. T., A. V. Metcalfe, and B. Parmentier, 1999. “Bivariate extreme value distributions: 
An application of the Gibb’s sampler to the analysis of floods,” Water Resources Research, 
Vol. 35, No. 9. 

Akkaya, A. D., and M. S. Yucemen, 2002. “Stochastic Modeling of Earthquake Occurrences and 
Estimation of Seismic Hazard: a Random Field Approach.” Probabilistic Engineering 
Mechanics, Vol. 17, pp. 1–13. 

Alila, Y., and A. Mtiraoui, 2002. “Implications of Heterogeneous Flood-frequency Distributions on 
Traditional Stream-discharge Prediction Techniques.” Hydrological Processes, Vol. 16, No. 
5, pp. 1065–1084. 

Andrieu, H., J. D. Creutin, G. Delrieu, and D. Faure, 1997. “Use of a Weather Radar for the 
Hydrology of a Mountainous Area: 1. Radar Measurement Interpretation,” Journal of 
Hydrology, 193, pp. 1–25. 

Ang, A. H. S. and W. H. Tang, 1975. Probability Concepts in Engineering Planning and Design, 
Volume I: Basic Principles, John Wiley & Sons, New York. 

Ashkar, F., N. El Jabi, and M. Issa, 1998. “A Bivariate Analysis of the Volume and Duration of 
Low-flow Events,” Stochastic Hydrology and Hydraulics, Vol. 12, No. 2, pp. 97-116, July. 

Balocki, J. B. and S. J. Burges, 1991. “Preliminary Examination of Relationships between 
Catchment Characteristics and Volumes of Infrequent Large Floods,” SER/TR-130, 
Washington University, Seattle, WA, U.S.G.S. (Seattle), August. 

Beersma, J. J. and T. A. Buishand, 2004. “Joint Probability of Precipitation and Discharge 
Deficits in the Netherlands,” Water Resources Research, Vol. 40. 

Bogardi, I., L. Duckstein, and F. Szidarovszky, 1975. “Hydrological System Reliability at the 
Confluence of Rivers,” Application of Mathematical Models in Hydrology and Water 
Resources Systems, Proceedings of the Bratislava Symposium, Czechoslovakia, IASH-
AISH Publication No. 115, International Association of Hydrological Sciences, pp. 36–44, 
September. 

Brandes, E. A., D. S. Zrnic, G. E. Klazura, C. F. Suprenant and D. Sirmans, 1991. “The Next 
Generation Weather Radar (WSR-88D) as an Applied Research Tool,” Proceedings of the 
25th International Conference on Radar Meteorology, American Meteorological Society, 
Boston, pp. 47–50. 

Bunker, J. and R. Troutbeck, 2003. “Prediction of Minor Stream Delays at a Limited Priority 
Freeway Merge,” Transportation Research Part B, Vol. 37, pp. 719–735. 

Casson, E, and S. Coles, 2000. “Simulation and Extremal Analysis of Hurricane Events,” 
Applied Statistics, Vol. 48, No. 2, 227–245. 

Caracena, F., R. A. Maddox, L. R. Hoxit and C. F. Chappell, 1979. “Mesoanalysis of the Big 
Thompson Storm,” Monthly Weather Review, Vol. 107, No. 1, pp. 1–17. 

Christopherson, J. and J. F. Henz, 2006. “Integrating Radar Rainfall Data, GIS, and XPSWMM 
to Model Storm Events,” Minnesota Water 2006 and Annual Water Resources Joint 
Conference, October 24–25, 2006, Brooklyn Center, MN. Water Resources Center. 

 A-14 



Cleveland, T. G., X. Fang, and D. B. Thompson, 2005. “Timing Parameter Estimation by a 
Particle Tracking Method. Technical Report TechMRT Report 0–4696–3, Texas Tech 
University, Lubbock, TX. 

Coles, S., G., J. Heffernan, and J. Tawn, 1999. “Dependence Measures for Extreme Value 
Analyses,” Extremes, Vol. 2, No. 4, pp. 339–365. 

Coles, S. G., and J. Tawn, 1994. “Statistical Methods for Multivariate Extremes: An Application 
to Structural Design,” Applied Statistics, Vol. 43, No. 1, pp. 1–48. 

Cowan, R., 1979. “The Uncontrolled Traffic Merge,” Journal of Applied Probability, Vol. 16, No. 
2, pp. 384–392. 

Cowan, R. J., 1975. “Useful Headway Models,” Transportation Research, Vol. 9, No. 6, 371–
375. 

De Lannoy, G. J. M., N. E. C. Verhoest, and F. P. de Troch, 2005. “Characteristics of 
Rainstorms over a Temperate Region Derived from Multiple Time Series of Weather Radar 
Images,” Journal of Hydrology, Vol. 307, pp. 126–144. 

De Michele, C., G. Salvadori, M. Canossi, A. Petaccia, and R. Rosso, 2005. “Bivariate Statistical 
Approach to Check Adequacy of Dam Spillway,” Journal of Hydrologic Engineering, Vol. 10, 
No. 1, pp. 50–57, ASCE. 

Dolph, J. and D. Marks, 1992. “Characterizing the Distribution of Observed Precipitation and 
Runoff over the Continental United States,” EPA/600/J-92/458. 

Dyhouse, G. R., 1985. “Stage Frequency Analysis at a Major River Junction,” Journal of 
Hydraulic Engineering, Vol. 111, No. 4, ASCE, April. 

Elsner, J. B., W. H. Drag and J. K. Last, 1989. “Synoptic Weather Patterns Associated with the 
Milwaukee, Wisconsin Flash Flood of 6 August 1986,” Weather and Forecasting, Vol. 4, 
No. 4, pp. 537–554. 

Farajalla, N. S. and B. E. Vieux.  “Temporal and Spatial Aggregation of NEXRAD Rainfall 
Estimates on Distributed Storm Runoff Simulation,” http://www.ncgia.ucsb.edu. 

Favre, A. C., S. El Adlouni, L. Perrault, N. Thiemonge, and B. Bobee, 2004. “Multivariate 
Hydrologic Frequency Analysis using Copulas,” Water Resources Research, Vol. 40. 

Feld, G. and J. Wolfram, 1995. “Using Wind, Wave, and Current Time Histories to Estimate 
Realistic Extreme Joint Loading Conditions,” International Conference on Seakeeping and 
Weather, London, February 28–March 1. 

Fernandez, B. and J. D. Salas, 1999a. “Return Period and Risk of Hydrologic Events. I: 
Mathematical Formulation,” Journal of Hydrologic Engineering, October, ASCE. 

Fernandez, B. and J. D. Salas, 1999b. “Return Period and Risk of Hydrologic Events. II: 
Applications,” Journal of Hydrologic Engineering, October, ASCE. 

Fernandez, P. C., S. Fattorelli, S. Rodriguez, and L. Fornero, 1999. “Regional Analysis of 
Convective Storms,” Journal of Hydrologic Engineering, October, ASCE. 

Fricke, T. J., M. R. Kennedy, and N. B. Wellington, 1983.  “The Use of Rainfall Correlation in 
Determining Design Storms of Waterways on a Long Railway Line,” Proceedings of 
Hydrology and Water Resources Symposium, Hobart, Australia, November 8–10. 

Gazis, D. C. and L. C. Edie, 1968. “Traffic Flow Theory,” Proceedings of the IEEE, Vol. 56, No. 
4, pp. 458–471. 

 A-15 



Gordon, J., 1995. “Pareto Process as a Model of Self-similar Packet Traffic,” in Global 
Telecommunications Conference, pp. 2232–2236, IEEE. 

Gupta, S. and C. S. Manohar, 2005. “Multivariate Extreme Value Distributions for Random 
Vibration Applications,” Journal of Engineering Mechanics, Vol. 131, No. 7, July, ASCE. 

Haan, C. T., and B. N. Wilson, 1987. “Another Look at the Joint Probability of Rainfall and 
Runoff,” in Hydrologic Frequency Modeling: Proceedings of the International Symposium on 
Flood Frequency and Risk Analysis, May 14–17, 1986, Baton Rouge, LA, ed. Singh V. P., 
Reidel, Dordrecht, The Netherlands. 

Hardegree, S., S. Van Vactor, K. Healy, C. Alonso, J. Bonta, D. Bosch, D. Fischer, D. Goodrich, 
D. Harmel, J. Steiner and M. Van Liew, 2003. “Multi-Watershed Evaluation of WSR-88D 
(NEXRAD) Radar-Precipitation Products, pp. 486–491. 

Harold, T. I., A. Sharma, and S. Sheather, 2001. “Selection of a Kernel Bandwidth for Measuring 
Dependence in Hydrologic Time Series Using the Mutual Information Criterion,” Stochastic 
Environmental Research and Risk Assessment, Vol. 15, No. 4, pp. 310–324, August. 

Hawkes, P. J., 2005. “Use of Joint Probability Methods in Flood Management: Guide to Best 
Practice,” R & D Technical Report FD2308/TR2, Defra/Environment Agency, Flood and 
Coastal Defence R & D Programme. 

He, R. R. and B. Ran, 2000. “Calibration and Validation of a Dynamic Traffic Assignment 
Model,” Transportation Research Record: Journal of the Transportation Research Board 
1733, TRB, National Research Council, Washington, D.C. pp. 56–62 

Henz, J. F., 1996a. “A New Approach to Predicting the Size of Damaging Hail,” 18th Conference 
on Severe Local Storms, February 19–23, 1996, San Francisco, California. American 
Meteorological Society, pp. 86–87. 

Henz, J. F., 1996b. “Innovative Re-Constitution of a Western Flash Flood Using Cloud-to-
Ground Lightning, Radar Reflectivity and Surface Rainfall Relationships,” 18th Conference 
on Severe Local Storms, February 19–23, 1996, San Francisco, CA. American 
Meteorological Society, pp. 474–479. 

Henz, J. F., 1996c. “Quantitative Convective Precipitation Prediction Applications to Recent 
1994 and 1995 Flash Flooding Events,” 18th Conference on Severe Local Storms, 
February 19–23, 1996, San Francisco, CA. American Meteorological Society, pp. 667–672. 

Hershfield, D. M., 1973. “On the Probability of Extreme Rainfall Events,” Bulletin of the 
American Meteorological Society, Vol. 54, No. 10, pp. 1013–1018. 

Huff, F. A., 1968. “Spatial Distribution of Heavy Storm Rainfalls in Illinois,” Water Resources 
Research, February, pp. 47–54. 

Hunter, S. M., 1996. “WSR-88D Radar Rainfall Estimation: Capabilities, Limitations, and 
Potential Improvements,” National Weather Digest, Vol. 20, pp. 26–38. 

Hogg, R. V. and A. T. Craig, 1978. Introduction to Mathematical Statistics, (4th ed.) New York: 
MacMillan Publishing Company. 

Hughes, W. C., 1977. “Peak Discharge Frequency from Rainfall Information,” Journal of the 
Hydraulics Division, Vol. 103, No. HY1, pp. 39–50, January, ASCE. 

Jagerman, D. L., B. Melamed, and W. Willinger, 1997. “Stochastic Modeling of Traffic 
Processes,” Technical Report RRR 7–97, Rutgers Center for Operations Research, New 
Brunswick, NJ. 

A-16 



Jenkins, J. D. and H. M. Johnson, 1978. “Flood Profiles in Combined Tidal-freshwater Zones,” 
Journal of the Hydraulics Division, Vol. 104, No. 6, ASCE. 

Johnson, R. A., J. W. Evans, and D. W. Green, 1999. “Some Bivariate Distributions for Modeling 
the Strength Properties of Lumber,” Forest Service Research Paper, FPL-RP-575, August. 

Jorgeson, J. and P. Julien, 2005. “Peak Flow Forecasting with Radar Precipitation and the 
Distributed Model CASC2D,” Water International, Vol. 30, No. 1. International Water 
Resources Association, pp. 40–49. 

Koltun, G. F. and J. M. Sherwood, 1998. “Factors Related to the Joint Probability of Flooding on 
Paired Streams,” USGS Water-Resources Investigations Report 98-4238. 

Kubik, H. E., 1990. “Annual Extreme Lake Elevations by Total Probability Theorem,” 
Proceedings of the Great Lakes Water Level Forecasting and Statistics Symposium, May 
17–18, Windsor, Ontario, Canada. 

Lambert, M. and G. Kuczera, 1996. “Approximate Joint Probability Analysis of Extreme Water 
Levels in Coastal Catchments,” Stochastic Hydraulics, Ticide, Goulter, Xu, Wasimi & 
Bouchart (Editors), Balkema, Rotterdam, The Netherlands. 

Liu, D. and C. Wang, 1996. “Extreme Wave Prediction in Markov Chain Condition,” Shipbuilding 
of China, No. 133, May. 

Loganathan, G. V., C. Y. Kuo, and J. Yannaccone, 1987. “Joint Probability Distribution of 
Stream Flows and Tides in Estuaries,” Nordic Hydrology, Vol. 18, pp. 237–246. 

Long, C. E., 1998. “Joint Wind Wave Height-Frequency-Direction Statistics at Two Disparate 
Sites,” WES/TR/CHL-98-10, May. 

Maddox, R. A., L. R., Hoxit, C. F. Chappell and F. Caracena, 1978. “Comparison of 
Meteorological Aspects of the Big Thompson and Rapid City Flash Floods,” Monthly 
Weather Review, Vol. 106, No. 3, pp. 375–389. 

Maddox, R. A., F. Canova, and L. R. Hoxit, 1980. “Meteorological Characteristics of Flash Flood 
Events over the Western United States,” Monthly Weather Review, Vol. 108, No. 11, pp. 
1866–1877. 

Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002. “Weather Radar Coverage 
Over the Contiguous United States,” Weather and Forecasting, Vol. 17, pp. 927–934. 

Mark, D. J., 1996. “Southern Guam Typhoon Stage-Frequency Analysis,” MP-CERC-96-7, 
November. 

Masutani, M. and A. Leetmaa, 1999. “Dynamical Mechanisms of the 1995 California Floods,” 
Journal of Climate, Vol. 12, No. 11, pp. 3220–3236. 

Matsubayashi U. and F. Takagi, 1987. “On the Probabilistic Characteristics of Point and Areal 
Rainfall,” in Hydrologic Frequency Modeling: Proceedings of the International Symposium 
on Flood Frequency and Risk Analysis, May 14–17, 1986, Baton Rouge, LA, ed. Singh V. 
P., Reidel, Dordrecht, The Netherlands. 

Matthews, W. T. and D. M. Neal, 1992. “Assessment of Helicopter Component Statistical 
Reliability Computations,” MTL-TR-92-71, September. 

McNeil, D. R., 1970. “A Theoretical Analysis of Congestion in a Two-lane Freeway.” Journal of 
Applied Probability, Vol. 7, No. 2, pp. 304–315. 

Meyer, P. L., 1970. Introductory Probability and Statistical Applications, (2nd ed.), Addison-
Wesley Publishing Company, Reading, MA. 

A-17 



Morris, C. D. and S. J. Calise, 1987. “Bivariate Analysis of Concurrent Flooding,” in Hydrologic 
Frequency Modeling: Proceedings of the International Symposium on Flood Frequency and 
Risk Analysis, May 14–17, 1986, Baton Rouge, LA, ed. Singh V. P., Reidel, Dordrecht, The 
Netherlands, pp. 615–632. 

Morris, C. D. and L. C. Wilson, 1987. “Concurrent Flooding Probabilities,” in Hydrologic 
Frequency Modeling: Proceedings of the International Symposium on Flood Frequency and 
Risk Analysis, May 14–17, 1986, Baton Rouge, LA, ed. Singh V. P., Reidel, Dordrecht, The 
Netherlands. 

O’Connor, J. E. and J. E. Costa, 2004. “Spatial Distribution of the Largest Rainfall-Runoff Floods 
from Basins Between 2.6 and 26000 km2 in the United States and Puerto Rico,” Water 
Resources Research, Vol. 40. 

Olivera, F. and T. Gill, 2004. “GIS Static Storm Model Development: Literature Review and 
Progress Report,” FHWA/TX-05/0-4642-1, September. 

Panofsky, H. A. and G. W. Brier, 1958, “Some Applications of Statistics to Meteorology,” The 
Pennsylvania State University, State College, PA, p. 81, p. 94. 

Pingel, N. and D. Ford, 2004. “Interior Floodplain Flood-Damage Reduction Study,” Journal of 
Water Resources Planning and Management, Vol. 130, No. 2, pp. 123–130, ASCE. 

Prior-Jones, R. L. and F. L. Beiboer, 1990. “Use of Joint Probability in Deriving Environmental 
Design Criteria,” Environmental Forces on Offshore Structures and their Prediction, 
London, November 28–29. 

Racicot, R. W. and F. Moses, 1972. “Filtered Poisson Process for Random Vibration Problems,” 
Journal of Soil Mechanics and Foundation Division, Vol. 98, No. EM1, February, ASCE. 

Randerson, D., 1976. “Meteorological Analysis for the Las Vegas, Nevada, Flood of 3 July 
1975,” Monthly Weather Review, Vol. 104, No. 6, pp. 719–727. 

Raynal, J. A. and J. D. Salas, 1987. “A Probabilistic Model for Flooding Downstream of the 
Junction of Two Rivers,” in Hydrologic Frequency Modeling: Proceedings of the 
International Symposium on Flood Frequency and Risk Analysis, May 14–17, 1986, Baton 
Rouge, LA, ed. Singh V. P., Reidel, Dordrecht, The Netherlands, pp. 595–601. 

Ribeny, F. M., 1971. “On the Chance of Culvert Washouts on a Long Railway Line,” Australia 
Institution of Engineers, Hydrology Papers, Sydney, Australia. 

Sackl, B. and H. Bergman, 1987. “A Bivariate Flood Model and its Application,” in Hydrologic 
Frequency Modeling: Proceedings of the International Symposium on Flood Frequency and 
Risk Analysis, May 14–17, 1986, Baton Rouge, LA, ed. Singh V. P., Reidel, Dordrecht, The 
Netherlands, pp. 571–582. 

Salvadori, G., and C. De Michele, 2004. “Frequency Analysis via Copula: Theoretical Aspects 
and Applications to Hydrologic Events,” Water Resources Research, Vol. 40. 

Scheffner, N. W., L. E. Borgman, and D. J. Mark, 1996. “Empirical Simulation Technique Based 
Storm Surge Frequency Analyses,” Journal of Waterway, Port, Coastal, and Ocean 
Engineering, Vol. 122, No. 2, March/April, ASCE. 

Scheffner, N. W., D. J. Mark, L. Lin, W. A. Brandon, and M. C. Miller, 1999. “Development of 
Water-Surface Elevation Frequency-of-Occurrence Relationships for the Brunswick, North 
Carolina, Nuclear Power Plant Site,” CHL-99-12, December. 

 A-18 



Seo, D. J., 1996. “Nonlinear Estimation of Spatial Distribution of Rainfall – An Indicator 
Cokriging Approach,” Stochastic Environmental Research and Risk Assessment, Vol. 10, 
No. 2, pp. 127–150, May. 

Seo, D. J., 1998. “Real-time Estimation of Rainfall Fields Using Radar Rainfall and Rain Gage 
Data,” Journal of Hydrology, Vol. 208, pp. 37–52. 

Seo, D. J., J. Breidenbach, R. Fulton, D. Miller, and T. O’Bannon, 2000. “Real-time Adjustment 
of Range Dependent Biases in WSR88D Rainfall Estimates Due to Nonuniform Vertical 
Profile of Reflectivity,” Journal of Hydrometeorology, Vol. 1, pp. 222–240. 

Shiau, J. T., 2003. “Return Period of Bivariate Distributed Extreme Hydrological Events,” 
Stochastic Environmental Research and Risk Assessment, Vol. 17, No. 1–2, pp. 42–57, 
May. 

Skaugen, T. 1996. “Spatial Approach to the Modeling and Estimation of Areal Precipitation,” 
Doctoral Thesis, Oslo University, Norway. 

Singh, V. P., 2000. “The Entropy Theory as a Tool for Modelling and Decision-Making in 
Environmental and Water Resources,” Water SA, Vol. 26, No. 1, pp. 1–12, January. 

Sui, J., and G. Koehler, 2001. “Rain-on-Snow Induced Flood Events in Southern Germany,” 
Journal of Hydrology, Vol. 252, pp. 205–220. 

Svensson, C., 1999. “Occurrence, Shape, and Movement of Daily Rainfall in the Huai Basin, 
China,” Hydrological Processes, Vol. 13, pp. 1197–1215. 

Svensson, C., and D. A. Jones, 2004. “Dependence Between Sea Surge, River Flow, and 
Precipitation in South and West Britain,” Hydrology and Earth System Sciences, Vol. 8, No. 
5, pp. 973–992. 

Szidarovszky, F., I. Bogardi, and L. Duckstein, 1975. “Levee System Reliability Along a 
Confluence Reach,” Journal of the Engineering Mechanics Division, Vol. 101, No. 5, pp. 
609–622, September/October, ASCE. 

Tayfun, M. A., 1979. “Joint Occurrences in Coastal Flooding,” Journal of the Waterway Port 
Coastal and Ocean Division, Vol. 105, No. WW2, ASCE. 

USACE, 1987. “Hydrologic Analysis of Interior Areas,” EM 1110-2-1413. (Primarily Section 4-8 
“Coincident Frequency Methods”). 

USACE, 1993. “Hydrologic Frequency Analysis,” EM 1110-2-1415.  (Primarily Chapter 11 
“Frequency of Coincident Flow”). 

Van Mullem, J. A., 1998. “Coincident Frequency in Snowmelt Runoff Modeling,” The 1998 
International Water Resources Engineering Conference, Part 2 (of 2), Memphis, TN, 
August, pp. 1303–1308. 

Vieux, B. E. and P. B. Bendient, 1998. “Estimation of Rainfall for Flood Prediction from WSR-
88D Reflectivity: A Case Study, 17–18 October 1994,” Weather and Forecasting: Vol. 13, 
No. 2, pp. 407–415. 

Wang, D., M. B. Smith, Z. Zhang, S. Reed, V. I. Koren, 2000. “Statistical Comparison of Mean 
Areal Precipitation Estimates From WSR-88D, Operational and Historical Gage Networks,” 
15th Conference on Hydrology, January 9–14, 2000, Long Beach CA. American 
Meteorological Society. 

Wilks, D. S., 1995. “Statistical Methods in the Atmospheric Sciences,” Academic Press, San 
Diego, CA, pps. 11–12, 13, 14, 16–17, 211, 293. 

 A-19 



Wilson, L. C., 1980. “The Probability of Concurrent Flooding on the Meramec and Mississippi 
Rivers,” Master’s Thesis, University of Missouri–Rolla. 

Wilson, L. C., 1986. “A Continuous Spaciotemporal Stochastic Model for Short-Time-Increment 
Precipitation,” Ph.D. Thesis, University of Missouri–Rolla. 

Wilson, L. L. and E. Foufoula-Georgiou, 1990. “Regional Rainfall Frequency Analysis Via 
Stochastic Storm Transposition,” Journal of Hydraulic Engineering, Vol. 116, No. 7, July, 
ASCE. 

Wood, E. F., M. Sivapalan, and K. Beven, 1993. “Similarity and Scale in Catchment Storm 
Response,” PAPER-89RG01615, Princeton University. 

Zhang, L. and V. P. Singh, 2006. “Bivariate Flood Frequency Analysis Using the Copula 
Method,” Journal of Hydrologic Engineering, Vol. 11, No. 2, pp. 150–164, March/April, 
ASCE. 

 A-20 



Appendix B. Databases 

Table of Contents 
List of Tables .............................................................................................................. B-i 
B.1 Gage Pairs ...........................................................................................................B-1 

B.1.1 Gage Pair Evolution ....................................................................................B-1 

B.1.2 Discharge Quantiles ...................................................................................B-1 

B.2 Instantaneous Data ..............................................................................................B-2 

B.3 Watershed Parameters ........................................................................................B-2 

B.4 Statistical Summaries ...........................................................................................B-3 

List of Tables 
Table B.1. Summary of Gage Pairs. .............................................................................B-4 

Table B.2. IDA Gages. ............................................................................................... B-11 

Table B.3. Annual Peak Series Statistics from Daily Data. ......................................... B-12 

Table B.4. Summary Statistics for Concurrent Data: Peak on Main (POM). ............... B-16 

Table B.5. Summary Statistics for Concurrent Data: Peak on Tributary (POT). ......... B-18 

B-i 



B.1 Gage Pairs 
The analyses in this research were based on a set of gage pairs from the coterminous United 
States.  The following sections describe the final selection of gage pairs and the computation of 
discharge quantiles for each gage record. 

B.1.1 Gage Pair Evolution 
Table B.1 summarizes 93 gage pairs intended for this research.  After working with the data, 
seven of these pairs were dropped as unsuitable leaving 85 gage pairs for the research.  The 
gage pairs dropped and the corresponding reasons are as follows: 

• Pair 07.  One of the streams was regulated. 

• Pair 10.  One of the streams was regulated. 

• Pair 30.  Coincident sample size too small (n = 6). 

• Pair 50.  Coincident sample size too small (n = 3). 

• Pair 63.  Coincident sample size too small (n = 6). 

• Pair 91.  One of the streams was regulated. 

• Pair 92.  No overlap in gaged data. 

• Pair 93.  One of the streams was regulated. 

B.1.2 Discharge Quantiles 
Log Pearson Type III discharge quantiles following the guidelines of Bulletin 17B (IACWD, 
1982) were computed using the Army Corps of Engineers software program HEC-FFA (HEC, 
1992).  For each stream gage, input data supplied to HEC-FFA were: 

1. USGS annual peak data. These were downloaded from the NWIS Web server 
and were used for systematic events.  All annual peak values were used in the 
analysis.  Stream gages subject to upstream reservoir regulation were previously 
screened out of the gage set based on USGS data flags.  Historic (as defined by 
HEC-FFA) events were not used in the analysis because a systematic method 
for supplementing annual peak data with historical event data was not identified. 

2. Regional skew value. This was taken from Bulletin 17B Plate I “Generalized skew 
coefficients of logarithms of annual maximum stream flow.”  Plate I contours of 
constant skew were digitized using GIS tools.  A skew surface (grid) was 
interpolated using the natural neighbor method.  For each stream gage, the 
interpolated value of regional skew was read from the surface at the centroid of 
the gaged watershed. 

HEC-FFA options specified for controlling computations were: 

1. Computed quantiles for twelve values of percent chance exceedance: 0.2, 0.5, 1, 
2, 5, 10, 20, 50, 80, 90, 95, and 99. 

2. Adopted skew was weighted value of computed skew and regional skew.  
Weighting was based on mean-square errors of regional and station skew 
values.  Mean-square error of regional skew value from Plate I was taken as 
0.302 per Bulletin 17B. 
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3. High and low outliers were identified automatically by HEC-FFA, following the 
algorithm specified in Bulletin 17B.  Outliers were removed by HEC-FFA from the 
data before final computations. 

B.2 Instantaneous Data 
Table B.2 provides a summary of the instantaneous data archive (IDA) data used in this 
research. 

B.3 Watershed Parameters 
NHDPlus (EPA and USGS, 2007) was used as the source for deriving watershed characteristics 
because it allowed for efficient delineation of watershed boundaries and computation of centroid 
locations, longest flow paths, and longest flow path average slopes.  This was critical because 
identification of suitable stream gage pairs was a necessary and substantial effort and was 
made possible by taking advantage of USGS delineations of nearly 3 million small subbasins for 
the U.S., one for each NHDPlus stream segment, already included in NHDPlus. 

Another advantage of using NHDPlus was that stream segments are networked.  Through 
application of GIS tools, this allowed for identification of potential gage pairs in which one USGS 
stream gage is upstream of another.  In those cases, the tributary watershed (smaller drainage 
area) is contained by the main watershed (larger drainage area).  Identification of those cases 
allowed for further screening to determine whether inclusion or exclusion from the final set of 
gage pairs was appropriate. 

Locations of gaged watershed centroids were needed, as these were, with few exceptions, 
generally not available from the USGS.  Watershed centroid location (latitude/longitude) for 
each watershed was computed as follows: 

1. Using GIS tools, identified NHDPlus stream segment nearest to gage location. 

2. Using NHDPlus Value Added Attributes (VAA) tool, used the “navigate upstream 
with tributaries” tool feature to identify all stream segments upstream of segment 
nearest to gage. 

3. Using GIS tools, selected all NHDPlus subbasins containing stream segments 
identified in previous step.  Using GIS tools, merged selected subbasins into one 
watershed. 

4. Using GIS tools, computed centroid of watershed upstream of gage. 

The distance between watershed centroids was computed for each of the original 93 gage pairs 
as the Pythagorean distance based on projected coordinates of the two centroids.  The Albers 
Equal Area Conic projection was used. 

Maximum flow length of each watershed was computed as follows: 

1. Using GIS tools, identified NHDPlus stream segment nearest to gage location. 

2. Using NHDPlus Value Added Attributes (VAA) tool, used the “navigate upstream 
main stem” tool feature to identify all stream segments upstream of segment 
nearest to gage. 

3. From the NHDPlus flowline attributes table, summed the lengths of all main 
stream segments to obtain watershed maximum flow length. 
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Watershed channel slope of each watershed was computed as follows: 

1. From the NHDPlus flowline attributes table, recorded minimum and maximum 
elevation of all main stream segments. 

2. Computed difference in elevation and divided by maximum flow length to obtain 
watershed channel slope. This is the average slope of the channel along the 
longest flow path. 

A length slope parameter was computed to represent a quantity analogous to time of 
concentration.  The method was essentially an application of the Kirpich equation, however, 
since many of the watersheds fall outside the appropriate range recommended for the Kirpich 
equation for time of concentration, it is simply called the length slope parameter.  Whether this 
parameter is useful will be discussed elsewhere in this report.  The equation is as follows: 

 385.0

77.0

LS S
L00013.0T =  (B.1) 

where, 
 TLS = Length slope parameter, h 

 L = length of the basin along the watercourse from the point of interest to the 
farthest point on the basin divide, ft 

 S = average main channel slope for the basin, ft/ft 
 
Values of L and S were taken as the watershed maximum flow length and watershed channel 
slope from NHDPlus. 

B.4 Statistical Summaries 
Statistical analyses of the annual peak series based on the daily data have been completed and 
are summarized for the 85 gage pairs used in this research in Table B.3.  The table provides the 
number of years of data (n) along with the mean, standard deviation, and mean of the 
untransformed data and the mean, standard deviation, and skew of the log-transformed data.  
The final two columns provide the location and scale parameters for fitting the Gumbel 
distribution.  These data are useful for defining annual exceedance probabilities for the marginal 
distributions. 

Two concurrent datasets were assembled for each of the gage pairs based on daily data.  One 
dataset was the annual peak on the main stream and the corresponding value on the tributary 
on the same day (POM).  The second dataset was the annual peak on the tributary and the 
corresponding value on the main stream on the same day (POT).  Tables B.4 and B.5 
summarize the statistics for the two datasets.  In some cases, the complementary daily value 
was zero.  In order to compute some of the statistics in the tables, the zero values were 
adjusted to 0.1 ft3/s. 

For each pair the number of concurrent observations for each gage pair is reported.  In a few 
cases, the number of years of concurrent data differs slightly between the POM and POT 
datasets when daily data are missing for the day on which a peak occurs on the other gage.  
The correlation measures of Pearson’s ρ (untransformed and log (base 10) and Kendall’s τ are 
summarized in the tables.  The p-value to the right of each column is a measure of the 
significance of the correlation.  A lower p-value indicates higher significance of the correlation 
estimate.  In addition, Gumbel’s θ, the Gumbel-Hougaard θ, and the Frank θ are provided.  
These data are used for fitting the concurrent datasets to the bivariate distributions and copulas. 
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Table B.1. Summary of Gage Pairs. 

Gage 
Pair 

Area 
Ratio 

Gage 
Separation 

(mi) 

Drainage 
Area 
(mi2) Station State Station Name 

Longitude. 
(degrees) 

Latitude 
(degrees) 

1 1.8 3.0 2680.0 01010500 ME St. John River at Dickey, Maine -69.08814 47.11317 
1478.0 01011000 ME Allagash River near Allagash, Maine -69.07954 47.06961 

2 82.3 6.8 385.0 01064500 NH Saco River near Conway, NH -71.09048 43.99084 
4.7 01064400 NH LUCY BROOK NEAR NORTH CONWAY, NH -71.17258 44.07016 

3 54.3 4.0 94.0 01181000 MA WEST BRANCH WESTFIELD RIVER AT 
HUNTINGTON, MA 

-72.89594 42.23711 

1.7 01180000 MA SYKES BROOK AT KNIGHTVILLE, MA -72.87033 42.29094 
4 2.8 0.5 19.9 01187300 CT HUBBARD RIVER NR. WEST HARTLAND, 

CT. 
-72.93959 42.03707 

7.0 01187400 CT VALLEY BK NR WEST HARTLAND, CT. -72.92991 42.03427 
5 394.5 4.8 785.0 01403060 NJ RARITAN RIVER BELOW CALCO DAM AT 

BOUND BROOK NJ 
-74.54857 40.55162 

2.0 01403150 NJ WEST BRANCH MIDDLE BROOK NEAR 
MARTINSVILLE NJ 

-74.59065 40.61236 

6 2.9 3.6 106.0 01445500 NJ PEQUEST RIVER AT PEQUEST NJ -74.97845 40.83054 
36.7 01446000 NJ BEAVER BROOK NEAR BELVIDERE NJ -75.04630 40.84327 

7 634.4 2.2 9960.0 01536500 PA Susquehanna River at Wilkes-Barre, PA -75.880300 41.253875 
15.7 01537500 PA Solomon Creek at Wilkes-Barre, PA -75.905144 41.227497 

8 1.2 1.2 8.5 01590000 MD NORTH RIVER NEAR ANNAPOLIS, MD -76.62220 38.98592 
6.9 01590500 MD BACON RIDGE BRANCH AT 

CHESTERFIELD, MD 
-76.61447 39.00202 

9 3.5 0.5 57.3 01615000 VA OPEQUON CREEK NEAR BERRYVILLE, VA -78.07825 39.17448 
16.5 01616000 VA ABRAMS CREEK NEAR WINCHESTER, VA -78.08580 39.17785 

10 107.7 2.1 9651.0 01638500 MD POTOMAC RIVER AT POINT OF ROCKS, MD -77.544277 39.272590 
89.6 01638480 VA CATOCTIN CREEK AT TAYLORSTOWN, VA -77.576454 39.254578 

11 183.5 7.4 1081.0 01673000 VA PAMUNKEY RIVER NEAR HANOVER, VA -77.33221 37.76764 
5.9 01673500 VA TOTOPOTOMOY CREEK NEAR ATLEE, VA -77.38248 37.66932 

12 206.0 8.2 6758.0 02037500 VA JAMES RIVER NEAR RICHMOND, VA -77.54664 37.56098 
32.8 02038000 VA FALLING CREEK NEAR CHESTERFIELD, VA -77.52247 37.44396 

13 28.7 3.2 1131.0 03164000 VA NEW RIVER NEAR GALAX, VA -80.97765 36.64646 
39.4 03165000 VA CHESTNUT CREEK AT GALAX, VA -80.91934 36.64587 
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Gage 
Pair 

Area 
Ratio 

Gage 
Separation 

(mi) 

Drainage 
Area 
(mi2) Station State Station Name 

Longitude. 
(degrees) 

Latitude 
(degrees) 

14 2.4 3.7 306.0 03202400 WV GUYANDOTTE RIVER NEAR BAILEYSVILLE, 
WV 

-81.64417 37.60365 

126.0 03202750 WV CLEAR FORK AT CLEAR FORK, WV -81.70782 37.62329 
15 2.0 3.1 129.0 03240000 OH Little Miami River near Oldtown OH -83.93144 39.74778 

63.2 03241500 OH Massies Creek at Wilberforce OH -83.88290 39.72255 
16 1.8 2.9 84.7 03250100 KY NORTH FORK TRIPLETT CREEK NEAR 

MOREHEAD, KY 
-83.48106 38.19870 

47.5 03250000 KY TRIPLETT CREEK AT MOREHEAD, KY -83.42999 38.18415 
17 3.3 3.9 202.0 03280600 KY MIDDLE FORK KENTUCKY RIVER NEAR 

HYDEN, KY 
-83.37091 37.13698 

61.3 03280700 KY CUTSHIN CREEK AT WOOTON, KY -83.30803 37.16497 
18 2.8 1.7 1858.0 03455000 TN FRENCH BROAD RIVER NEAR NEWPORT, 

TN 
-83.16064 35.98203 

666.0 03461500 TN PIGEON RIVER AT NEWPORT, TN -83.17416 35.96043 
19 4.2 2.5 82.5 03538225 TN POPLAR CREEK NEAR OAK RIDGE, TN -84.33939 35.99869 

19.5 03538250 TN EAST FORK POPLAR CREEK NEAR OAK 
RIDGE, TN 

-84.35823 35.96648 

20 50.7 8.0 385.0 04117500 MI THORNAPPLE RIVER NEAR HASTINGS, MI -85.23625 42.61551 
7.6 04117000 MI QUAKER BROOK NEAR NASHVILLE, MI -85.09357 42.56587 

21 101.7 0.9 117.0 04140500 MI RIFLE RIVER AT STATE ROAD AT SELKIRK, 
MI 

-84.06995 44.31342 

1.2 04141000 MI SOUTH BRANCH SHEPARDS CREEK NEAR 
SELKIRK, MI 

-84.08694 44.30777 

22 1.6 3.9 63.6 05423500 WI SOUTH BRANCH ROCK RIVER AT 
WAUPUN, WI 

-88.72036 43.64146 

40.7 05423000 WI WEST BRANCH ROCK RIVER NEAR 
WAUPUN, WI 

-88.65244 43.66803 

23 60.0 8.8 8753.0 05443500 IL ROCK RIVER AT COMO, IL -89.75040 41.78184 
146.0 05444000 IL ELKHORN CREEK NEAR PENROSE, IL -89.69672 41.90255 

24 1.7 1.4 2256.0 05476750 IA Des Moines River at Humboldt, IA -94.22050 42.71934 
 1308.0 05479000 IA East Fork Des Moines River at Dakota City, IA -94.19289 42.72369 

25 67.5 8.3 1619.0 05482500 IA North Raccoon River near Jefferson, IA -94.37694 41.98796 
24.0 05483000 IA East Fork Hardin Creek near Churdan, IA -94.37025 42.10748 

26 425.6 9.1 5150.0 05527500 IL KANKAKEE RIVER NEAR WILMINGTON, IL -88.18808 41.34607 
12.1 05526500 IL TERRY CREEK NEAR CUSTER PARK, IL -88.09843 41.23353 
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Gage 
Pair 

Area 
Ratio 

Gage 
Separation 

(mi) 

Drainage 
Area 
(mi2) Station State Station Name 

Longitude. 
(degrees) 

Latitude 
(degrees) 

27 5.8 3.3 212.0 05587900 IL CAHOKIA CREEK AT EDWARDSVILLE, IL -89.97485 38.82452 
   36.7 05588000 IL INDIAN CREEK AT WANDA, IL -90.03296 38.84166 

28 9.4 2.8 543.0 06193500 MT Shields River at Clyde Park MT -110.61800 45.88580 
   57.9 06194000 MT Brackett Creek near Clyde Park MT -110.67022 45.86664 

29 2.7 1.6 143.0 06211000 MT Red Lodge Cr ab Cooney Re nr Boyd MT -109.25334 45.43790 
   53.3 06211500 MT Willow Creek near Boyd MT -109.23051 45.42218 

30 3.3 3.7 803.0 06270000 WY NOWOOD RIVER NEAR TENSLEEP, WY -107.42836 44.01337 
   247.0 06271000 WY TENSLEEP CREEK NEAR TENSLEEP, WYO. -107.38844 44.05793 

31 1.1 0.6 2040.0 06776500 NE DISMAL RIVER AT DUNNING, NE -100.10047 41.82269 
   1830.0 06775500 NE MIDDLE LOUP RIVER AT DUNNING, NEBR. -100.10067 41.83097 

32 4.8 3.5 1400.0 06797500 NE ELKHORN RIVER AT EWING, NEBR. -98.33939 42.26823 
   292.0 06798000 NE SOUTH FORK ELKHORN RIVER AT EWING, 

NEBR. 
-98.39785 42.24158 

33 443.1 7.6 2840.0 06933500 MO Gasconade River at Jerome, MO -91.97669 37.92996 
   6.4 06931500 MO LITTLE BEAVER CR NR ROLLA, MO -91.83634 37.93491 

34 1.0 3.2 570.0 07058000 MO Bryant Creek near Tecumseh, MO -92.30639 36.62639 
   561.0 07057500 MO North Fork River near Tecumseh, MO -92.24769 36.62294 

35 8.4 1.3 474.0 08179000 TX Medina Rv nr Pipe Creek, TX -98.97607 29.67555 
   56.3 08179100 TX Red Bluff Ck nr Pipe Ck, TX -98.95574 29.68122 

36 1.9 3.2 117.0 08230500 CO CARNERO CREEK NEAR LA GARITA, CO. -106.31946 37.85975 
   61.0 08231000 CO LA GARITA CREEK NEAR LA GARITA, CO. -106.31864 37.81340 

37 1.5 2.1 167.0 08248000 NM LOS PINOS RIVER NEAR ORTIZ, CO. -106.07349 36.98194 
   110.0 08247500 NM SAN ANTONIO RIVER AT ORTIZ, CO. -106.03836 36.99297 

38 3.3 1.4 1390.0 08340500 NM ARROYO CHICO NR GUADALUPE, NM -107.18933 35.59222 
   420.0 08334000 NM RIO PUERCO ABV ARROYO CHICO NR 

GUADALUPE, NM 
-107.16605 35.60087 

39 1.0 0.4 295.0 08389500 NM RIO BONITO AT HONDO, NM -105.27509 33.38969 
   290.0 08388000 NM RIO RUIDOSO AT HONDO, NM -105.27544 33.38351 

40 160.9 6.2 5858.0 09508500 AZ VERDE R BLW TANGLE CREEK, ABV 
HORSESHOE DAM, AZ. 

-111.71605 34.07286 

   36.4 09508300 AZ WET BOTTOM CREEK NEAR CHILDS, AZ. -111.69289 34.16076 
41 474.2 7.3 3438.0 10170490 UT COM FLW JORDAN RIVER & SURPLUS 

CANAL @ SLC, UT 
-111.92684 40.72671 

   7.3 10172200 UT RED BUTTE CREEK AT FORT DOUGLAS, 
NEAR SLC, UT 

-111.80535 40.78011 
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Gage 
Pair 

Area 
Ratio 

Gage 
Separation 

(mi) 

Drainage 
Area 
(mi2) Station State Station Name 

Longitude. 
(degrees) 

Latitude 
(degrees) 

42 1.9 0.6 134.0 10260500 CA DEEP C NR HESPERIA CA -117.22985 34.34220 
   70.3 10261000 CA WF MOJAVE R NR HESPERIA CA -117.24080 34.34059 

43 1.8 3.0 133.0 12082500 WA NISQUALLY RIVER NEAR NATIONAL, WA -122.08373 46.75222 
   75.2 12083000 WA MINERAL CREEK NEAR MINERAL, WA -122.14542 46.74433 

44 100.2 9.5 535.0 12134500 WA SKYKOMISH RIVER NEAR GOLD BAR, WA -121.66729 47.83696 
   5.3 12147600 WA SOUTH FORK TOLT RIVER NEAR INDEX, 

WA 
-121.60017 47.70656 

45 2.8 3.7 68.9 12500500 WA NORTH FORK AHTANUM CREEK NEAR 
TAMPICO, WA 

-120.91705 46.56391 

   24.8 12501000 WA SF AHTANUM CREEK AT CONRAD RANCH 
NR TAMPICO, WA 

-120.91630 46.51074 

46 1.9 3.9 323.0 13011900 WY BUFFALO FORK AB LAVA CREEK NR 
MORAN WY 

-110.44072 43.83772 

   169.0 13011500 WY PACIFIC CREEK AT MORAN WY -110.51706 43.85086 
47 3.5 3.6 59.6 14013000 WA MILL CREEK NEAR WALLA WALLA, WA -118.11882 46.00792 

   17.0 14013500 WA BLUE CREEK NEAR WALLA WALLA, WA -118.14030 46.05756 
48 1.3 2.7 176.0 14020300 OR MEACHAM CREEK AT GIBBON, OR -118.35667 45.68851 

   131.0 14020000 OR UMATILLA RIVER ABOVE MEACHAM 
CREEK, NR GIBBON, OR 

-118.32352 45.71958 

49 2.0 3.4 216.0 14178000 OR NO SANTIAM R BLW BOULDER CRK, NR 
DETROIT, OR 

-122.10085 44.70743 

   108.0 14179000 OR BREITENBUSH R ABV FRENCH CR NR 
DETROIT, OR. 

-122.13190 44.75117 

50 8.2 3.5 1162.0 14235000 WA COWLITZ RIVER AT MOSSYROCK, WA -122.49318 46.54985 
   141.0 14236200 WA TILTON RIVER AB BEAR CANYON CREEK 

NEAR CINEBAR, WA 
-122.45945 46.59514 

51 1.1 2.5 161.0 14301500 OR WILSON RIVER NEAR TILLAMOOK, OR -123.72442 45.47558 
   145.0 14302500 OR TRASK RIVER NEAR TILLAMOOK,OREG. -123.71796 45.44012 

52 3.4 6.2 152.0 01547950 PA Beech Creek at Monument, PA -77.70211 41.11151 
   44.1 01547700 PA Marsh Creek at Blanchard, PA -77.60571 41.05964 

53 1.8 7.3 231.0 02113850 NC ARARAT RIVER AT ARARAT, NC -80.56172 36.40458 
   128.0 02113000 NC FISHER RIVER NEAR COPELAND, NC -80.67895 36.35696 

54 12.5 8.1 1372.0 02126000 NC ROCKY RIVER NEAR NORWOOD, NC -80.17611 35.14850 
   110.0 02127000 NC BROWN CREEK NEAR POLKTON, NC -80.14974 35.03385 
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Gage 
Pair 

Area 
Ratio 

Gage 
Separation 

(mi) 

Drainage 
Area 
(mi2) Station State Station Name 

Longitude. 
(degrees) 

Latitude 
(degrees) 

55 1.4 5.0 262.0 02220900 GA LITTLE RIVER NEAR EATONTON, GA -83.43700 33.31406 
   190.0 02221525 GA MURDER CREEK BELOW EATONTON, GA -83.48132 33.25227 

56 2.7 7.5 272.0 02344500 GA FLINT RIVER NEAR GRIFFIN, GA -84.42889 33.24389 
   101.0 02344700 GA LINE CREEK NEAR SENOIA, GA -84.52211 33.31925 

57 1.4 8.2 305.0 03173000 VA WALKER CREEK AT BANE, VA -80.70763 37.26924 
   223.0 03175500 VA WOLF CREEK NEAR NARROWS, VA -80.84973 37.30614 

58 4.9 7.0 1385.0 04114000 MI GRAND RIVER AT PORTLAND, MI -84.91248 42.85654 
   281.0 04114500 MI LOOKING GLASS RIVER AT HINMAN RD 

NEAR EAGLE, MI 
-84.77853 42.82920 

59 1.8 8.4 1153.0 04149000 MI FLINT RIVER NEAR FOSTERS, MI -83.95357 43.30858 
   637.0 04145000 MI SHIAWASSEE RIVER NEAR FERGUS, MI -84.10451 43.25531 

60 1.3 7.0 298.0 04196500 OH Sandusky River near Upper Sandusky OH -83.25630 40.85056 
   229.0 04196800 OH Tymochtee Creek at Crawford OH -83.34905 40.92310 

61 3.6 5.6 126.0 04234000 NY FALL CREEK NEAR ITHACA NY -76.47312 42.45340 
   35.2 04233000 NY CAYUGA INLET NEAR ITHACA NY -76.54501 42.39315 

62 2.6 9.7 1090.0 05367500 WI RED CEDAR RIVER NEAR COLFAX, WI -91.71190 45.05308 
   418.0 05368000 WI HAY RIVER AT WHEELER, WI -91.91102 45.04785 

63 1.3 4.5 101.0 05376000 MN NORTH FORK WHITEWATER RIVER NEAR 
ELBA, MN 

-92.06593 44.09235 

   76.8 05376500 MN SOUTH FORK WHITEWATER RIVER NEAR 
ALTURA, MN 

-91.98066 44.06949 

64 1.7 6.4 620.0 05500000 MO South Fabius River near Taylor, MO -91.57987 39.89678 
   373.0 05501000 MO North River at Palmyra, MO -91.51752 39.81836 

65 3.6 7.3 464.0 05594800 IL SILVER CREEK NEAR FREEBURG, IL -89.87296 38.39653 
   129.0 05595200 IL RICHLAND CREEK NEAR HECKER, IL -89.97107 38.32375 

66 5.3 5.7 310.0 06447500 SD LITTLE WHITE R NEAR MARTIN SD -101.63283 43.16689 
   58.0 06448000 SD LAKE CR ABOVE REFUGE NEAR TUTHILL 

SD 
-101.60329 43.08712 

67 1.7 6.9 424.0 05054500 ND SHEYENNE RIVER ABOVE HARVEY, ND -99.94865 47.70270 
   253.0 06467600 ND JAMES RIVER NR MANFRED, ND -99.82880 47.64394 

68 2.4 7.3 400.0 06719505 CO CLEAR CREEK AT GOLDEN, CO. -105.23526 39.75299 
   164.0 06710500 CO BEAR CREEK AT MORRISON, CO. -105.19575 39.65281 

69 11.0 6.5 594.0 06863500 KS BIG C NR HAYS, KS -99.31831 38.85247 
   54.0 06863900 KS NF BIG C NR VICTORIA, KS -99.20597 38.88696 
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Gage 
Pair 

Area 
Ratio 

Gage 
Separation 

(mi) 

Drainage 
Area 
(mi2) Station State Station Name 

Longitude. 
(degrees) 

Latitude 
(degrees) 

70 2.5 8.0 849.0 06871000 KS NF SOLOMON R AT GLADE, KS -99.30922 39.67351 
341.0 06871500 KS BOW C NR STOCKTON, KS -99.28551 39.55974 

71 2.3 8.5 1238.0 07050000 AR WHITE RIVER AT BEAVER, ARK. -93.76630 36.47298 
527.0 07050500 AR Kings River near Berryville, AR -93.62353 36.42628 

72 2.0 8.6 302.0 07075000 AR Middle Fork of Little Red River at Shirley, AR -92.32029 35.65231 
148.0 07075300 AR South Fork of Little Red River At Clinton, AR -92.45497 35.59301 

73 2.5 7.2 1037.0 07077500 AR Cache River at Patterson, AR -91.23763 35.26953 
421.0 07077700 AR Bayou DeView near Morton, AR -91.11076 35.25199 

74 5.0 8.3 410.0 07261500 AR Fourche LaFave River Near Gravelly, AR -93.65629 34.87247 
81.4 07260000 AR Dutch Creek at Waltreak, AR -93.61283 34.98716 

75 1.8 4.6 675 07346070 TX Little Cypress Ck nr Jefferson, TX -94.34606 32.71297 
365 07346045 TX Black Cypress Bayou at Jefferson, TX -94.35778 32.77901 

76 1.6 7.7 289.0 08164450 TX Sandy Ck nr Ganado, TX -96.54628 29.16013 
178.0 08164503 TX W Mustang Ck nr Ganado, TX -96.46712 29.07177 

77 8.9 9.3 817.0 08164000 TX Lavaca Rv nr Edna, TX -96.68662 28.95998 
91.7 08164600 TX Garcitas Ck nr Inez, TX -96.81918 28.89126 

78 3.1 4.8 389.0 08195000 TX Frio Rv at Concan, TX -99.70478 29.48852 
126.0 08196000 TX Dry Frio Rv nr Reagan Wells, TX -99.78147 29.50468 

79 2.4 8.5 289.0 09112500 CO EAST RIVER AT ALMONT CO. -106.84819 38.66435 
121.0 09113500 CO OHIO CREEK NEAR BALDWIN, CO. -106.99865 38.70197 

80 10.2 7.2 457.0 09484600 AZ PANTANO WASH NEAR VAIL, AZ. -110.67744 32.03562 
44.8 09485000 AZ RINCON CREEK NEAR TUCSON, AZ. -110.62585 32.12963 

81 4.0 5.5 249.0 10371500 OR DEEP CREEK ABOVE ADEL,OREG. -120.00192 42.18894 
63.0 10370000 OR CAMAS CREEK NEAR LAKEVIEW,OREG. -120.10245 42.21615 

82 1.6 4.9 208.0 11383500 CA DEER C NR VINA CA -121.94814 40.01439 
131.0 11381500 CA MILL C NR LOS MOLINOS CA -122.02415 40.05468 

83 4.0 5.4 739.0 11401500 CA INDIAN C NR CRESCENT MILLS CA -120.92824 40.07793 
184.0 11402000 CA SPANISH C AB BLACKHAWK C AT KEDDIE 

CA 
-120.95423 40.00282 

84 5.0 5.4 262.0 12167000 WA NF STILLAGUAMISH RIVER NEAR 
ARLINGTON, WA 

-122.04754 48.26078 

52.0 12168500 WA PILCHUCK CREEK NEAR BRYANT, WA -122.16413 48.26605 
85 2.7 9.9 714 12189500 WA SAUK RIVER NEAR SAUK, WA -121.56782 48.42478 

172 12182500 WA CASCADE RIVER AT MARBLEMOUNT, WA -121.41507 48.52658 
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Gage 
Pair 

Area 
Ratio 

Gage 
Separation 

(mi) 

Drainage 
Area 
(mi2) Station State Station Name 

Longitude. 
(degrees) 

Latitude 
(degrees) 

86 2.8 9.3 689 12424000 WA HANGMAN CREEK AT SPOKANE, WA -117.45000 47.65249 
   665 12431000 WA LITTLE SPOKANE RIVER AT DARTFORD, 

WA 
-117.40450 47.78484 

87 1.3 5.6 180.0 13309000 ID BEAR VALLEY CREEK NR CAPE HORN ID -115.28888 44.42929 
   138.0 13308500 ID MF SALMON RIVER NR CAPEHORN ID -115.17896 44.40849 

88 1.6 5.7 1910.0 13336500 ID SELWAY RIVER NR LOWELL ID -115.51360 46.08598 
   1180.0 13337000 ID LOCHSA RIVER NR LOWELL ID -115.58669 46.15059 

89 2.1 6.5 246.0 14147500 OR N FK OF M FK WILLAMETTE R NR 
OAKRIDGE,OREG. 

-122.50437 43.75701 

   117.0 14146500 OR SALMON CREEK NEAR OAKRIDGE,OREG. -122.37309 43.76240 
90 2.1 6.9 211 14154500 OR ROW RIVER ABOVE PITCHER CREEK 

NEAR, DORENA, OREG 
-122.87366 43.73518 

   95.3 14156500 OR MOSBY CR AT MOUTH, NR COTTAGE 
GROVE,OREG. 

-122.99957 43.77632 

91 1.7 0.6 6.5 07320500 OK Sandstone Creek SWS 6 near Elk City, OK -99.50335 35.48559 
   3.9 07321000 OK Sandstone Creek SWS 5 near Elk City, OK -99.49236 35.48846 

92 12.8 6.1 30.6 07176800 OK Candy Creek near Wolco, OK -96.04921 36.53494 
   2.4 07175000 OK Double Creek Sws 5 near Ramona, OK -95.94144 36.51408 

93 2.6 9.0 86.6 07333800 OK McGee Creek near Stringtown, OK -95.86965 34.44261 
   32.7 07333500 OK Chickasaw Creek near Stringtown, OK -96.02680 34.46158 
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Table B.2. IDA Gages. 

Pair_ID 
USGS 

Station ID Type State USGS station name 
Area 
(mi.2) 

Start 
Date 

End 
Date 

Time 
Step 
(min) 

6 01445500 Main NJ PEQUEST RIVER AT PEQUEST NJ 106.0 10/1/81 9/30/06 15 
 01446000 Trib NJ BEAVER BROOK NEAR 

BELVIDERE NJ 
36.7 10/1/03 9/30/06 15 

15 03240000 Main OH Little Miami River near Oldtown OH 129.0 10/1/90 9/30/06 15 
 03241500 Trib OH Massies Creek at Wilberforce OH 63.2 10/1/91 9/30/06 30 

20 04117500 Main MI THORNAPPLE RIVER NEAR 
HASTINGS, MI 

385.0 10/1/89 9/30/06 60 

 04117000 Trib MI QUAKER BROOK NEAR 
NASHVILLE, MI 

7.6 10/1/94 9/30/06 30 

27 05587900 Main IL CAHOKIA CREEK AT 
EDWARDSVILLE, IL 

212.0 10/1/86 9/30/06 15 

 05588000 Trib IL INDIAN CREEK AT WANDA, IL 36.7 9/24/86 9/30/06 15 
43 12082500 Main WA NISQUALLY RIVER NEAR 

NATIONAL, WA 
133.0 10/1/87 9/30/06 15 

 12083000 Trib WA MINERAL CREEK NEAR MINERAL, 
WA 

75.2 10/1/87 9/30/06 15 

48 14020300 Main OR MEACHAM CREEK AT GIBBON, 
OR 

176.0 10/1/88 9/30/06 30 

 14020000 Trib OR UMATILLA RIVER ABOVE 
MEACHAM CREEK, NR GIBBON, 
OR 

131.0 10/1/89 9/30/06 30 

53 02113850 Main NC ARARAT RIVER AT ARARAT, NC 231.0 10/1/86 9/30/05 60 
 02113000 Trib NC FISHER RIVER NEAR COPELAND, 

NC 
128.0 10/1/86 9/30/05 30 

55 02220900 Main GA LITTLE RIVER NEAR EATONTON, 
GA 

262.0 10/1/89 9/30/06 60 

 02221525 Trib GA MURDER CREEK BELOW 
EATONTON, GA 

190.0 10/1/89 9/30/06 15 

74 07261500 Main AR Fourche LaFave River Near 
Gravelly, AR 

410.0 10/1/86 9/30/05 60 

 07260000 Trib AR Dutch Creek at Waltreak, AR 81.4 10/1/99 9/30/05 60 
76 08164450 Main TX Sandy Ck nr Ganado, TX 289.0 10/1/97 9/30/05 60 

 08164503 Trib TX W Mustang Ck nr Ganado, TX 178.0 10/1/91 9/30/05 60 
80 09484600 Main AZ PANTANO WASH NEAR VAIL, AZ. 457.0 10/1/89 9/30/06 15 

 09485000 Trib AZ RINCON CREEK NEAR TUCSON, 
AZ. 

44.8 10/1/87 9/30/06 15 
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Table B.3. Annual Peak Series Statistics from Daily Data. 
Gage 
Pair 

Gage 
Number n Mean 

Standard 
Deviation Skew 

Mean of 
Logs1 

Std dev. 
of Logs1 

Skew of 
Logs1 

Gumbel 
Location 

Gumbel 
Scale 

1 01010500 60 49262 15757 0.205 4.669 0.149 -0.482 42170 12286 
1 01011000 75 15338 5430 0.687 4.159 0.157 -0.247 12894 4234 
2 01064500 83 12463 5988 1.576 4.051 0.201 -0.128 9768 4669 
2 01064400 27 249 143 0.758 2.316 0.286 -0.660 184 112 
3 01181000 71 3258 2038 1.731 3.447 0.232 0.543 2341 1589 
3 01180000 28 40 33 2.381 1.498 0.285 0.540 25 26 
4 01187300 66 728 625 5.259 2.786 0.242 0.380 447 487 
4 01187400 32 292 377 3.741 2.307 0.329 1.026 122 294 
5 01403060 67 17267 8189 2.507 4.199 0.181 0.183 13581 6385 
5 01403150 27 109 59 1.721 1.982 0.238 -0.732 83 46 
6 01445500 85 880 351 0.782 2.911 0.172 0.037 722 274 
6 01446000 42 496 246 1.256 2.645 0.213 -0.064 385 192 
8 01590000 42 107 102 4.178 1.939 0.242 1.495 61 79 
8 01590500 26 121 90 1.838 1.984 0.302 0.056 81 70 
9 01615000 58 1357 890 1.504 3.043 0.296 -0.475 957 694 
9 01616000 26 241 146 0.817 2.298 0.287 -0.248 176 114 

11 01673000 65 10092 5931 2.201 3.938 0.250 -0.599 7423 4624 
11 01673500 29 91 79 3.410 1.863 0.276 0.556 55 62 
12 02037500 72 80976 47530 1.821 4.843 0.242 -0.127 59586 37059 
12 02038000 39 664 635 3.183 2.696 0.322 0.381 378 495 
13 03164000 77 18157 12259 3.113 4.193 0.230 0.444 12640 9559 
13 03165000 62 923 464 0.741 2.908 0.233 -0.289 714 361 
14 03202400 38 6266 3922 1.081 3.713 0.283 -0.199 4501 3058 
14 03202750 32 3073 1389 0.785 3.444 0.205 -0.464 2448 1083 
15 03240000 54 2303 1457 1.012 3.278 0.279 -0.104 1647 1136 
15 03241500 54 1296 766 1.091 3.034 0.282 -0.701 951 598 
16 03250100 27 3170 1443 2.169 3.466 0.173 0.387 2521 1125 
16 03250000 43 2114 1091 1.729 3.273 0.222 -0.461 1623 851 
17 03280600 32 6940 3569 1.108 3.788 0.221 -0.024 5334 2783 
17 03280700 49 2236 1154 0.794 3.293 0.225 0.026 1717 900 
18 03455000 83 22202 10783 0.969 4.298 0.209 -0.038 17349 8408 
18 03461500 66 11683 6548 1.187 4.006 0.232 0.130 8736 5106 
19 03538225 29 3574 1631 0.698 3.506 0.215 -0.631 2839 1272 
19 03538250 27 821 443 1.021 2.858 0.224 0.209 622 346 
20 04117500 62 2448 1195 1.178 3.338 0.218 -0.443 1910 932 
20 04117000 33 81 42 1.086 1.848 0.237 -0.374 62 33 
21 04140500 32 872 379 1.434 2.903 0.187 -0.349 701 296 
21 04141000 27 20 9 0.237 1.242 0.295 -2.116 16 7 
22 05423500 40 429 310 1.085 2.508 0.368 -0.880 289 242 
22 05423000 24 340 250 0.362 2.356 0.463 -0.796 228 195 
23 05443500 82 24479 10682 0.200 4.340 0.220 -0.744 19671 8329 
23 05444000 67 2096 1282 0.652 3.225 0.315 -0.597 1518 1000 
24 05476750 42 5624 3934 1.549 3.647 0.323 -0.652 3854 3067 
24 05479000 66 5196 4237 1.744 3.583 0.361 -0.490 3289 3304 
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Gage 
Pair 

Gage 
Number n Mean 

Standard 
Deviation Skew 

Mean of 
Logs1 

Std dev. 
of Logs1 

Skew of 
Logs1 

Gumbel 
Location 

Gumbel 
Scale 

25 05482500 66 8005 4935 0.654 3.787 0.375 -1.335 5785 3847 
25 05483000 39 187 98 0.736 2.204 0.264 -0.709 143 76 
26 05527500 89 25419 11275 0.692 4.361 0.201 -0.331 20344 8791 
26 05526500 26 159 199 4.080 2.056 0.329 0.386 69 155 
27 05587900 37 4333 1933 -0.180 3.578 0.253 -1.058 3462 1507 
27 05588000 66 1206 805 1.120 2.972 0.335 -0.540 844 627 
28 06193500 38 1171 666 1.674 3.009 0.230 0.001 871 519 
28 06194000 25 224 139 1.699 2.283 0.241 0.249 161 108 
29 06211000 68 565 488 2.157 2.614 0.355 -0.052 345 381 
29 06211500 68 264 259 2.274 2.272 0.349 0.449 147 202 
31 06776500 50 473 65 1.243 2.671 0.057 0.900 443 51 
31 06775500 61 631 61 0.083 2.798 0.042 -0.211 604 47 
32 06797500 59 2044 2030 1.411 3.084 0.479 -0.201 1131 1582 
32 06798000 32 625 786 3.269 2.569 0.450 0.123 272 613 
33 06933500 85 33525 21170 1.559 4.438 0.295 -0.660 23998 16506 
33 06931500 27 189 123 1.835 2.207 0.245 0.467 134 96 
34 07058000 52 9438 8190 2.882 3.837 0.368 -0.420 5752 6386 
34 07057500 62 9732 8372 2.087 3.859 0.337 0.073 5964 6528 
35 08179000 41 5677 7963 2.869 3.433 0.552 -0.005 2093 6209 
35 08179100 23 919 1026 1.810 2.675 0.606 -1.097 457 800 
36 08230500 39 81 73 1.358 1.739 0.401 0.015 48 57 
36 08231000 46 83 71 2.094 1.783 0.354 0.121 51 56 
37 08248000 87 1026 486 0.516 2.955 0.238 -0.807 807 379 
37 08247500 66 342 217 0.757 2.427 0.342 -0.909 244 170 
38 08340500 44 1326 906 1.359 3.025 0.308 -0.384 918 706 
38 08334000 55 481 357 1.960 2.583 0.298 -0.169 320 279 
39 08389500 25 495 741 3.340 2.430 0.456 0.639 162 578 
39 08388000 25 412 837 3.742 2.201 0.554 0.736 35 652 
40 09508500 60 15547 21183 2.431 3.835 0.604 -0.159 6014 16517 
40 09508300 39 824 994 1.492 2.510 0.766 -1.306 377 775 
41 10170490 63 1384 884 1.562 3.068 0.249 0.281 986 689 
41 10172200 43 21 19 2.203 1.159 0.380 -0.158 12 15 
42 10260500 91 2824 3440 1.708 3.050 0.691 -0.448 1276 2682 
42 10261000 40 1537 2287 2.559 2.766 0.652 -0.008 508 1783 
43 12082500 64 5175 2533 1.691 3.669 0.197 0.063 4035 1975 
43 12083000 64 3831 1647 0.923 3.542 0.199 -0.657 3090 1284 
44 12134500 78 32429 14983 1.031 4.466 0.202 -0.153 25686 11682 
44 12147600 41 707 271 0.651 2.817 0.174 -0.401 586 211 
45 12500500 52 378 187 1.928 2.528 0.220 -0.917 294 146 
45 12501000 47 128 146 4.635 1.977 0.315 0.301 62 114 
46 13011900 41 3756 1040 0.375 3.558 0.124 -0.297 3288 811 
46 13011500 59 2341 739 0.601 3.348 0.139 -0.171 2008 576 
47 14013000 68 821 523 2.362 2.850 0.228 0.556 586 408 
47 14013500 32 237 151 1.759 2.306 0.243 0.315 169 118 
48 14020300 34 2016 919 1.218 3.263 0.193 -0.050 1603 716 
48 14020000 76 1885 921 1.516 3.232 0.191 0.402 1471 718 
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Gage 
Pair 

Gage 
Number n Mean 

Standard 
Deviation Skew 

Mean of 
Logs1 

Std dev. 
of Logs1 

Skew of 
Logs1 

Gumbel 
Location 

Gumbel 
Scale 

49 14178000 80 6630 3307 1.545 3.773 0.207 -0.086 5142 2579 
49 14179000 63 5115 2192 0.851 3.668 0.198 -0.572 4129 1709 
51 14301500 75 13626 4834 0.873 4.107 0.159 -0.577 11451 3769 
51 14302500 34 10155 2985 1.187 3.990 0.118 0.515 8812 2327 
52 01547950 38 2461 1340 1.884 3.340 0.207 0.343 1858 1045 
52 01547700 51 982 787 2.937 2.910 0.245 0.997 628 613 
53 02113850 42 4115 2609 1.364 3.527 0.291 -0.348 2941 2034 
53 02113000 75 3090 2005 1.790 3.408 0.272 -0.124 2188 1563 
54 02126000 77 28967 13543 1.106 4.414 0.210 -0.326 22872 10559 
54 02127000 34 2186 1954 4.178 3.249 0.272 0.188 1307 1523 
55 02220900 29 4401 2601 1.002 3.566 0.276 -0.336 3231 2028 
55 02221525 29 2923 1742 0.913 3.389 0.268 -0.100 2139 1358 
56 02344500 69 5119 3833 3.022 3.616 0.290 -0.198 3395 2988 
56 02344700 42 2790 2493 3.167 3.331 0.312 0.200 1668 1944 
57 03173000 68 4849 2299 1.553 3.641 0.200 -0.236 3815 1792 
57 03175500 75 4178 1841 0.479 3.575 0.211 -0.560 3350 1436 
58 04114000 47 5576 2100 0.813 3.714 0.176 -0.828 4631 1637 
58 04114500 52 1173 502 0.148 3.019 0.231 -1.194 947 391 
59 04149000 55 6109 2942 1.324 3.736 0.219 -0.580 4784 2294 
59 04145000 55 3355 1407 0.492 3.484 0.202 -0.577 2722 1097 
60 04196500 62 4500 1695 0.252 3.620 0.178 -0.487 3737 1321 
60 04196800 42 3458 1243 0.080 3.507 0.179 -0.816 2899 969 
61 04234000 81 2542 1214 2.165 3.367 0.178 0.452 1995 947 
61 04233000 69 631 344 1.191 2.740 0.230 0.052 476 268 
62 05367500 48 5331 2595 1.032 3.673 0.229 -0.659 4163 2024 
62 05368000 56 3336 2128 2.290 3.453 0.248 0.022 2379 1659 
64 05500000 71 7728 3817 0.651 3.830 0.236 -0.468 6010 2976 
64 05501000 71 9152 5947 1.097 3.859 0.323 -0.516 6475 4637 
65 05594800 36 5707 3217 0.656 3.669 0.310 -0.903 4260 2509 
65 05595200 37 3985 2679 2.321 3.526 0.257 -0.147 2779 2088 
66 06447500 46 241 235 2.090 2.225 0.365 0.248 135 183 
66 06448000 29 75 23 0.275 1.856 0.137 -0.111 65 18 
67 05054500 51 173 178 2.047 2.002 0.507 -0.487 93 139 
67 06467600 32 250 389 3.376 1.882 0.951 -1.597 75 303 
68 06719505 32 1068 432 0.873 2.993 0.186 -0.681 873 336 
68 06710500 88 311 272 1.844 2.357 0.339 0.290 188 212 
69 06863500 60 1342 1863 3.199 2.788 0.616 -0.507 504 1452 
69 06863900 24 458 942 3.562 1.913 0.975 -0.285 34 734 
70 06871000 53 1241 1902 3.349 2.691 0.675 -0.483 384 1483 
70 06871500 55 627 884 2.385 2.413 0.653 -0.441 229 689 
71 07050000 38 31307 19412 1.417 4.423 0.252 0.149 22570 15135 
71 07050500 50 13863 8645 1.011 4.058 0.282 -0.287 9973 6741 
72 07075000 46 15129 12134 2.950 4.077 0.304 -0.103 9668 9460 
72 07075300 38 7285 6857 3.622 3.748 0.307 0.331 4199 5346 
73 07077500 59 6394 2678 0.589 3.768 0.183 0.014 5189 2088 
73 07077700 46 3023 1112 1.121 3.453 0.155 -0.006 2522 867 
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Gage 
Pair 

Gage 
Number n Mean 

Standard 
Deviation Skew 

Mean of 
Logs1 

Std dev. 
of Logs1 

Skew of 
Logs1 

Gumbel 
Location 

Gumbel 
Scale 

74 07261500 62 19268 12380 1.376 4.196 0.292 -0.378 13696 9653 
74 07260000 37 3863 2133 0.918 3.519 0.256 -0.322 2903 1663 
75 07346070 60 5799 5722 2.572 3.601 0.389 -0.281 3224 4461 
75 07346045 38 3755 2656 1.011 3.457 0.348 -0.526 2559 2071 
76 08164450 29 7561 8027 3.002 3.724 0.361 0.301 3948 6259 
76 08164503 29 5376 4192 1.737 3.619 0.319 0.019 3489 3268 
77 08164000 68 15130 17608 3.900 3.986 0.438 -0.597 7206 13729 
77 08164600 36 4202 3082 0.899 3.464 0.440 -1.028 2815 2403 
78 08195000 81 5156 8291 3.330 3.246 0.715 -0.273 1425 6464 
78 08196000 54 1753 2298 2.544 2.855 0.679 -0.458 719 1791 
79 09112500 84 2139 818 0.819 3.298 0.171 -0.420 1771 638 
79 09113500 25 579 239 0.160 2.721 0.205 -0.695 471 187 
80 09484600 32 413 408 3.064 2.469 0.364 -0.031 229 318 
80 09485000 41 334 368 1.655 2.199 0.625 -0.503 168 287 
81 10371500 60 1377 1104 1.822 3.019 0.329 -0.035 880 861 
81 10370000 25 480 383 2.981 2.599 0.255 0.660 308 299 
82 11383500 90 4452 3403 1.891 3.532 0.338 -0.590 2921 2653 
82 11381500 78 3594 2800 1.817 3.440 0.328 -0.306 2334 2183 
83 11401500 72 6454 6386 1.819 3.595 0.474 -0.443 3581 4979 
83 11402000 73 4446 3537 1.334 3.488 0.420 -0.747 2854 2758 
84 12167000 78 17610 6043 0.276 4.218 0.161 -0.496 14890 4711 
84 12168500 26 2700 703 -0.242 3.415 0.126 -0.905 2384 548 
85 12189500 78 26562 13421 1.315 4.377 0.201 0.306 20522 10464 
85 12182500 51 5329 2106 0.899 3.696 0.164 0.251 4381 1642 
86 12424000 57 5219 3388 1.440 3.617 0.333 -1.145 3695 2641 
86 12431000 62 1289 635 1.082 3.055 0.231 -0.562 1003 495 
87 13309000 32 1971 666 0.325 3.269 0.155 -0.364 1672 519 
87 13308500 43 1556 497 0.302 3.169 0.146 -0.375 1333 387 
88 13336500 77 24604 7365 0.595 4.372 0.128 0.106 21289 5742 
88 13337000 79 18161 5503 0.647 4.240 0.130 0.025 15684 4291 
89 14147500 60 6460 3383 1.342 3.756 0.221 -0.111 4938 2638 
89 14146500 64 2952 1665 1.348 3.408 0.234 0.044 2203 1298 
90 14154500 71 8410 3978 0.919 3.874 0.222 -0.544 6620 3101 
90 14156500 34 3841 1807 0.930 3.535 0.222 -0.612 3028 1409 

1Logarithms are base 10. 

 

 B-15 



Table B.4. Summary Statistics for Concurrent Data: Peak on Main (POM). 
Gage 
Pair n 

Pearson’s 
ρ p-value 

Pearson’s 
ρ of Logs1 p-value 

Kendall’s 
τ p-value 

Gumbel 
θ GH θ Frank θ 

1 60 0.8385 0.0000 0.8509 0.0000 0.7073 0.0000 NA 3.4163 11.7526 
2 28 0.4197 0.0262 0.6780 0.0001 0.4011 0.0028 0.6516 1.6696 4.1757 
3 29 0.9512 0.0000 0.9097 0.0000 0.6734 0.0000 NA 3.0616 10.2888 
4 31 0.9818 0.0000 0.8603 0.0000 0.6272 0.0000 NA 2.6821 8.7025 
5 27 0.0017 0.9931 0.1632 0.4161 0.1097 0.4274 0.0029 1.1232 0.9968 
6 43 0.6388 0.0000 0.6764 0.0000 0.5181 0.0000 0.9620 2.0750 6.0746 
8 10 0.9057 0.0003 0.8870 0.0006 0.8222 0.0004 NA 5.6250 20.7132 
9 26 0.8433 0.0000 0.8501 0.0000 0.7211 0.0000 NA 3.5856 12.4472 

11 29 0.1268 0.5120 0.1791 0.3527 0.2172 0.1019 0.2050 1.2775 2.0337 
12 39 0.2037 0.2135 0.3637 0.0229 0.2260 0.0433 0.3259 1.2920 2.1227 
13 62 0.4004 0.0013 0.5025 0.0000 0.3530 0.0001 0.6233 1.5455 3.5458 
14 32 0.8003 0.0000 0.8386 0.0000 0.6572 0.0000 NA 2.9174 9.6893 
15 54 0.9135 0.0000 0.7376 0.0000 0.7407 0.0000 NA 3.8568 13.5550 
16 17 0.3104 0.2253 0.4045 0.1073 0.3529 0.0518 0.4892 1.5455 3.5454 
17 32 0.9408 0.0000 0.9209 0.0000 0.8052 0.0000 NA 5.1347 18.7356 
18 53 0.7976 0.0000 0.7500 0.0000 0.5180 0.0000 NA 2.0748 6.0741 
19 28 0.7821 0.0000 0.7743 0.0000 0.5748 0.0000 NA 2.3520 7.2936 
20 34 0.4489 0.0077 0.6456 0.0000 0.5131 0.0000 0.6941 2.0538 5.9794 
21 27 0.8103 0.0000 0.7647 0.0000 0.4499 0.0011 NA 1.8177 4.8920 
22 21 0.9018 0.0000 0.9556 0.0000 0.8162 0.0000 NA 5.4416 19.9740 
23 57 0.5318 0.0000 0.6955 0.0000 0.5217 0.0000 0.8129 2.0907 6.1450 
24 42 0.6561 0.0000 0.8766 0.0000 0.6655 0.0000 0.9856 2.9896 9.9898 
25 39 0.4338 0.0058 0.6216 0.0000 0.4487 0.0001 0.6721 1.8138 4.8735 
26 26 0.7059 0.0001 0.8130 0.0000 0.6739 0.0000 NA 3.0664 10.3087 
27 37 0.6997 0.0000 0.7719 0.0000 0.5455 0.0000 NA 2.2000 6.6301 
28 25 0.5818 0.0023 0.6314 0.0007 0.4908 0.0006 0.8831 1.9639 5.5719 
29 67 0.9332 0.0000 0.8829 0.0000 0.7230 0.0000 NA 3.6105 12.5489 
31 50 0.3218 0.0227 0.3278 0.0201 0.2061 0.0357 0.5064 1.2596 1.9215 
32 32 0.9112 0.0000 0.9183 0.0000 0.8093 0.0000 NA 5.2434 19.1743 
33 28 0.0029 0.9882 0.4379 0.0198 0.2819 0.0375 0.0048 1.3926 2.7153 
34 52 0.6679 0.0000 0.8102 0.0000 0.6918 0.0000 NA 3.2451 11.0480 
35 27 0.2628 0.1854 0.1642 0.4130 0.2271 0.1018 0.4170 1.2939 2.1345 
36 39 0.6614 0.0000 0.6670 0.0000 0.5231 0.0000 0.9928 2.0969 6.1727 
37 83 0.8383 0.0000 0.8581 0.0000 0.6646 0.0000 NA 2.9816 9.9565 
38 36 0.3262 0.0522 0.4150 0.0118 0.3203 0.0062 0.5130 1.4713 3.1515 
39 25 0.9220 0.0000 0.6830 0.0002 0.3880 0.0067 NA 1.6339 3.9975 
40 38 0.8349 0.0000 0.7768 0.0000 0.5712 0.0000 NA 2.3322 7.2078 
41 43 0.6797 0.0000 0.5975 0.0000 0.3933 0.0002 NA 1.6482 4.0692 
42 42 0.9240 0.0000 0.8721 0.0000 0.7802 0.0000 NA 4.5503 16.3724 
43 64 0.7243 0.0000 0.7049 0.0000 0.5036 0.0000 NA 2.0145 5.8022 
44 43 0.5514 0.0001 0.6850 0.0000 0.4126 0.0001 0.8405 1.7025 4.3379 
45 48 0.9247 0.0000 0.9360 0.0000 0.7123 0.0000 NA 3.4761 11.9981 
46 38 0.7311 0.0000 0.7151 0.0000 0.5096 0.0000 NA 2.0392 5.9137 
47 32 0.8752 0.0000 0.8105 0.0000 0.5248 0.0000 NA 2.1045 6.2067 
48 34 0.9285 0.0000 0.9230 0.0000 0.7375 0.0000 NA 3.8095 13.3669 
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Gage 
Pair n 

Pearson’s 
ρ p-value 

Pearson’s 
ρ of Logs1 p-value 

Kendall’s 
τ p-value 

Gumbel 
θ GH θ Frank θ 

49 63 0.9531 0.0000 0.9490 0.0000 0.7872 0.0000 NA 4.6988 16.9737 
51 35 0.9187 0.0000 0.8962 0.0000 0.7055 0.0000 NA 3.3954 11.6669 
52 38 0.8215 0.0000 0.7784 0.0000 0.5969 0.0000 NA 2.4806 7.8466 
53 42 0.9379 0.0000 0.9119 0.0000 0.7477 0.0000 NA 3.9631 13.9884 
54 34 0.8685 0.0000 0.7362 0.0000 0.5323 0.0000 NA 2.1379 6.3557 
55 29 0.8662 0.0000 0.9103 0.0000 0.7537 0.0000 NA 4.0600 14.3827 
56 42 0.8661 0.0000 0.8683 0.0000 0.6833 0.0000 NA 3.1578 10.6874 
57 67 0.7613 0.0000 0.7556 0.0000 0.5177 0.0000 NA 2.0732 6.0669 
58 37 0.6351 0.0000 0.7896 0.0000 0.5403 0.0000 0.9568 2.1751 6.5204 
59 54 0.7884 0.0000 0.8400 0.0000 0.6187 0.0000 NA 2.6225 8.4505 
60 22 0.5779 0.0048 0.3581 0.1017 0.4946 0.0013 0.8777 1.9785 5.6386 
61 69 0.7709 0.0000 0.7657 0.0000 0.6080 0.0000 NA 2.5512 8.1479 
62 12 0.8219 0.0010 0.8353 0.0007 0.5152 0.0210 NA 2.0625 6.0187 
64 71 0.3518 0.0026 0.4080 0.0004 0.2741 0.0007 0.5513 1.3777 2.6303 
65 36 0.4717 0.0037 0.5474 0.0006 0.3556 0.0020 0.7270 1.5517 3.5780 
66 29 0.6198 0.0003 0.4951 0.0063 0.2707 0.0422 0.9358 1.3712 2.5931 
67 37 0.8235 0.0000 0.8102 0.0000 0.6100 0.0000 NA 2.5642 8.2034 
68 32 0.8085 0.0000 0.7228 0.0000 0.5561 0.0000 NA 2.2528 6.8620 
69 26 0.7229 0.0000 0.5210 0.0064 0.3399 0.0190 NA 1.5150 3.3854 
70 54 0.6190 0.0000 0.6662 0.0000 0.4533 0.0000 0.9347 1.8292 4.9461 
71 20 0.6418 0.0023 0.6525 0.0018 0.4908 0.0025 0.9661 1.9637 5.5710 
72 24 0.9717 0.0000 0.9430 0.0000 0.7877 0.0000 NA 4.7094 17.0168 
73 46 0.6213 0.0000 0.5117 0.0003 0.5165 0.0000 0.9379 2.0681 6.0440 
74 37 0.8175 0.0000 0.8332 0.0000 0.6315 0.0000 NA 2.7137 8.8359 
75 38 0.8158 0.0000 0.8734 0.0000 0.7137 0.0000 NA 3.4925 12.0657 
76 29 0.5530 0.0019 0.7825 0.0000 0.6601 0.0000 0.8428 2.9420 9.7919 
77 36 0.6474 0.0000 0.4624 0.0045 0.3129 0.0073 0.9738 1.4555 3.0656 
78 54 0.8364 0.0000 0.6936 0.0000 0.5219 0.0000 NA 2.0914 6.1484 
79 26 0.9020 0.0000 0.8997 0.0000 0.7562 0.0000 NA 4.1013 14.5507 
80 31 0.1606 0.3880 0.2922 0.1106 0.2244 0.0879 0.2584 1.2894 2.1070 
81 23 0.8966 0.0000 0.8888 0.0000 0.7312 0.0000 NA 3.7206 12.9992 
82 78 0.9654 0.0000 0.9744 0.0000 0.8560 0.0000 NA 6.9468 26.0311 
83 60 0.9164 0.0000 0.8936 0.0000 0.7078 0.0000 NA 3.4221 11.7764 
84 30 0.6065 0.0004 0.6625 0.0001 0.4606 0.0004 0.9174 1.8541 5.0633 
85 51 0.7885 0.0000 0.7888 0.0000 0.5632 0.0000 NA 2.2896 7.0224 
86 57 0.3339 0.0111 0.3803 0.0035 0.2459 0.0070 0.5245 1.3261 2.3291 
87 32 0.9321 0.0000 0.9309 0.0000 0.7842 0.0000 NA 4.6338 16.7107 
88 77 0.9552 0.0000 0.9494 0.0000 0.7976 0.0000 NA 4.9406 17.9517 
89 59 0.9547 0.0000 0.9612 0.0000 0.8338 0.0000 NA 6.0159 22.2875 
90 34 0.9485 0.0000 0.9593 0.0000 0.7982 0.0000 NA 4.9558 18.0128 
1Logarithm base 10. 
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Table B.5. Summary Statistics for Concurrent Data: Peak on Tributary (POT). 
Gage 
Pair n 

Pearson’s 
ρ p-value 

Pearson’s 
ρ of Logs1 p-value 

Kendall’s 
τ p-value Gumbel θ GH θ Frank θ 

1 60 0.8187 0.0000 0.8719 0.0000 0.6833 0.0000 NA 3.1573 10.6853 
2 27 0.6368 0.0004 0.5980 0.0010 0.4006 0.0035 0.9592 1.6683 4.1690 
3 28 0.9550 0.0000 0.8579 0.0000 0.6453 0.0000 NA 2.8192 9.2790 
4 31 0.9786 0.0000 0.8777 0.0000 0.6127 0.0000 NA 2.5822 8.2796 
5 27 0.2443 0.2194 0.1944 0.3311 0.0856 0.5316 0.3886 1.0936 0.7749 
6 42 0.7786 0.0000 0.7529 0.0000 0.5473 0.0000 NA 2.2088 6.6687 
8 10 0.8690 0.0011 0.7923 0.0063 0.5556 0.0286 NA 2.2500 6.8496 
9 26 0.8202 0.0000 0.7789 0.0000 0.6410 0.0000 NA 2.7854 9.1372 

11 29 0.6329 0.0002 0.6761 0.0001 0.5347 0.0001 0.9539 2.1490 6.4046 
12 39 0.3893 0.0143 0.5663 0.0002 0.4165 0.0002 0.6069 1.7138 4.3929 
13 62 0.5765 0.0000 0.6483 0.0000 0.4669 0.0000 0.8757 1.8757 5.1646 
14 32 0.8460 0.0000 0.8798 0.0000 0.7313 0.0000 NA 3.7218 13.0042 
15 54 0.9101 0.0000 0.8989 0.0000 0.7243 0.0000 NA 3.6277 12.6194 
16 17 0.6993 0.0018 0.7537 0.0005 0.5441 0.0018 NA 2.1935 6.6017 
17 32 0.9417 0.0000 0.8894 0.0000 0.7947 0.0000 NA 4.8719 17.6740 
18 51 0.8325 0.0000 0.7946 0.0000 0.6187 0.0000 NA 2.6227 8.4514 
19 27 0.8624 0.0000 0.8611 0.0000 0.6486 0.0000 NA 2.8455 9.3891 
20 33 0.3892 0.0252 0.4951 0.0034 0.2765 0.0245 0.6068 1.3821 2.6556 
21 27 0.3751 0.0539 0.4411 0.0213 0.2446 0.0785 0.5859 1.3238 2.3152 
22 20 0.8657 0.0000 0.9151 0.0000 0.7474 0.0000 NA 3.9583 13.9689 
23 60 0.5883 0.0000 0.5735 0.0000 0.4191 0.0000 0.8922 1.7213 4.4296 
24 42 0.7811 0.0000 0.8131 0.0000 0.6081 0.0000 NA 2.5519 8.1511 
25 39 0.7517 0.0000 0.7348 0.0000 0.5643 0.0000 NA 2.2950 7.0461 
26 26 0.6958 0.0001 0.7736 0.0000 0.5323 0.0001 NA 2.1382 6.3566 
27 37 0.8282 0.0000 0.7766 0.0000 0.6827 0.0000 NA 3.1517 10.6620 
28 25 0.8441 0.0000 0.8049 0.0000 0.5109 0.0004 NA 2.0444 5.9371 
29 68 0.9181 0.0000 0.8880 0.0000 0.7245 0.0000 NA 3.6294 12.6263 
31 50 0.3875 0.0054 0.4123 0.0029 0.2619 0.0076 0.6042 1.3548 2.4983 
32 32 0.7361 0.0000 0.9072 0.0000 0.7742 0.0000 NA 4.4286 15.8793 
33 27 0.4992 0.0080 0.7038 0.0000 0.5726 0.0000 0.7665 2.3400 7.2415 
34 53 0.7177 0.0000 0.8850 0.0000 0.7408 0.0000 NA 3.8583 13.5614 
35 25 0.7788 0.0000 0.7847 0.0000 0.4975 0.0005 NA 1.9900 5.6910 
36 38 0.8316 0.0000 0.8896 0.0000 0.7121 0.0000 NA 3.4738 11.9888 
37 66 0.8423 0.0000 0.8511 0.0000 0.6808 0.0000 NA 3.1329 10.5846 
38 36 0.6197 0.0001 0.7008 0.0000 0.4960 0.0000 0.9356 1.9842 5.6645 
39 25 0.9124 0.0000 0.7389 0.0000 0.5109 0.0004 NA 2.0444 5.9371 
40 39 0.8582 0.0000 0.7533 0.0000 0.6725 0.0000 NA 3.0536 10.2558 
41 43 0.7118 0.0000 0.6587 0.0000 0.4606 0.0000 NA 1.8539 5.0626 
42 41 0.8747 0.0000 0.8470 0.0000 0.6634 0.0000 NA 2.9710 9.9126 
43 64 0.7226 0.0000 0.7524 0.0000 0.5341 0.0000 NA 2.1462 6.3924 
44 41 0.5854 0.0001 0.6272 0.0000 0.4279 0.0001 0.8881 1.7479 4.5582 
45 47 0.7600 0.0000 0.8235 0.0000 0.5383 0.0000 NA 2.1658 6.4793 
46 38 0.5216 0.0008 0.5819 0.0001 0.3695 0.0011 0.7984 1.5860 3.7546 
47 32 0.8328 0.0000 0.8012 0.0000 0.5466 0.0000 NA 2.2054 6.6537 
48 34 0.8797 0.0000 0.8537 0.0000 0.6434 0.0000 NA 2.8045 9.2232 
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Gage 
Pair n 

Pearson’s 
ρ p-value 

Pearson’s 
ρ of Logs1 p-value 

Kendall’s 
τ p-value Gumbel θ GH θ Frank θ 

49 63 0.8997 0.0000 0.9008 0.0000 0.7290 0.0000 NA 3.6900 12.8741 
51 34 0.8900 0.0000 0.8499 0.0000 0.5970 0.0000 NA 2.4812 7.8491 
52 38 0.8222 0.0000 0.7124 0.0000 0.4590 0.0001 NA 1.8485 5.0370 
53 43 0.8962 0.0000 0.8768 0.0000 0.6885 0.0000 NA 3.2100 10.9030 
54 34 0.8622 0.0000 0.7034 0.0000 0.5040 0.0000 NA 2.0162 5.8099 
55 29 0.9330 0.0000 0.8984 0.0000 0.7586 0.0000 NA 4.1429 14.7196 
56 42 0.7612 0.0000 0.7470 0.0000 0.5492 0.0000 NA 2.2181 6.7095 
57 67 0.7856 0.0000 0.8237 0.0000 0.5898 0.0000 NA 2.4379 7.6636 
58 38 0.6242 0.0000 0.7599 0.0000 0.4608 0.0000 0.9418 1.8545 5.0652 
59 53 0.8247 0.0000 0.8035 0.0000 0.6254 0.0000 NA 2.6696 8.6497 
60 23 0.5977 0.0026 0.6812 0.0003 0.4941 0.0007 0.9052 1.9766 5.6296 
61 69 0.6859 0.0000 0.6361 0.0000 0.4921 0.0000 NA 1.9689 5.5945 
62 12 0.6791 0.0152 0.5711 0.0524 0.6462 0.0038 NA 2.8267 9.3103 
64 71 0.7496 0.0000 0.6842 0.0000 0.5876 0.0000 NA 2.4248 7.6074 
65 36 0.7397 0.0000 0.7501 0.0000 0.4610 0.0001 NA 1.8555 5.0697 
66 29 0.3607 0.0545 0.1633 0.3974 0.0842 0.5233 0.5646 1.0919 0.7618 
67 34 0.3609 0.0360 0.7686 0.0000 0.5632 0.0000 0.5648 2.2895 7.0222 
68 32 0.5434 0.0013 0.5537 0.0010 0.3215 0.0099 0.8292 1.4739 3.1658 
69 24 0.3461 0.0976 0.6035 0.0018 0.4319 0.0032 0.5429 1.7604 4.6185 
70 54 0.7361 0.0000 0.6830 0.0000 0.4906 0.0000 NA 1.9629 5.5672 
71 19 0.9083 0.0000 0.8074 0.0000 0.6804 0.0000 NA 3.1285 10.5661 
72 24 0.9763 0.0000 0.8817 0.0000 0.7731 0.0000 NA 4.4080 15.7959 
73 46 0.7887 0.0000 0.7500 0.0000 0.5804 0.0000 NA 2.3834 7.4290 
74 37 0.7354 0.0000 0.6673 0.0000 0.5723 0.0000 NA 2.3380 7.2330 
75 38 0.7501 0.0000 0.7268 0.0000 0.5647 0.0000 NA 2.2974 7.0564 
76 29 0.8317 0.0000 0.6856 0.0000 0.4840 0.0002 NA 1.9378 5.4520 
77 36 0.5950 0.0001 0.6341 0.0000 0.5226 0.0000 0.9015 2.0948 6.1636 
78 54 0.8569 0.0000 0.7796 0.0000 0.6254 0.0000 NA 2.6695 8.6492 
79 25 0.7752 0.0000 0.6754 0.0002 0.6198 0.0000 NA 2.6300 8.4824 
80 32 0.4725 0.0063 0.4055 0.0213 0.3192 0.0104 0.7281 1.4688 3.1383 
81 23 0.9282 0.0000 0.9421 0.0000 0.8554 0.0000 NA 6.9179 25.9151 
82 78 0.9586 0.0000 0.9606 0.0000 0.8479 0.0000 NA 6.5728 24.5282 
83 60 0.8414 0.0000 0.8919 0.0000 0.7311 0.0000 NA 3.7192 12.9937 
84 26 0.3778 0.0571 0.3923 0.0475 0.3117 0.0259 0.5899 1.4529 3.0516 
85 51 0.8301 0.0000 0.8318 0.0000 0.6779 0.0000 NA 3.1049 10.4684 
86 59 0.5383 0.0000 0.6358 0.0000 0.4295 0.0000 0.8220 1.7528 4.5822 
87 32 0.9427 0.0000 0.9424 0.0000 0.7830 0.0000 NA 4.6075 16.6042 
88 78 0.9090 0.0000 0.9030 0.0000 0.7455 0.0000 NA 3.9297 13.8520 
89 58 0.9577 0.0000 0.9551 0.0000 0.8326 0.0000 NA 5.9747 22.1216 
90 34 0.9534 0.0000 0.9610 0.0000 0.7957 0.0000 NA 4.8952 17.7681 

1Logarithm base 10.
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Most statistical analyses of hydrologic variables apply univariate (single-valued) random 
variables, for example, analyses of the frequency distribution of annual peak discharges from a 
watershed or the distribution of rainfall depth over a fixed duration at a rain gage.  However, a 
number of hydrologic problems involve two or more random variables.  In those cases, either a 
simplying assumption is required to reduce the complexity to something treatable with univariate 
statistics, or more complex analyses involving multivariate statistics are required. 

Salvadori, et al. (2007) discussed the multiple cases that can arise in hydrologic applications of 
multivariate statistics.  First, consider the expression for an extreme event on one of the 
confluent streams (the marginal event) where “extreme” is defined as exceeding a threshold 
value. 

 }x>X{=E>
x,X  (C.1) 

where, 
 >

x,XE  = event where the occurrence, X,  is greater than a threshold value x 

 X = magnitude of the event 
 x = threshold value for defining an event 
 
Similarly, on the confluent stream: 

 }y>Y{=E>
y,Y  (C.2) 

where, 

 >
y,YE  = event where the occurrence, Y,  is greater than a threshold value y 

 Y = magnitude of the event 
 y = threshold value for defining an event 
 
These expressions represent an event where exceedance of a threshold value occurs on each 
stream individually.  Depending on the objective of the analysis, one may be interested in an 
extreme event occuring on X and Y simultaneously or, alternatively, an extreme event occuring 
on X or Y.  The coincident extreme events for the “and” and “or” formulation, respectively, are:  

 }y>Y{}x>X{=E y,x ∩∩  (C.3) 

 }y>Y{}x>X{=E y,x ∪∪  (C.4) 

The probability of the coincident extreme events defined in Equations C.3 and C.4 are defined 
as follows: 

 )y>Yx>X(P=)E(P=P y,xy,x ∩∩∩  (C.5) 

 )y>Yx>X(P=)E(P=P y,xy,x ∪∪∪  (C.6) 

Let )y,x(H  denote a joint bivariate distribution of two random variables, X and Y. The joint 
probability distribution function is  

 ]y<Y,x<X[P=)y,x(H  (C.7) 
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If the marginal distributions of the random variables X and Y are given by )x(FX  and )y(FY , 
then 

)y,x(H)y(F)x(F1=P YXy,x +−−∩  (C.8) 

)y,x(H1=P y,x −∪  (C.9) 

Equation C.8 expresses exceedance probability with the “and” formulation while Equation C.9 
expresses exceedance probability with the “or” formulation.  As is apparent from these 
equations, the two formulations are related by the joint probability distribution H(x,y).  Salvadori, 
et al. (2007) and Shiau, et al. (2006) discuss use of these probability statements in substantial 
detail.  Shiau, et al. (2006) prefers to express Equation C.9 as ∪− y,xP1  in order to express 
nonexceedance rather than exceedance probability.  The “and” formulation, as expressed in 
Equation C.8 is applicable to the objectives of this research. 

C.1 Univariate Distributions 
A number of univariate distributions are used in hydrologic statistics.  A few of them are useful 
as marginal distributions for bivariate hydrologic random variables and are presented here. 

C.1.1 Normal Distribution 
The normal distribution has a probability density function (PDF) given by 
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where, 
x = the variate 
µx = mean  
σx = standard deviation 

The distribution function, sometimes called the cumulative distribution function (CDF), is the 
integral of the density function,  
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 (C.11) 

There is no closed-form solution to the integral in Equation C.11.  Some references express the 
distribution function in terms of the error function, but nonexceedance probabilities are derived 
from the normal distribution using numerical methods.  Therefore, determination of 
nonexceedance probabilities is accomplished by numerical integration of the density function. 

A concept used frequently in statistics is the standard normal variate. The standard normal 
variate is computed by scaling the observations by the mean and standard deviation to result in 
a normal distribution with mean zero and standard deviation unity.  Mathematically,  

,x=Z
x

x

σ
µ−

 (C.12) 
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where, 
 Z = the standard normal deviate 
 x = the observation 
 µx = the mean of x (location parameter) 
 σx = the standard deviation of x (scale parameter) 
 
This concept is useful because an analogue, the reduced variate, is used for extreme value 
distributions, which are discussed in the following section. 

Because hydrologic data are often skewed, the normal distribution cannot be applied generally 
to untransformed values of discharge (or other hydrologic variables). However, the transform 

xln=y  (or a logarithm of another base) often removes enough skew in the dataset that the 
normal distribution is appropriate for fitting hydrologic variates.  A normal distribution fit to the 
log-transformed values of a hydrologic random variable is referred to as the log-normal 
distribution. 

C.1.2 Generalized Extreme Value Distributions 
 A family of distributions is based on the Generalized Extreme Value (GEV) distribution,  
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k1/xk1exp=)x(F  (C.13) 

where, 
 F(x) = the distribution function of a random variable x ( ∞≤≤∞− x ) 
 β = location parameter 
 α = scale parameter  
 k = shape parameter 
 
The GEV is sub-categorized depending on the value of k.  The Extreme Value Type I (EVI) 
distribution (the Gumbel distribution) arises when k approaches zero (Coles, 2001).  
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−−
xexpexp=)x(F  (C.14) 

 α and β are distribution parameters given by  
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6=  (C.15) 

 and  

 α−µβ 0.5772=  (C.16) 

where µ is the mean of the variate and σ is the standard deviation. The parameters β and α are 
the location and scale parameters, respectively. 

The reduced variate (analogous to the standard normal deviate) is 
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α

β−x=y  (C.17) 

 Quantiles can be extracted from the Gumbel distribution using the quantile function,  
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)x(F
1lnln=y  (C.18) 

where F(x) is a vector of nonexceedance probabilities of interest.  Given the quantiles, 
Equations C.17 and C.18 can be used to estimate discharges of interest. 

C.1.3 Exponential Distribution 
The exponential distribution arises as the marginal distribution of one of the Gumbel bivariate 
distributions.  The density function of the exponential distribution is  

 )x(exp=)x(f λ−λ  (C.19) 

where x is the random variable that must be greater than or equal to zero and λ  is the 
distribution parameter.  The distribution function for the exponential distribution is  

 )x(exp1=)x(F λ−−  (C.20) 

C.2 Bivariate Distributions 
Bivariate distributions are a subset of multivariate distributions involving two random variables. 
A bivariate distribution is characterized by a distribution function, which is a scalar-valued 
function of a vector-valued random variable (in this case two random variables).  In the limit of 
each random variable, a univariate distribution function results, termed the marginal distribution. 
So, for a distribution function H(x,y) there are two marginal distributions, F(x) and G(y).  Most 
bivariate distributions have the same type of marginal distributions, that is, the same distribution 
function although with different parameter values.  The bivariate normal and Gumbel 
distributions are discussed in the following sections. 

C.2.1 Bivariate Gumbel Distributions 
The univariate Gumbel distribution has multivariate extensions.  Yue et al. (1999) presents 
results from application of the bivariate mixed-model Gumbel distribution to hydrologic 
problems.  The bivariate mixed-model Gumbel distribution is given by  
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1exp)y(F)x(F)y,x(H  (C.21) 

where F(x) and F(y) are marginal Gumbel distributions and θ is a dependence parameter.  The 
marginal distribution, F(x) and F(y), were given previously in Equation C.14.  The dependence 
parameter is a function of Pearson’s ρ, 
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The dependence parameter, θ, reaches unity when ρ is 2/3, indicating complete dependence in 
the Gumbel model.  For values of ρ exceeding 2/3, the bivariate mixed-model Gumbel 
distribution does not apply because the dependence parameter is undefined. 

Because the maximum value for ρ is 2/3 in the context of the bivariate Gumbel mixed model, an 
alternative Gumbel distribution was used by Yue et al. (2001) called the bivariate logistic 
distribution.  The bivariate Gumbel logistic distribution is  

 ( )[ ]






 −+−−

m1/mm )y(Fln())x(Flnexp=)y,x(H  (C.23) 

Similar to the bivariate Gumbel mixed model, the marginal distributions for the bivariate Gumbel 
logistic distribution, F(x) and F(y), are the Gumbel univariate distributions.  The dependence 
parameter, m, is given by  

 
ρ−

=
1
1m  (C.24) 

where m ≥ 1 and ρ is Pearson’s correlation coefficient.  The model fails when ρ is unity. 

A third bivariate Gumbel distribution is presented in Nelsen (2006).  This distribution is called 
the Gumbel bivariate exponential distribution, given by  

 0)y,x(eee1)y,x(H )xyyx(yx ≥+−−= θ++−−−  (C.25) 

where θ is the dependence parameter. Gumbel’s bivariate exponential distribution has 
exponential marginals. 

C.2.2 Bivariate Normal Distribution 
Yue (2000) applied the bivariate normal distribution to the logarithms of hydrologic data to 
determine the joint probability structure of a bivariate dataset.  The bivariate normal density 
function is  

 ( )
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1)y,x(h  (C.26) 

where ρ is the correlation coefficient, |ρ|≤1, x and y are the variates, and σx and σy are the scale 
distribution parameters of their respective variates.  The bivariate normal distribution location 
parameter (mean) is located at (0,0).  Therefore, for univariate distributions with non-zero 
means of µx and µy, the data are adjusted by subtracting the means prior to fitting the bivariate 
distribution. 

For the bivariate lognormal distribution, the logarithms (natural or another base) of the variates, 
x = ln(q) and y = ln(r) where q and r represent the observed values, are used to transform the 
variates and reduce the skew in the dataset. 

As for the univariate normal distribution function, the bivariate normal distribution function has 
no closed-form analytic solution to the integral of the density function.  Therefore, numerical 
integration of the density function is required to determine the joint nonexceedance probability. 
Genz (2004) developed numerical integration methods in a variety of languages to deal with this 
problem. 
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C.3 Copulas 
Copulas are a more general approach to bivariate (or multivariate) problems.  The term copula 
refers to a function, called the dependence function, used to link two univariate distributions in 
such a way as to represent the bivariate (or multivariate) dependence between the two random 
variables.  The potential of a copula is realized in that the copula is independent from the form 
of the univariate marginal distributions. That is, the marginal distributions of a copula are 
uniformly distributed on the interval [0,1]. Therefore, the marginal distributions can be chosen 
such that they provide a best-fit of the univariate random variables, with the copula used to 
model the dependence behavior.  Genest and Favre (2007) provide a useful overview on the 
use of copulas in hydrology. 

Many copulas are available for application to bivariate (and multivariate) random variables. 
Those of interest to hydrologists typically fall into the Archimedean family of copulas.  For two 
random variables, X and Y with cumulative distribution functions of FX(x) and FY(y), respectively, 
define U = FX(X) and V = FY(Y).  Then, U and V are uniformly distributed random variables and 
u will denote a specific value of U and v will denote a specific value of V.  As described by 
Zhang and Singh (2006) the one-parameter Archimedean copula can be described as follows: 

 ( ) { } 1v,u0)v()u(v,uC 1 <<φ+φφ= −
θ  (C.27) 

where,  
 Cθ(u,v) = the copula function with θ representing the dependence parameter 
 φ = the copula generating function 
 u,v = specific values of the uniformly distributed random variable U and V 
 
The copula, Cθ(u,v), is analogous to the distribution function, H(x,y) discussed in the previous 
section.  Genest and Favre (2007) use the concept of a bivariate probability integrated 
transform (BPIT) to evaluate suitability of a given copula.  It is defined as: 

 
)t(
)t(t=)t(K 'φ

φ
−  (C.28) 

where φ’ is the derivative of φ. 

C.3.1 Gumbel-Hougaard Copula 
For the Gumbel-Hougaard family of copulas (Nelsen, 2006), the generating function is given by  

 θ−=φ )tln()t(  (C.29) 

and the copula is 

 ( ) ( ) ( )[ ]{ } [ ]∞∈θ−+−−= θθθ
θ ,1)vln()uln(expv,uC

1

 (C.30) 

where θ is the dependence parameter.  The relation between Kendall’s τ and θ is given by  

 11 −θ−=τ  (C.31) 

For development of the BPIT, the derivative of φ is needed,  

 ( ) 1' tln
t

=)t( −θ−
θ

−φ  (C.32) 
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C.3.2 Frank Copula 
The Frank family of copulas (Genest and Rivest, 1993; Nelsen, 2006) derives from the 
generating function 
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and the copula is 
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where θ is the dependence parameter.  The relation between Kendall’s τ and θ is given by  

 [ ])(D141 1 θ−
θ

−=τ  (C.35) 

where D1() is the first order Debye function Dk().  For a positive argument, Dk is defined as: 

 ∫
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tk)(D    0>θ  (C.36a) 

For a negative argument, Dk is defined as: 
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+θ=θ−  (C.36b) 

For development of the BPIT, the derivative of φ is needed,  
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 (C.37) 

C.4 Empirical Distributions and Plotting Position 
The plotting position of a sample from a random variable is used to locate the observation in 
probability space.  Probability space is the set of coordinates wherein one coordinate (generally 
the ordinate) represents the value of the observation and the other coordinate (generally the 
abscissa) represents an estimate of the frequency of the event.  The plotting position might be 
considered to represent the empirical distribution function of the random variable. 

The frequency can be the exceedance or nonexceedance probability, as estimated by a plotting 
position formula.  The probability coordinate can also be represented by a standardized value, 
such as the standard normal deviate or the reduced variate. 

C.4.1 Univariate Plotting Position 
Cunnane (1978) conducted an extensive review of plotting position formulae in common use at 
the time and suggested that a general form for plotting position formulae be:  

 
α−+

α−
≤

21n
i=)xX(P i  (C.38) 

where Xi is the event, i indicates the ith variate (sorted in ascending order), n is the number of 
observations in the dataset, and α is the plotting position factor. 

 C-7 



For the Blom formula, 3/8=α .  For the Gringorten formula, 0.44=α .  For the Hazen formula, 
0.5=α . For the Beard formula, 0.31=α .  Finally, for the Weibull formula, 0=α .  Cunnane 

(1978) reported that the Blom formula provided good results for normal distributions and that the 
Gringorten formula provided good results for the univariate Gumbel distribution.  The Weibull 
formula was best only for the uniform distribution. 

Although Cunnane recommends against using the plotting position as an estimate of the 
nonexceedance frequency of observations in a sample, his advice is often ignored in 
subsequent literature.  Yue, et al. (1999) and Yue and Rasmussen (2002) use the Gringorten 
formula for estimating nonexceedance probabilities.  Zhang and Singh (2006) use the relative 
frequency for estimates of nonexceedance probability.  Genest and Favre (2007) also use the 
relative frequency, less one degree of freedom, to estimate the nonexceedance probability. 

Therefore, the Weibull plotting position formula is a reasonable method for this research.  The 
use of the Weibull plotting position formula is not likely to affect the outcome of the work and its 
implementation is straightforward. 

C.4.2 Bivariate Empirical Distribution Functions 
Although most statisticians argue against using the results from a plotting position formula as an 
estimate of the distribution function, in application this is what is done.  A distribution (or 
distributions) is fit to the observations and then a plotting position formula is used to determine 
how to plot the observations on the fitted distribution.  The fraction of observations less than or 
equal to a particular observation is used to estimate the plotting position for the data point. This 
is an estimate of the distribution function. 

A similar method can be used for multivariate random variables. If a set of observations is 
collected, then a random variable defined as the number of observations less than or equal to 
the observation can be computed.  This method is defined in the context of copulas in the 
following paragraphs, but there appears to be no reason why it could not be applied for 
comparing results from other multivariate distributions as well. 

Genest and Rivest (1993) develop the notion of a non-parametric estimate of H(x,y) based on 
the empirical distribution of the coincident events.  Define a random variable, V, such that  

 
{ }

1n
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=  (C.39) 

where #{} indicates the count of elements in the set. The empirical bivariate probability 
integrated transform (BPIT) has the form  

 ( ) ∑
=

−δ
=

n

1i

i
n n

)Vv(vK  (C.40) 

where δ(x) is a step function such that  
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The BPIT represents the fraction of observed values less than or equal to v, where Vi is a 
function of the ranks of the (x,y) pairs of observations. 
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Genest and Favre (2007) present an alternative development.  Let I be a variable defined such 
that  

 
otherwise,0

YY,XX,1
{I ijij

j,i
<<

=  (C.42) 

for arbitrary i≠j and let Iii=1 for all i∈(1,…,n).  Then define  

 ij

N

1=j
i I

n
1=V ∑  (C.43) 

     }.Y<Y,X<X:j{#
n
1= ijij  

V is a function of the ranks of the observations and is related to the distribution function of the 
copula.  

Genest and Favre (2007) suggest that a particular copula can be fit to a dataset, and then 
plotted against the empirical copula as a visual test of fit.  That is, the results of Equation C.28 
are plotted against the empirical result of Equation C.40 (KK plot).  If the empirical and fitted 
copulas agree, then the resulting plot (analogous to a qq-plot) should approximate a straight 
line. Any deviation from a straight line should be interpreted as a lack of fit. 

However, the an analogous representation for Equation C.28 as applied to the bivariate Gumbel 
or normal distributions was not found such that comparisons of fit using a KK plot could not be 
accomplished.  Therefore, fit was evaluated by comparing the empirical values of V (Equation 
C.39) with the computation of C (Equation C.27) for the Gumbel-Hougaard and Frank copulas 
and the same values of V with the computation of H for the bivariate Gumbel (Equation C.21) 
and H for the bivariate normal  (numerical integration of Equation C.26). 

C.5 Correlation Measures 
Pearson’s ρ and Kendall’s τ are two measures of correlation used in previous sections.  Each is 
described in more detail in this section, including a sample calculation. 

C.5.1 Pearson’s ρ 
Pearson’s ρ is a linear correlation measure between two variables.  It ranges from –1 to 1.  An 
absolute value of Pearson's ρ near unity is indicative of a substantial degree of linear 
association, while a low absolute value indicates a low degree of association.  Pearson’s ρ is 
estimated from the following equation (Bowker and Lieberman, 1972): 
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 (C.44) 

where, 
 ρ = Pearson’s ρ 
 xi,yi = individual observations from x and y, respectively 
 y,x  = mean of the individual observations for x and y, respectively 
 n = number of observations 
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Computation of Pearson’s ρ is illustrated using the table of peak flows given in Table C.1.  
Intermediate computations for the summation terms in Equation C.44 are shown in Table C.2. 

Table C.1. Example Peak Flow Data. 

Index 
Main Flow 

(ft3/s) 
Tributary 

Flow (ft3/s) 
1 5,040 3,750 
2 3,540 2,370 
3 4,080 3,100 
4 4,000 3,190 
5 5,540 4,180 
6 4,180 1,520 

Mean 4,397 3,018 
 

Table C.2. Computation for Summation Terms. 

Index ( )xxi −  ( )2
i xx −  ( )yyi −  ( )2

i yy −  ( )( )yyxx ii −−  

1 643 413,878 732 535,336 470,706 
2 -857 733,878 -648 420,336 555,406 
3 -317 100,278 82 6,669 -25,861 
4 -397 157,344 172 29,469 -68,094 
5 1,143 1,307,211 1,162 1,349,469 1,328,172 
6 -217 46,944 -1,498 2,245,003 324,639 

Sum 0 2,759,533 0 4,586,283 2,584,967 
 

Equation C.44 is applied: 

( )( )

( ) ( ) ( )( )
727.0

283,586,4533,759,2
967,584,2

yyxx

yyxx

n
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n
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2
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2
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n
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ii

==
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−−
=ρ

∑ ∑

∑

= =

=  

C.5.2 Kendall’s τ 
Kendall’s τ is a rank correlation measure between two variables.  It ranges from –1 to 1.  As with 
Pearson’s ρ, an absolute value of Kendall's τ near unity is indicative of a substantial degree of 
rank correlation while a low absolute value indicates a low degree of association.  Kendall’s τ 
places an emphasis on the rank order of data rather than their specific values.  Kendall’s τ is 
estimated from the following equation (Genest and Favre, 2007): 

 ( )1n)n(5.0
QP nn

−
−

=τ  (C.45) 
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where, 
 τ = Kendall’s τ 
 Pn = number of concordant pairs 
 Qn = number of discordant pairs 
 n = number of observations 
 
Two pairs (xi, yi), (xj, yj) are said to be concordant when (xi – xj)(yi – yj) > 0 and discordant when  
(xi – xj)(yi – yj) < 0.  It does not matter how much greater than or less than zero, only that the 
rank order is moving in the same direction.  Ties (one or both values are equal and the resulting 
product equals 0) are not considered concordant or discordant.  If ties occur, the denominator in 
Equation C.45 must be adjusted. 

Determination of concordance or discordance for the sample dataset in Table C.1 is 
summarized in Table C.3.  The number of pairs to test is determined by the denominator of 
Equation C.45.  For the example, n = 6, therefore the number of pairs to test equals 0.5(6)(5) = 
15. 

Table C.3. Determination of Concordant and Discordant Pairs. 
Comparison i j (xi-xj) (yi-yj) (xi-xj)(yi-yj) Concordant? Discordant? 

1 1 2 1,500 1,380 2,070,000 Y  
2 1 3 960 650 624,000 Y  
3 1 4 1,040 560 582,400 Y  
4 1 5 -500 -430 215,000 Y  
5 1 6 860 2,230 1,917,800 Y  
6 2 3 -540 -730 394,200 Y  
7 2 4 -460 -820 377,200 Y  
8 2 5 -2,000 -1,810 3,620,000 Y  
9 2 6 -640 850 -544,000  N 

10 3 4 80 -90 -7,200  N 
11 3 5 -1,460 -1,080 1,576,800 Y  
12 3 6 -100 1,580 -158,000  N 
13 4 5 -1,540 -990 1,524,600 Y  
14 4 6 -180 1,670 -300,600  N 
15 5 6 1,360 2,660 3,617,600 Y  

 

Comparison 1 is an evaluation of the first and second pair of values in Table C.1.  In this case, 
the main and tributary flows are greater for the first pair compared with the second pair.  This 
results in (xi-xj)(yi-yj) = 2,070,000.  Because this value is greater than zero, the pair is 
considered concordant as shown in Table C.3.  Conversely, comparison 9 is an evaluation of 
the second and sixth pair of values in Table C.1.  In this case, the main flow for the second pair 
is less than the sixth pair while the tributary flow for the second pair is greater than the sixth 
pair.  This results in (xi-xj)(yi-yj) = -544,000.  Because this value is less than zero, the pair is 
considered discordant as shown in Table C.3.  Overall, the number of concordant pairs, Pn, is 
11 and the number of discordant pairs, Qn, is 4.  Equation C.45 can now be applied: 

( ) 467.0
)16)(6(5.0

411
1n)n(5.0

QP nn =
−

−
=

−
−

=τ  
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C.6 Prototype Analyses 
The prototype gage pairs were analyzed to evaluate the suitability of candidate bivariate 
distributions and copulas to represent main and tributary flows.  Steps in the evaluation process 
included: 1) a graphical evaluation of the theoretical fit of the four methods to the empirical data, 
2) a review of the joint distributions, and 3) an examination of the nonexceedance probabilities. 

C.6.1 Fitting Distributions 
The “fit” of the data to various distributions was assessed visually with a plot of the theoretical 
nonexceedance versus the empirical nonexceedance probability.  Figures C.1a through C.4b 
display these data for four prototype gages: GP05, GP06, GP43, and GP76. 

The ordinate in the figures is computed from Equation C.21 for the Gumbel mixed model 
bivariate distribution and a numerical integration of Equation C.26 for the log-normal bivariate 
distribution.  The ordinate for the copula methods are computed from Equation C.27.  The 
generating function, φ, was computed from Equations C.29 and C.33 for the Gumbel-Hougaard 
and Frank copulas, respectively.  The abscissa is computed from Equation C.39. 

C.6.2 Joint Distributions 
The joint distributions for the prototype gage pairs are shown in Figures C.5, C.6, C.7, and C.8. 
The abscissa and ordinate axes represent the cumulative nonexceedance probabilities for the 
main and tributary streams, respectively.  The curves represent isolines of nonexceedance 
probabilities for each methodology.  The individual data points are the estimated univariate 
nonexceedance values based on the Weibull plotting position formula and represented as 
circles. 

The data for the POM dataset of Gage Pair 05 is shown in Figure C.5a.  The individual data 
points are widely scattered and the isolines display a modest curvature.  Both features indicate 
a low correlation between the main and tributary gages.  Because all four distributions are 
relatively close together, a fifth curve (product) has been added that represents the probability 
isoline as a product of two independent probabilities.   In Figure C.5b, the observed data for the 
POT dataset show a wider spread (lower correlation) than the POM dataset. 

For Gage Pairs 06, 43, and 76 the higher correlation between the gages results in a clustering 
of the observed data points in a band from the lower left to upper right in the figure as shown in 
Figures C.6, C.7, and C.8, respectively.  In addition, there is a greater curvature to the isolines 
compared with the isolines for Gage Pair 05. 

C.6.3 Exceedance Probability 
The 10-percent exceedance probability isolines for the prototype gage pairs 05, 06, 43, 76 are 
shown in Figure C.9, C.10, C.11, and C.12, respectively.  For the POM plots, the abscissa 
represents the nonexceedance probability for the main stream and the ordinate represents the 
nonexceedance probability for the complementary data series for the tributary stream.  
Conversely, for the POT plots, the abscissa represents the nonexceedance probability for the 
complementary data series for the main stream and the ordinate represents the nonexceedance 
probability for the tributary stream.  As discussed in Section 4.4, the nonexceedance 
probabilities for the complementary and annual data series are not the same unless the main 
and tributary discharges are completely dependent. 
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Figure C.1a. Fit for Gage Pair 05 (POM). 

Figure C.1b. Fit for Gage Pair 05  (POT). 
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Figure C.2a. Fit for Gage Pair 06 (POM). 

Figure C.2b. Fit for Gage Pair 06 (POT). 
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Figure C.3a. Fit for Gage Pair 43 (POM). 

Figure C.3b. Fit for Gage Pair 43 (POT). 
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Figure C.4a. Fit for Gage Pair 76 (POM). 

Figure C.4b. Fit for Gage Pair 76 (POT). 
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Figure C.5a. Joint Distribution for Gage Pair 05 (POM). 

Figure C.5b. Joint Distribution for Gage Pair 05 (POT). 
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Figure C.6a. Joint Distribution for Gage Pair 06 (POM). 

Figure C.6b. Joint Distribution for Gage Pair 06 (POT). 
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Figure C.7a. Joint Distribution for Gage Pair 43 (POM). 

Figure C.7b. Joint Distribution for Gage Pair 43 (POT). 
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Figure C.8a. Joint Distribution for Gage Pair 76 (POM). 

Figure C.8b. Joint Distribution for Gage Pair 76 (POT). 
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A single isoline for each method is shown in the figures to illustrate the practical application.  All 
ordered pairs on a given curve represent a 10-percent exceedance probability as calculated by 
that method.  Which combination may be critical for the design problem, depends on where the 
design location is on the tributary reach.  Three combinations are taken from each curve, one at 
each end and one in the middle.  For the Gumbel-Hougaard method, these are summarized in 
for the prototype gage pairs 05, 06, 43, and 76 in Tables C.4, C.5, C. 6, and C.7, respectively, 
as GH copula (1), GH copula (2), and GH copula (3). 

The 10-percent exceedance probability isolines determined by alternative methods for Gage 
Pair 05 (POM) are displayed in Figure C.9a.  All points on a given isoline represent the same 
joint exceedance probability.  A summary of selected points from specific isolines is provided in 
Table C.4a for this gage pair.  For example, three points for the bivariate Gumbel distribution 
isoline are given: 1) 0.5 nonexceedance probability on the main combined with 0.8 
nonexceedance probability on the tributary, 2) 0.726 nonexceedance probability on the main 
combined with 0.726 nonexceedance probability on the tributary, and 3) 0.8 nonexceedance 
probability on the main combined with 0.5 nonexceedance probability on the tributary. 

Return periods corresponding to each nonexceedance probability are also provided.  These 
data are interpreted such that the first combination is a 2-yr event on the main combined with a 
5-yr event on the tributary, the second combination is a 3.6-yr event on the main combined with 
a 3.6-yr event on the tributary, and the third combination is a 5-yr event on the main combined 
with a 2-yr event on the tributary. 

Gage Pair 05 correlation measures (Pearson’s ρ and Kendall’s τ) are lower than the other 
prototype gage pairs.  Two alternative frameworks for assessing joint probability when 
correlation is low were examined.  First, treating the two gages as independent, the joint 
exceedance probability is the product of the independent exceedance probabilities.  Using this 
assumption provides the results identified as “product” in Figure C.9a and Table C.4a.  A 
second method for treating two independent gages is to ignore the confluence and assume that 
one stream experiences a design event while the other is not in a flood condition.  Identified as 
the “univariate”, results of applying this method are summarized in Table C.4. 

Gage Pair 06 (POM) is more representative of the situation where the correlation between the 
main and tributary streams exhibits some dependency.  Three 10-percent exceedance 
combinations for four methods are summarized in Table C.5a.  Using the Gumbel-Hougaard 
copula, a 2-yr event on the main stream combined with a 9.6-yr event on the tributary stream 
represents a 10-yr joint return period event.  A 6.5-yr event on both the main and tributary 
streams also represents a 10-yr event, as does a 9.6-yr event on the main stream combined 
with a 2.1-yr event on the tributary stream.  The most severe of these three conditions would be 
considered the 10-yr event and used for design. 

Comparing the four methods for Gage Pair 06 (POM), a 2-yr event on the main stream results in 
a return period event on the tributary ranging from 9.1 years for the Bivariate Gumbel to 9.6 
years for the Gumbel-Hougaard copula.  Looking at the event where the return period is equal 
on both the main and tributary streams, the return period ranges from 5.3 years for the Bivariate 
Gumbel to 6.5 years for the Gumbel-Hougaard copula.  For this gage pair and the POM dataset 
the Gumbel-Hougaard copula results in more severe design conditions.  However, the range is 
not significant for the 10-percent event.  The range will be greater for the 1-percent event. 

The same comparison may also be performed for Gage Pair 06 on the POT dataset based on 
the data in Table C.5b.  Comparing the four methods yields the same observations noted for the 
POM dataset.  The Gumbel-Hougaard copula results in the most severe design conditions and 
the Frank copula the least severe.  In this case, the Bivariate Gumbel values could not be 
calculated because Pearson’s ρ exceeded two-thirds. 
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Figure C.9a. 10-percent Exceedance Probability for Gage Pair 05 (POM). 

Figure C.9b. 10-percent Exceedance Probability for Gage Pair 05 (POT). 
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Table C.4a. 10-percent Exceedance Combinations for Gage Pair 05 (POM). 
 Main Tributary* 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Product (1) 0.50 2.0 0.80 5.0 
Product (2) 0.684 3.1 0.684 3.1 
Product (3) 0.80 5.0 0.50 2.0 
     
Bivariate Gumbel (1) 0.50 2.0 0.80 5.0 
Bivariate Gumbel (2) 0.726 3.6 0.726 3.6 
Bivariate Gumbel (3) 0.80 5.0 0.50 2.0 
     
GH copula (1) 0.50 2.0 0.84 6.2 
GH copula (2) 0.73 3.7 0.73 3.7 
GH copula (3) 0.84 6.2 0.50 2.0 
     
Univariate (1) 0.90 10 <0.50 <2.0 
Univariate (2) <0.50 <2.0 0.90 10 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 

Table C.4b. 10-percent Exceedance Combinations for Gage Pair 05 (POT). 
 Main* Tributary 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Product (1) 0.50 2.0 0.80 5.0 
Product (2) 0.684 3.1 0.684 3.1 
Product (3) 0.80 5.0 0.50 2.0 
     
Bivariate Gumbel (1) 0.50 2.0 0.84 6.2 
Bivariate Gumbel (2) 0.744 3.9 0.744 3.9 
Bivariate Gumbel (3) 0.88 6.2 0.50 2.0 
     
GH copula (1) 0.50 2.0 0.83 5.9 
GH copula (2) 0.726 3.6 0.726 3.6 
GH copula (3) 0.83 5.9 0.50 2.0 
     
Univariate (1) 0.90 10 <0.50 <2.0 
Univariate (2) <0.50 <2.0 0.90 10 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 
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Figure C.10a. 10-percent Exceedance Probability for Gage Pair 06 (POM). 

Figure C.10b. 10-percent Exceedance Probability for Gage Pair 06 (POT). 

 

 

 C-24 



Table C.5a. 10-percent Exceedance Combinations for Gage Pair 06 (POM). 
 Main Tributary* 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Log-normal (1) 0.50 2.0 0.893 9.3 
Log-normal (2) 0.813 5.3 0.813 5.3 
Log-normal (3) 0.890 9.1 0.540 2.2 
     
Bivariate Gumbel (1) 0.50 2.0 0.890 9.1 
Bivariate Gumbel (2) 0.825 5.7 0.825 5.7 
Bivariate Gumbel (3) 0.880 8.3 0.636 2.7 
     
GH copula (1) 0.50 2.0 0.896 9.6 
GH copula (2) 0.846 6.5 0.846 6.5 
GH copula (3) 0.896 9.6 0.520 2.1 
     
Frank copula (1) 0.50 2.0 0.893 9.3 
Frank copula (2) 0816 5.4 0.816 5.4 
Frank copula (3) 0.890 9.1 0.557 2.3 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 

Table C.5b. 10-percent Exceedance Combinations for Gage Pair 06 (POT). 
 Main* Tributary 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Log-normal (1) 0.50 2.0 0.897 9.7 
Log-normal (2) 0.829 5.8 0.829 5.8 
Log-normal (3) 0.890 9.1 0.628 2.7 
     
Bivariate Gumbel (1) na na na na 
Bivariate Gumbel (2) na na na na 
Bivariate Gumbel (3) na na na na 
     
GH copula (1) 0.50 2.0 0.897 9.7 
GH copula (2) 0.850 6.7 0.850 6.7 
GH copula (3) 0.896 9.6 0.574 2.3 
     
Frank copula (1) 0.50 2.0 0.895 9.5 
Frank copula (2) 0.821 5.6 0.821 5.6 
Frank copula (3) 0.890 9.1 0.590 2.4 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 
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Figure C.11a. 10-percent Exceedance Probability for Gage Pair 43 (POM). 

Figure C.11b. 10-percent Exceedance Probability for Gage Pair 43 (POT). 
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Table C.6a. 10-percent Exceedance Combinations for Gage Pair 43 (POM). 
 Main Tributary* 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Log-normal (1) 0.50 2.0 0.894 9.4 
Log-normal (2) 0.819 5.5 0.819 5.5 
Log-normal (3) 0.890 9.1 0.575 2.4 
     
Bivariate Gumbel (1) na na na na 
Bivariate Gumbel (2) na na na na 
Bivariate Gumbel (3) na na na na 
     
GH copula (1) 0.50 2.0 0.896 9.6 
GH copula (2) 0.843 6.4 0.843 6.4 
GH copula (3) 0.890 9.1 0.656 2.9 
     
Frank copula (1) 0.50 2.0 0.892 9.3 
Frank copula (2) 0.813 5.3 0.813 5.3 
Frank copula (3) 0.890 9.1 0.541 2.2 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 

Table C.6b. 10-percent Exceedance Combinations for Gage Pair 43 (POT). 
 Main* Tributary 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Log-normal (1) 0.50 2.0 0.897 9.7 
Log-normal (2) 0.828 5.8 0.828 5.8 
Log-normal (3) 0.890 9.1 0.627 2.7 
     
Bivariate Gumbel (1) na na na na 
Bivariate Gumbel (2) na na na na 
Bivariate Gumbel (3) na na na na 
     
GH copula (1) 0.50 2.0 0.897 9.7 
GH copula (2) 0.848 6.6 0.848 6.6 
GH copula (3) 0.896 9.6 0.550 2.2 
     
Frank copula (1) 0.50 2.0 0.894 9.4 
Frank copula (2) 0.818 5.5 0.818 5.5 
Frank copula (3) 0.890 9.1 0.575 2.4 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 
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Figure C.12a. 10-percent Exceedance Probability for Gage Pair 76 (POM). 

Figure C.12b. 10-percent Exceedance Probability for Gage Pair 76 (POT). 
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Table C.7a. 10-percent Exceedance Combinations for Gage Pair 76 (POM). 
 Main Tributary* 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Log-normal (1) 0.50 2.0 0.898 9.8 
Log-normal (2) 0.834 6.0 0.834 6.0 
Log-normal (3) 0.890 9.1 0.660 2.9 
     
Bivariate Gumbel (1) 0.50 2.0 0.882 8.5 
Bivariate Gumbel (2) 0.825 5.7 0.825 5.7 
Bivariate Gumbel (3) 0.880 8.3 0.533 2.1 
     
GH copula (1) 0.50 2.0 0.900 10.0 
GH copula (2) 0.868 7.6 0.868 7.6 
GH copula (3) 0.890 9.1 0.814 5.4 
     
Frank copula (1) 0.50 2.0 0.899 9.9 
Frank copula (2) 0.840 6.3 0.840 6.3 
Frank copula (3) 0.890 9.1 0.700 3.3 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 

Table C.7b. 10-percent Exceedance Combinations for Gage Pair 76 (POT). 
 Main* Tributary 

Method (ID) 
Nonexceedance 
Probability (u) 

Return 
Period 

Nonexceedance 
Probability (v) 

Return 
Period 

Log-normal (1) 0.50 2.0 0.893 9.3 
Log-normal (2) 0.815 5.4 0.815 5.4 
Log-normal (3) 0.890 9.1 0.554 2.2 
     
Bivariate Gumbel (1) na na na na 
Bivariate Gumbel (2) na na na na 
Bivariate Gumbel (3) na na na na 
     
GH copula (1) 0.50 2.0 0.895 9.5 
GH copula (2) 0.839 6.2 0.839 6.2 
GH copula (3) 0.896 9.6 0.627 2.7 
     
Frank copula (1) 0.50 2.0 0.891 9.2 
Frank copula (2) 0.809 5.2 0.809 5.2 
Frank copula (3) 0.890 9.1 0.518 2.1 
*Not the annual series nonexceedance probabilities and return periods.  These are conservative. 

 

Comparing the results from the POM and POT datasets, it is observed that those for the POT 
dataset point to modestly more severe conditions than the POM dataset.  For example, for the 
log-normal (3) case, the tributary return period from POM dataset is 9.3 years while for the POT 
dataset the comparable value is 9.7 years.  The POT dataset has a higher Pearson’s ρ, which 
results in more severe conditions for the log-normal method.  Similarly, the POT dataset has a 
higher Kendall’s τ, which results in more severe conditions for both copula methods. 

C.7 Correlation Parameter Regression 
Application of bivariate distributions or copulas for confluent watersheds without gages requires 
an estimate of Pearson’s ρ for the former and Kendall’s τ for the latter.  This section describes 
the method and results of the regression analyses to develop relations between measurable 
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watershed and meteorological characteristics and the calculated values of Pearson’s ρ and 
Kendall’s τ from both the POM and POT datasets. 

C.7.1 Data Adjustments 
Initial evaluation of the computed Pearson’s ρ and Kendall’s τ from the POM and POT datasets 
revealed the presence of a small number of outliers.  In addition, comparing correlations 
between the POM and POT datasets revealed that the definition of “coincident” as the daily flow 
occurring on the same day led to missing some coincident events.  To address this, the 
coincident window was adjusted to the same day, or the day before or the day after, that is a 
three-day window.  Overall, the adjustments were not substantial.  The adjusted values for ρ 
and τ will be used in subsequent analyses. 

The results on Pearson’s ρ and Kendall’s τ for the Peak on Main (POM) dataset are 
summarized in Table C.8.  Pearson’s ρ changed substantially for gage pairs 16, 35, and 80.  For 
the latter two, the change primarily resulted from dropping the outlier rather than expanding the 
window for “coincident” to three days.  For all gage pairs except for number 16, adjusting the 
coincident window did not have a pronounced effect on the Pearson’s ρ.  Neither changing the 
coincident window nor removal of outliers changed Kendall’s τ substantially except for Gage 
Pair 16. 

Table C.8. Correlation Adjustments: Peak on Main. 

Gage Pair n 

# of 
Adjusted 
Events 

# of 
Outliers 

Removed ρ 
Adjusted 

ρ τ 
Adjusted 

τ 
51 27 - - 0.002 0.100 0.110 - 
16 17 2 0 0.310 0.632 0.353 0.559 
31 50 3 0 0.322 0.314 0.206 0.206 
331 28 - - 0.003 0.100 0.289 - 
35 27 3 1 0.263 0.637 0.227 0.277 
38 36 1 0 0.326 0.334 0.320 0.327 
39 25 1 0 0.922 0.922 0.388 0.375 
64 71 14 0 0.352 0.414 0.274 0.309 
65 36 10 0 0.472 0.637 0.356 0.305 
66 29 4 0 0.620 0.628 0.271 0.232 
67 37 8 0 0.824 0.832 0.610 0.602 
69 26 2 0 0.723 0.723 0.340 0.360 
80 31 3 1 0.161 0.419 0.224 0.246 
84 30 5 0 0.606 0.652 0.461 0.472 
86 57 8 0 0.334 0.404 0.246 0.272 

1. ρ set to minimum of 0.100. 
 

The results on Pearson’s ρ and Kendall’s τ for the Peak on Tributary (POT) datasets are 
summarized in Table C.9.  Pearson’s ρ changed substantially for gage pairs 67 and 69.  The 
change primarily resulted from dropping the outlier rather than expanding the window for 
“coincident” to three days.  For all gage pairs changing the window did not have a pronounced 
effect on the Pearson’s ρ.  Neither changing the coincident window nor removal of outliers 
changed Kendall’s τ substantially. 
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Table C.9. Correlation Adjustments: Peak on Tributary. 

Gage Pair n 

# of 
Adjusted 
Events 

# of 
Outliers 

Removed ρ 
Adjusted 

ρ τ 
Adjusted 

τ 
16 17 2 0 0.699 0.644 0.544 0.529 
31 50 3 0 0.388 0.436 0.262 0.298 
35 27 3 0 0.779 0.742 0.498 0.497 
38 36 1 0 0.620 0.637 0.496 0.506 
39 25 1 0 0.912 0.912 0.511 0.491 
64 71 14 0 0.750 0.717 0.588 0.554 
65 36 10 0 0.740 0.759 0.461 0.434 
66 29 4 0 0.361 0.388 0.084 0.084 
67 37 8 1 0.361 0.795 0.563 0.578 
69 26 2 1 0.346 0.831 0.432 0.459 
80 31 3 0 0.472 0.475 0.319 0.307 
84 30 5 0 0.378 0.426 0.312 0.336 
86 57 8 0 0.538 0.535 0.430 0.435 

1. ρ set to minimum of 0.100. 

C.7.2 Regression on Area Ratio 
Regression analyses were initially attempted on a single variable that had historically been 
considered important in joint probability analysis and was relatively highly correlated.  This 
established a baseline from which other regression relations would be evaluated. 

C.7.2.1 All Data 
For the peaks on main (POM) dataset a linear regression on area ratio, RA, yielded the following 
result for Pearson’s ρ (Equation C.46a) and Kendall’s τ (Equation C.46b) with all 85 gage pairs. 

 ( ) 16.0
AR87.0 −=ρ       (R2=0.329) (C.46a) 

 ( ) 12.0
AR64.0 −=τ       (R2=0.225) (C.46b) 

where, 
 RA = ratio of the main watershed area to the tributary watershed area 
 
The R2 values for these equations are weaker than would be ideal.  A weak relation with area 
ratio is observed in Figures C.13a and C.13b, though the data are scattered. 

For the POT dataset a linear regression on area ratio yields the following result for Pearson’s ρ 
(Equation C.46c) and Kendall’s τ (Equation C.46d) with all 85 gage pairs. 

 ( ) 08.0
AR83.0 −=ρ       (R2=0.236) (C.46c) 

 ( ) 09.0
AR63.0 −=τ       (R2=0.148) (C.46d) 

The R2 values for these equations are also weaker than would be ideal.  A weak relation with 
area ratio is observed in Figures C.13c and C.13d. 
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Figure C.13a. Pearson’s ρ versus Area Ratio (POM). 

Figure C.13b. Kendall’s τ versus Area Ratio (POM). 
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Figure C.13c. Pearson’s ρ versus Area Ratio (POT). 

Figure C.13d. Kendall’s τ versus Area Ratio (POT). 
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C.7.2.2 Filters 
A series of filters were tested to examine if certain types of gage pairs obscured relations 
between the correlation parameters and area ratio.  Several trials were made to screen out the 
following types of data: 

1. AM > 1000 mi2; or AM > 2000 mi2.  Hypothesis: The main watershed area (AM) 
may be larger than the storm cells causing most flood events. 

2. AT > 400 mi2.  Hypothesis: The tributary watershed area (AT) above a particular 
threshold may cause alternative driving factors for coincident flooding. 

3. ATOT > 1000 mi2; or ATOT > 2000 mi2. Hypothesis: The total watershed area (ATOT) 
may be larger than the storm cells causing most flood events. 

4. Q2M/Q2T < 0.83.  Hypothesis: If the estimated Q2 of the main watershed was 
substantially lower than the Q2 of the smaller tributary watershed, the gage pair is 
anomalous. 

5. dc > 20 mi; or dc > 30 mi. Hypothesis: The distance between the main and 
tributary watershed centroids (dc) may be too large compared with the storm cell 
size to be sensitive to coincident flooding. 

The correlation parameters for the gage pairs versus the total watershed area, ATOT, are shown 
in Figures C.14a, b, c, and d. 

Figure C.14a. Pearson’s ρ versus Total Area (POM). 
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Figure C.14b. Kendall’s τ versus Total Area (POM). 

Figure C.14c. Pearson’s ρ versus Total Area (POT). 
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Figure C.14d. Kendall’s τ versus Total Area (POT). 

The most successful filter for the POM dataset, in terms of a high R2, was to retain only the 
gage pairs with AM < 2000 mi2 and AT < 400 mi2.  This filter eliminated 18 gage pairs leaving 67 
gage pairs.  The following equations were the result of this filter. 

POM dataset: 

 ( ) 21.0AR97.0 −=ρ       (R2=0.475) (C.47a) 

 ( ) 18.0AR71.0 −=τ       (R2=0.369) (C.47b) 

POT dataset: 

 ( ) 12.0AR88.0 −=ρ       (R2=0.339) (C.47c) 

 ( ) 16.0AR67.0 −=τ       (R2=0.256) (C.47d) 

For the POT dataset, the most successful filter was to retain only the gage pairs with dc < 20 
miles.  This filter eliminated 30 gage pairs leaving 55 gage pairs.  The following equations were 
the result of this filter. 

POM dataset: 

 ( ) 17.0AR99.0 −=ρ       (R2=0.388) (C.48a) 

 ( ) 16.0AR71.0 −=τ       (R2=0.333) (C.48b) 
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POT dataset: 

 ( ) 15.0AR91.0 −=ρ       (R2=0.408) (C.48c) 

 ( ) 21.0AR71.0 −=τ       (R2=0.351) (C.48d) 

The information in Equations C.46, C.47, and C.48 is summarized in Table C.10.  In all cases, 
filtering improved the R2 values, quite substantially in some cases.  Since filtering out “large” 
watersheds, defined by their drainage areas or centroid separations, always improved the 
equation fit, an argument may be made that above some size threshold, correlation 
relationships might be altered. 

Table C.10. Summary of Selected Regressions on Area Ratio. 
Dataset/correlation 

parameter Equation Coefficient Exponent R2 

Peaks on Main/ρ 
C.46a 0.87 -0.16 0.329 
C.47a 0.97 -0.21 0.475 
C.48a 0.99 -0.17 0.388 

Peaks on Main/τ 
C.46b 0.64 -0.12 0.225 
C.47b 0.71 -0.18 0.369 
C.48b 0.71 -0.16 0.333 

Peaks on Tributary/ρ 
C.46c 0.83 -0.08 0.236 
C.47c 0.88 -0.12 0.339 
C.48c 0.91 -0.15 0.408 

Peaks on Tributary/τ 
C.46d 0.63 -0.09 0.148 
C.47d 0.67 -0.16 0.256 
C.48d 0.71 -0.21 0.351 

 

C.7.2.3 Functional Adjustments 
An alternative strategy to develop predictive relationships for the correlation parameters was 
with functional adjustments to the independent variables.  Using similar reasoning to that for 
some of the filters, that is, watershed magnitude may influence correlation patterns, various 
functional adjustments were tested: 

1. If AM > 2000 mi2 set AM = 2000 mi2. 

2. If AM (or AT) > 1000 mi2 set AM (or AT) = 0.26 (AM) + 740. 

3. If ATOT < 200 mi2 and RA > 5.0 set RA = 5.0. 

4. If ATOT > 2000 mi2 and RA < 10.0 set RA = 10.0. 

The first two adjustments attempted to mitigate the influence of very large watersheds by either 
capping the maximum size or by scaling the area down.  The third adjustment was based on the 
observation that some of the less “well-behaved” gage had small areas with high area ratios that 
resulted in an under prediction in correlation.  The fourth adjustment was based on the 
observation that some gage pairs with large areas and low drainage area ratios resulted in over 
predicting correlation. 

All of these adjustments improved the R2 of the resulting predictive relations.  In most cases, the 
small improvements in R2 did not justify the use of these functional adjustments.  However, 
capping AM at 2000 mi2 was considered useful because the area ratios computed from the 
basins with drainage areas greater than 2000 mi2 were not representative of the correlation in 
peak flows. 
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C.7.2.4 Groups 
An additional strategy was to subdivide the gage pair dataset into groups according to a 
characteristic that might distinguish separate subpopulations.  The grouping tested was based 
on geography.  The gage pairs were divided into those in the eastern part of the U.S. versus 
those in the western part.  The west was further subdivided based on whether the pair was in a 
“wet” or “dry” climate.  Two definitions of wet and dry were evaluated based on: 1) the 24-h 2 yr 
rainfall intensity, and 2) the mean annual precipitation, PM. 

For estimating ρ from the Peaks on Main dataset and using the first definition, with 2.5 inches 
separating wet and dry, the following relations on area ratio resulted: 

East (n = 44): 

 ( ) 21.0
AR93.0 −=ρ       (R2=0.495) (C.49a) 

West, I2-24 < 2.5 (n = 24): 

 ( ) 00.0
AR71.0 −=ρ       (R2=0.000) (C.49b) 

West, I2-24 > 2.5 (n = 17): 

 ( ) 11.0
AR90.0 −=ρ       (R2=0.393) (C.49c) 

Comparing the results for the above equations with Equation C.46a, one might draw the 
conclusion that this grouping improves the predictions of Pearson’s ρ for the East and West with 
I2-24 > 2.5 while revealing that for the West with I2-24 < 2.5 area ratio does not relate at all to 
Pearson’s ρ. 

Similarly, for estimating Pearson’s ρ from the POM dataset and using the second definition, with 
25 inches separating wet and dry, the following relations on area ratio resulted (there is no 
change in the equation for the East.): 

East (n = 44) 

 ( ) 21.0
AR93.0 −=ρ       (R2=0.495) (C.50a) 

West, PM < 25 (n = 21) 

 ( ) 01.0
AR66.0 −=ρ       (R2=0.004) (C.50b) 

West, PM > 25 (n = 20) 

 ( ) 12.0
AR92.0 −=ρ       (R2=0.379) (C.50c) 

Comparing the results for the above equations with Equation C.46a, one might again draw the 
conclusion that this grouping improves the predictions of Pearson’s ρ for the East and West with 
PM > 25 while revealing that for the West with PM < 25 area ratio does not relate at all to 
Pearson’s ρ.  It is also apparent from comparing Equations C.49 b and c with Equations C.50 b 
and c that the alternative divisions into “wet” and “dry” do not influence the results.  The 
equations are quite similar. 

Does the regional grouping represent true differences in the population or does it reflect artifacts 
in the gage pair dataset?  To investigate this, gage pairs were filtered to include only those pairs 
with AM < 2000 mi2 and AT < 400 mi2 and the regional analysis was repeated resulting in: 
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East (n = 32) 

 ( ) 22.0
AR97.0 −=ρ       (R2=0.484) (C.51a) 

West, PM < 25 (n = 16) 

 ( ) 18.0
AR93.0 −=ρ       (R2=0.370) (C.51b) 

West, PM > 25 (n = 19) 

 ( ) 11.0
AR91.0 −=ρ       (R2=0.365) (C.51c) 

Equations C.50a, b, and c may be compared to Equations C.51a, b, and c.  Although each 
group lost at least one gage pair to the filtering, application of the filter had a substantial effect 
on the West (PM < 25) group.  Area ratio is now a predictor variable and the coefficient, 
exponent, and R2 are comparable to the other groupings.  Furthermore, each of the group 
equations C.51a, b, and c are similar to Equation C.47a.  Therefore, it is concluded that the 
apparent improvement by grouping is not indicative of separate populations, at least as it 
pertains to using area ratio as the predictive variable. 

C.7.3 Regression on Other/Multiple Variables 
Previous sections focused on area ratio as a predictor of the correlation parameters Pearson’s ρ 
and Kendall’s τ.  In this section, regression with other single and multiple independent variables 
is explored. 

Tables C.11a, b, c, and d summarize various regression scenarios for Pearson’s ρ (POM 
dataset), Kendall’s τ (POM dataset), Pearson’s ρ (POT dataset), and Kendall’s τ (POT dataset), 
respectively.  The “intercept” column represents the linear regression intercept and the “Coeff.” 
column is the intercept transformed to real space (Coeff = 10^intercept).  The remaining 
columns represent the exponents for the independent variables included in the regression.  If a 
p-value of greater than 0.05 was computed for an intercept or exponent, it is highlighted by 
shading.  This indicates there is a greater than 5 percent chance that the value is zero. 

Scenario 1 in each of the tables was given previously as Equations C.46a, b, c, and d, 
respectively, and is the point of reference for comparison with other scenarios.  Scenarios 2 
through 5 each add a second independent variable to Scenario 1.  A scenario with RLS is not 
included because it is highly correlated with RA and would introduce significant cross-
correlation.  All improve the R2, though several are not statistically significant as indicated in the 
tables by the shading when the p-values are greater than 0.05.  For Scenarios 1 through 5 the 
RA exponent is relatively consistent regardless of the addition of a second variable.  For 
example, in Table C.11a, the exponent ranges only from 0.140 to 0.161 for Scenarios 1 through 
5. 

Scenario 6 was conceived to include any of the independent variables in Table C.11a if its p-
value was less than 0.1.  In this way, preconceptions regarding which parameters should be 
included were avoided.  It was expected that R2 for this scenario would be greater than any 
other scenarios using the entire database.  Inspection of the four tables shows that RLS is 
retained in all four regressions.  However, the second, or in some cases third, independent 
variable differs from table to table. 

RLS was analyzed as a single independent variable as Scenario 7.  For Pearson’s ρ, the R2 was 
close to that with RA (Scenario 1), but for Kendall’s τ, the R2 improved indicating that RLS may be 
a better predictor for Kendall’s τ while RA may be a better predictor for Pearson’s ρ. 
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Table C.11a. Regression Scenarios for Pearson’s ρ (POM). 
ID Description n R2 Intercept Coeff. RA dC RLS PM P24-2 ATOT 
1 All 85 0.329 -0.059 0.87 -0.161      
2 All 85 0.369 0.079 1.20 -0.145 -0.129     
3 All 85 0.334 -0.161 0.69 -0.161   0.069   
4 All 85 0.330 -0.040 0.91 -0.160    -0.045  
5 All 85 0.370 0.150 1.41 -0.141     -0.082 
6 All 85 0.375 0.156 1.43   -0.249   -0.086 
7 All 85 0.329 -0.065 0.86   -0.284    

8 AT<400; 
AM<2000 67 0.475 -0.014 0.97 -0.208      

9 AT<400; 
AM<2000 67 0.500 0.096 1.25 -0.202 -0.108     

10 AT<400; 
AM<2000 67 0.429 0.187 1.54   -0.285   -0.092 

11 AT<400; 
AM<2000 67 0.389 -0.037 0.92   -0.314    

12 AT>400 12 0.651 -1.341 0.046    0.747   

13 AT<400 73 0.423 -0.026 0.94 -0.181      

14 
AT<400; 
AM>2000 set to 
2000 

73 0.443 -0.016 0.96 -0.201      

 p-values greater than 0.05 when shaded. 

Table C.11b. Regression Scenarios for Kendall’s τ (POM). 
ID Description n R2 Intercept Coeff. RA dC RLS PM P24-2 ATOT 
1 All 85 0.225 -0.197 0.64 -0.115      
2 All 85 0.276 -0.063 0.87 -0.100 -0.126     
3 All 85 0.268 -0.488 0.33 -0.116   0.187   
4 All 85 0.229 -0.227 0.59 -0.116    0.071  
5 All 85 0.258 -0.036 0.92 -0.099     -0.063 
6 All 85 0.319 -0.344 0.45  -0.093 -0.193 0.158   
7 All 85 0.252 -0.197 0.64   -0.215    

8 AT<400; 
AM<2000 67 0.369 -0.151 0.71 -0.176      

9 AT<400; 
AM<2000 67 0.436 0.021 1.05 -0.166 -0.170     

10 AT<400; 
AM<2000 67 0.432 -0.208 0.62  -0.110 -0.281 0.101   

11 AT<400; 
AM<2000 67 0.386 -0.159 0.69   -0.301    

12 AT>400 12 0.531 -1.454 0.035    0.757   

13 AT<400 73 0.313 -0.172 0.67 -0.130      

14 
AT<400; 
AM>2000 set to 
2000 

73 0.340 -0.164 0.69 -0.147      

 p-values greater than 0.05 when shaded. 
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Table C.11c. Regression Scenarios for Pearson’s ρ (POT). 
ID Description n R2 Intercept Coeff. RA dC RLS PM P24-2 ATOT 
1 All 85 0.236 -0.081 0.83 -0.079      
2 All 85 0.244 -0.045 0.90 -0.075 -0.034     
3 All 85 0.253 -0.202 0.63 -0.079   0.078   
4 All 85 0.256 -0.126 0.75 -0.081    0.105  
5 All 85 0.245 -0.026 0.94 -0.073     -0.022 
6 All 85 0.258 -0.135 0.73   -0.143  0.120  
7 All 85 0.232 -0.085 0.82   -0.138    

8 AT<400; 
AM<2000 67 0.339 -0.054 0.88 -0.116      

9 AT<400; 
AM<2000 67 0.344 -0.020 0.96 -0.114 -0.034     

10 AT<400; 
AM<2000 67 0.335 -0.114 0.77   -0.191  0.118  

11 AT<400; 
AM<2000 67 0.310 -0.064 0.86   -0.186    

12 AT>400 12 0.593 -0.783 0.16    0.425   

13 AT<400 73 0.297 -0.068 0.86 -0.088      

14 
AT<400; 
AM>2000 set to 
2000 

73 0.310 -0.064 0.86 -0.097      

 p-values greater than 0.05 when shaded. 
 

Scenario 8 was previously reported as Equations C.47a, b, c, and d and represented a filtered 
version of Scenario 1.  A substantial improvement in R2 was observed in all four cases.  

Scenarios 9, 10, and 11 are filtered versions of Scenarios 2, 6, and 7.  As expected, filtering 
improved R2 in all cases.  Comparison of the filtered scenarios revealed two general 
observations.  First, either RA or RLS are the most substantial contributor to predicting 
correlation.  RA tends to be a better predictor for Pearson’s ρ and RLS tends to be a better 
predictor for Kendall’s τ based on the R2 values.  Second, adding a second independent 
variable to either RA or RLS added little value. 

Scenario 12 was designed to complement the filtered scenarios (8 through 11) by posing a 
relation applicable to gage pairs filtered out of those scenarios.  A total of 12 gage pairs have a 
tributary area greater than 400 mi2.  For this group, relatively strong relations were found with 
mean annual precipitation, PM, as the independent variable.  A hypothesis for this success was 
that once the smaller watershed size exceeds a certain threshold, the relative size of the main 
and tributary watersheds is less of a predictor because of limits on the storm cell size. 

Scenarios 13 and 14 were evaluated to explore an alternative grouping.  The R2 improves from 
Scenario 1 through Scenarios 13 and 14.  Scenario 14 represents application of a functional 
adjustment to main areas greater than 2000 mi2.  The hypothesis was that drainage areas 
greater than 2000 mi2 do not further affect the correlation.  In all cases, the R2 improved over 
Scenario 13.  For the case of Kendall’s τ for the POT dataset, the R2 is notably lower than the 
other cases.  Inspection of the data revealed that Gage Pair 66 might be an outlier.  When 
removed, the R2 improves as shown in Table C.11d, Scenario 14a. 
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Table C.11d. Regression Scenarios for Kendall’s τ (POT). 
ID Description n R2 Intercept Coeff. RA dC RLS PM P24-2 ATOT 
1 All 85 0.148 -0.204 0.63 -0.091      
2 All 85 0.151 -0.233 0.59 -0.095 0.027     
3 All 85 0.183 -0.460 0.35 -0.092   0.164   
4 All 85 0.170 -0.273 0.53 -0.094    0.162  
5 All 85 0.152 -0.253 0.56 -0.096     0.019 
6 All 85 0.224 -0.455 0.35   -0.184 0.164   
7 All 85 0.190 -0.200 0.63   -0.182    

8 
AT<400; 
AM<2000 67 0.256 -0.171 0.67 -0.158      

9 
AT<400; 
AM<2000 67 0.256 -0.157 0.70 -0.157 -0.014     

10 
AT<400; 
AM<2000 67 0.335 -0.397 0.40   -0.293 0.145   

11 
AT<400; 
AM<2000 67 0.311 -0.170 0.68   -0.292    

12 AT>400 12 0.503 -0.932 0.12    0.460   

13 AT<400 73 0.159 -0.200 0.63 -0.095      

14 
AT<400; 
AM>2000 set to 
2000 

73 0.179 -0.192 0.64 -0.110      

14a 

AT<400; 
AM>2000 set to 
2000 (dropped 
GP66) 

72 0.255 -0.181 0.66 -0.110      

 p-values greater than 0.05 when shaded. 
 

C.7.4 Alternative Equation Forms 
The preceding analyses employed the conventional linear regression format in log-space: 

 n21 b
n

b
2

b
1 X...XaXY =  (C.52) 

The use of functional adjustments provided modifiers to selected independent variables, but still 
employed this fundamental format.  Other functional forms were evaluated: 

Log-linear: 

 ( ) ( ) ( )nn22110 Xloga...XlogaXlogaaY ++=  (C.53) 

Offset: 

 n21 b
n

b
2

b
10 X...XaX)YY( =−  (C.54) 

Many other forms are possible, but the limitation for any potential form is the ultimate relation 
between the independent and dependent variables.  For the independent variables collected 
and developed for this study, the predictive power appears to be limited in any equation form. 
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C.7.5 Selection of Best-Fit Equations 
Weighing the justification for the use of filters and groupings, significance of including multiple 
independent variables, and the anticipated ease of use for the designer, it was apparent that the 
most promising sets of equations derived from Scenarios 8, 11, 12, and 14. 

Scenarios 8 and 11 applied to watershed pairs where the main stream area is less than 2000 
mi2 and the tributary stream area is less than 400 mi2.  The equations for Pearson’s ρ and 
Kendall’s τ are summarized in Table C.12 and Table C.13, respectively.  The root mean square 
error (RMSE) was calculated for each equation and is included in the tables. 

Table C.12. Equations for Pearson’s ρ (Scenarios 8 and 11). 
Dataset Scenario Equation R2 RMSE 

POM 8 ( ) 21.0
AR97.0 −=ρ  0.475 0.191 

POM 11 ( ) 31.0
LSR92.0 −=ρ  0.389 0.190 

POT 8 ( ) 12.0
AR88.0 −=ρ  0.339 0.156 

POT 11 ( ) 19.0
LSR86.0 −=ρ  0.310 0.154 

 

Table C.13. Equations for Kendall’s τ (Scenarios 8 and 11). 
Dataset Scenario Equation R2 RMSE 

POM 8 ( ) 18.0
AR71.0 −=τ  0.369 0.147 

POM 11 ( ) 30.0
LSR69.0 −=τ  0.386 0.146 

POT 8 ( ) 16.0
AR67.0 −=τ  0.256 0.147 

POT 11 ( ) 29.0
LSR68.0 −=τ  0.311 0.141 

 

Based on R2, RA was a better predictor of Pearson’s ρ than RLS.  (See Table C.12.)  
Examination of the RMSE results does not support or contradict this conclusion.  Similarly, it 
was previously concluded that RLS was a better predictor of Kendall’s τ than RA.  (See Table 
C.13.)  RMSE results are essentially the same for all the dataset and scenario combinations and 
did not support or contradict this conclusion. 

Scenario 12 applied to watershed pairs where the tributary area is greater than 400 mi2.  These 
equations for Pearson’s ρ and Kendall’s τ are summarized in Table C.14 and Table C.15, 
respectively. 

Scenarios 8, 11, and 12 do not include a group of watershed pairs with a tributary watershed 
area of less than 400 mi2 and a main stream watershed area greater than 2,000 mi2.  This group 
accounts for 6 of the 85 watershed pairs in the study database.  A satisfactory predictive relation 
for this group was not found for either Pearson’s ρ or Kendall’s τ, therefore Scenario 14 was 
created to include these data points.  The equations for scenario 14 are summarized in Table 
C.16 and Table C.17 for Pearson’s ρ and Kendall’s τ, respectively. 
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Table C.14. Equations for Pearson’s ρ (Scenario 12). 
Dataset Scenario Equation R2 RMSE 

POM 12 ( ) 75.0
MP046.0=ρ  0.651 0.143 

POT 12 ( ) 42.0
MP16.0=ρ  0.593 0.098 

Table C.15. Equations for Kendall’s τ (Scenario 12). 
Dataset Scenario Equation R2 RMSE 

POM 12 ( ) 76.0
MP035.0=τ  0.531 0.134 

POT 12 ( ) 46.0
MP12.0=τ  0.503 0.087 

Table C.16. Equations for Pearson’s ρ (Scenario 14). 
Dataset Scenario Equation R2 RMSE 

POM 14 ( ) 20.0
AR96.0 −=ρ  0.443 0.206 

POT 14 ( ) 10.0
AR86.0 −=ρ  0.310 0.150 

Table C.17. Equations for Kendall’s τ (Scenario 14). 
Dataset Scenario Equation R2 RMSE 

POM 14 ( ) 15.0
AR69.0 −=τ  0.340 0.160 

POT 14a ( ) 11.0
AR66.0 −=τ  0.255 0.137 

 
Evaluation of the equations included R2, RMSE, and practicality.  In the final analysis it was 
recommended to consider the gage pair database to be divided in two groups emphasizing the 
equations from Scenarios 12 and 14.  The two groups are based on the tributary (smaller) 
watershed area: 

1. Drainage area of the tributary watershed is less than 400 mi2.  If the drainage 
area of the larger watershed is greater than 2000 mi2, the larger watershed 
drainage area is taken as 2000 mi2. 

2. Drainage area of the tributary watershed is greater than 400 mi2. 

The recommended best-fit equations based on these two groups are summarized below.  
Separate equations were developed for the POM and POT datasets. 

For the 73 watershed pairs in Group One, drainage area ratio is recommended as the 
independent variable to estimate correlation at ungaged sites based on Scenario 14.  The best-
fit equation for estimating Pearson’s ρ for the POM case was (R2 = 0.443): 

 ( ) 20.0
AR96.0 −=ρ  (C.55) 

where, 
 ρ = Pearson’s ρ, dimensionless 
 RA = drainage area ratio, dimensionless 
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The best-fit equation for estimating Pearson’s ρ for the POT case was (R2 = 0.310): 

 ( ) 10.0
AR86.0 −=ρ  (C.56) 

 
For Kendall’s τ, the POM analysis resulted in the best-fit equation of (R2 = 0.340): 

 ( ) 15.0
AR69.0 −=τ  (C.57) 

where, 
 τ = Kendall’s τ, dimensionless 
 
The best-fit equation for estimating τ for the POT case was (R2 = 0.255): 

 ( ) 11.0
AR66.0 −=τ  (C.58) 

 
For the 12 watershed pairs in Group Two, a meteorological parameter was more useful than 
drainage area for estimating the correlation parameters.  The recommended equations for this 
group were based on Scenario 12 and mean annual precipitation, PM, was selected as the 
independent variable. 

The best-fit equation for estimating Pearson’s ρ for the POM dataset was (R2 = 0.651): 

 ( ) 75.0
MP046.0=ρ  (C.59) 

where, 
 PM = Mean annual precipitation, in 
 
For the POT dataset, the best-fit equation for Pearson’s ρ was (R2 = 0.593): 

 ( ) 42.0
MP16.0=ρ  (C.60) 

The best-fit equation for estimating Kendall’s τ for the POM dataset was (R2 = 0.531): 

 ( ) 76.0
MP035.0=τ  (C.61) 

For the POT dataset, the best-fit equation for Kendall’s τ was (R2 = 0.503): 

 ( ) 46.0
MP12.0=τ  (C.62) 

C.7.6 Selection of Envelope Equations 
The selected “best-fit” equations exhibit modest R2 values and an estimate of the prediction 
error is given by the RMSE results provided in the previous section.  Use of the best-fit 
equations will result in overestimates of the predicted correlation parameter in some cases and 
underestimates in others.  For design purposes, it is desirable to develop a companion set of 
“envelope” equations that reduce the probability of underestimating the correlation. 

Since higher correlation results in a greater likelihood of extreme events occurring 
simultaneously on both the main and tributary streams, underestimating the correlation creates 
a risk of under design while overestimating creates a risk of over design.  To reduce the risk of 
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under design envelope equations that encompass 90 percent of the observed data were 
developed. 

Three strategies for modifying the best-fit equations were considered: 

1. Modifying the equation coefficient 

2. Modifying the independent variable exponent 

3. Adding a constant 

Each strategy was compared in terms of a visual fit with the data and the resulting RMSE.  The 
preferred method was adding a constant.  The following equation defines the method: 

 ( ) BXCcor e +=  (C.63) 

where, 
 cor = represents either Pearson’s ρ or Kendall’s τ 
 X = independent variable        
 C = equation coefficient 
 e = independent variable exponent 
 B = envelope constant 
  
A summary of envelope constants is found in Table C.18. 

Table C.18. Envelope Constants. 
Correlation 
Parameter Group Dataset 

Envelope 
Constant 

ρ 1 POM 0.19 
ρ 1 POT 0.18 
ρ 2 POM 0.20 
ρ 2 POT 0.13 
τ 1 POM 0.23 
τ 1 POT 0.23 
τ 2 POM 0.21 
τ 2 POT 0.09 

C.8 Correlation Parameter Groupings 
An alternative to the regression relations for estimating correlation parameters was considered. 
The amount of variance described by the regression equations and measured using the R2 
statistic was such to provide motivation for an alternative method.  This alternative groups the 
gage pairs by selected watershed characteristics to provide an estimate for correlation that is 
representative of the group. 

C.8.1 Site-Specific Dependence 
Regression relations for dependence (Pearson’s ρ and Kendall’s τ) were tested using several 
meteorological and watershed characteristics as described in Section C.7.  In this analysis, 
three characteristics were explored for grouping the gage pairs: drainage area ratio, total area, 
and mean annual precipitation. 
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The distribution of Pearson’s ρ versus drainage area ratio for the POM and POT datasets is 
summarized in Figures C.15a and C.15b, respectively.  Similarly, the distribution of Kendall’s τ 
versus drainage area ratio for the POM and POT datasets is summarized in Figures C.16a and 
C.16b. Although the data are scattered, it appear they can be separated into two populations: 
one for area ratios less than 7 and one for area ratios greater than 7.  For Pearson’s ρ, it is 
more likely to observe a higher dependence when area ratio is less than 7.  For  Kendall’s τ, the 
tendency toward higher dependence when area ratio is less than 7 is more pronounced.  
Kendall’s τ ranges between 0.2 and 0.9 when area ratio is less than 7 and between 0.2 and 0.7 
when area ratio is greater than 7. 

Distribution of the correlation parameters versus total area (sum of main and tributary drainage 
areas) is provided in Figures C.17 and C.18.  It appears that gage pairs with smaller total area 
tend to exhibit higher dependence.  Larger total areas appear to exhibit greater variability in 
their correlation parameter values.  Considering Figures C.18a and C.18b, the values of 
Kendall’s τ range between 0.4 and 0.9 for total drainage areas less than 350 mi2 and between 
0.2 and 0.9 for total drainage areas exceeding 350 mi2.  

Plots of correlation parameter versus mean annual precipitation are presented in Figures C.19 
and C.20.  For mean annual precipitation less than 60 inches there appears to be a wider range 
of values in the correlation.  For Kendall’s τ, the values range from 0.2 to 0.9 for mean annual 
precipitation less than 60, but for precipitation exceeding 60 inches, Kendall’s τ ranges from 
only 0.4 to 0.8. 

After analysis of several alternatives, the data were placed in subgroups based on whether the 
area ratio was greater or less than 7 and the total drainage area was greater or less than 350 
mi2.  Subgroupings by mean annual precipitation (MAP) were discarded because only a few 
gage pairs exist with MAP greater than 60 inches and meaningful evaluation of whether the 
groups were distinct was not feasible. 

The number of observations, mean, standard deviation, and 90th percentile (90% of the values 
in the group are lower) for the subgroupings are summarized in Tables C.19 and C.20 for 
Pearson’s ρ and in Tables C.21 and C.22 for Kendall’s τ.  The results listed in the tables show 
that correlation between the main and tributary, expressed by Pearson’s ρ or Kendall’s τ, 
decreases with increasing area ratio and with increasing total area.  For example, in Table C.21, 
the mean Kendall’s τ for RA < 7 and ATOT > than 350 mi2 (0.57) is less than the mean τ for RA < 
7 and ATOT < than 350 mi2 (0.68).  Similarly, the mean τ for RA > 7 and ATOT > than 350 mi2 
(0.39) is less than the mean τ for RA < 7 and ATOT > than 350 mi2 (0.57).  Because of the small 
number of observations for RA > 7 and ATOT < than 350 mi2 comparisons between this grouping 
and the others are not meaningful.  The same pattern is observed in all four tables. 

The t-statistic was used to test whether the differences in the mean values are statistically 
significant, that is, do they represent separate populations.  A summary of the computed t-
statistic and the significance threshold (5 percent level) for the POM and POT datasets are 
provided in Tables C.23 and C.24 for Pearson’s ρ and Tables C.25 and C.26 for Kendall’s τ.  If t 
is greater than t’, the difference in the means is considered statistically significant.  Without 
exception, the differences in the means are statistically significant. 
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Figure C.15a. Distribution of Pearson’s ρ by Area Ratio (POM). 

Figure C.15b. Distribution of Pearson’s ρ by Area Ratio (POT). 
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Figure C.16a. Distribution of Kendall’s τ by Area Ratio (POM). 

Figure C.16b. Distribution of Kendall’s τ by Area Ratio (POT). 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

Area Ratio

Ke
nd

al
l's

 τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

Area Ratio

K
en

da
ll'

s 
τ

 C-49 



Figure C.17a. Distribution of Pearson’s ρ by Total Area (POM). 

Figure C.17b. Distribution of Pearson’s ρ by Total Area (POT). 
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Figure C.18a. Distribution of Kendall’s τ by Total Area (POM). 

Figure C.18b. Distribution of Kendall’s τ by Total Area (POT). 
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Figure C.19a. Distribution of Pearson’s ρ by Mean Annual Precipitation (POM). 

Figure C.19b. Distribution of Pearson’s ρ by Mean Annual Precipitation (POT). 
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Figure C.20a. Distribution of Kendall’s τ by Mean Annual Precipitation (POM). 

Figure C.20b. Distribution of Kendall’s τ by Mean Annual Precipitation (POT). 
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Table C.19. Pearson’s ρ (POM). 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.85 0.74 
Standard Deviation 0.11 0.18 
90th Percentile 0.95 0.93 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.88 0.50 
Standard Deviation - 0.24 
90th Percentile - 0.75 

Table C.20. Pearson’s ρ (POT). 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.84 0.76 
Standard Deviation 0.12 0.14 
90th Percentile 0.95 0.91 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.67 0.63 
Standard Deviation - 0.17 
90th Percentile - 0.85 

Table C.21. Kendall’s τ (POM). 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.68 0.57 
Standard Deviation 0.12 0.17 
90th Percentile 0.81 0.77 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.56 0.39 
Standard Deviation - 0.14 
90th Percentile - 0.54 

Table C.22. Kendall’s τ (POT). 
  ATOT < 350 mi2 ATOT > 350 mi2 

RA < 7 

Number of pairs (n) 27 37 
Mean 0.65 0.58 
Standard Deviation 0.13 0.15 
90th Percentile 0.80 0.75 

RA > 7 

Number of pairs (n) 2 19 
Mean 0.44 0.45 
Standard Deviation - 0.13 
90th Percentile - 0.57 
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Table C.23. t-statistic for Pearson’s ρ (POM). 

Comparison t 
t’ (at 5% 

significance) 
Significant 
(Yes or No) 

RA < 7 & ATOT < 350 mi2 vs. 
RA < 7 & ATOT > 350 mi2  3.02 1.68 Yes 

RA < 7 & ATOT < 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  6.06 1.71 Yes 

RA < 7 & ATOT > 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  3.97 1.70 Yes 

Table C.24. t-statistic for Pearson’s ρ (POT). 

Comparison t 
t’ (at 5% 

significance) 
Significant 
(Yes or No) 

RA < 7 & ATOT < 350 mi2 vs. 
RA < 7 & ATOT > 350 mi2  2.48 1.68 Yes 

RA < 7 & ATOT < 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  4.58 1.70 Yes 

RA < 7 & ATOT > 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  2.82 1.70 Yes 

Table C.25. t-statistic for Kendall’s τ (POM). 

Comparison t 
t’ (at 5% 

significance) 
Significant 
(Yes or No) 

RA < 7 & ATOT < 350 mi2 vs. 
RA < 7 & ATOT > 350 mi2  3.07 1.68 Yes 

RA < 7 & ATOT < 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  7.29 1.69 Yes 

RA < 7 & ATOT > 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  4.13 1.69 Yes 

Table C.26. t-statistic for Kendall’s τ (POT). 

Comparison t 
t’ (at 5% 

significance) 
Significant 
(Yes or No) 

RA < 7 & ATOT < 350 mi2 vs. 
RA < 7 & ATOT > 350 mi2  2.00 1.68 Yes 

RA < 7 & ATOT < 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  5.27 1.69 Yes 

RA < 7 & ATOT > 350 mi2 vs. 
RA > 7 & ATOT > 350 mi2  3.35 1.69 Yes 

C.8.2 Potential Combinations 
With the statistical significance of the groupings established, potential combinations for the 
designer can be established for representative (mean) and envelope (90th percentile) selections.  
This analysis only addressed the use of Kendall’s τ for in the copula method.  As with the 
regression relations, the designer selects the representative or envelope approach based on the 
risks and costs associated with the project.  With the groupings, the potential combinations are 
directly determined based on the drainage area ratio and total area of the site and the design 
joint return period. 
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Thus far, a distinction has been made between the POM and POT datasets.  Comparison of the 
mean and 90th percentile values for Kendall’s τ in Tables C.21 and C.22 reveals small 
differences between the results from the two datasets.  Because these differences will not affect 
the resulting potential combinations, the highest mean and 90th percentile value from each 
group is used developing the potential combinations. 

The return-period pairs for joint return periods ranging from the 10-yr to 500-yr are summarized 
in Tables C.27 through C.31.  Values for Kendall’s τ are provided in the tables for reference, but 
are not needed by the designer. 

Table C.27. 10-yr Joint Return Periods (Groupings). 
Return Period on One 

Stream 
Kendall’s 

τ 1.25 2 5 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - 10 9 8 
RA < 7 ATOT > 350 mi2 0.59 - 10 9 7 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 10 9 7 6 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - 10 9 
RA < 7 ATOT > 350 mi2 0.77 - - 10 8 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - 10 8 7 

Table C.28. 25-yr Joint Return Periods (Groupings). 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - 25 24 19 
RA < 7 ATOT > 350 mi2 0.59 - 25 24 22 17 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 25 24 22 18 14 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - 25 22 
RA < 7 ATOT > 350 mi2 0.77 - - - 25 21 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 25 24 22 17 

Table C.29. 50-yr Joint Return Periods (Groupings). 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 25 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - - 50 48 38 
RA < 7 ATOT > 350 mi2 0.59 - 50 49 48 40 33 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 50 49 47 43 30 27 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - 50 43 
RA < 7 ATOT > 350 mi2 0.77 - - - 50 49 41 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - 50 49 48 40 33 
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Table C.30. 100-yr Joint Return Periods (Groupings). 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 25 50 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - - 100 98 92 75 
RA < 7 ATOT > 350 mi2 0.59 - - 100 98 94 80 67 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 100 99 96 92 80 58 54 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - - 100 99 86 
RA < 7 ATOT > 350 mi2 0.77 - - - 100 98 83 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - 100 99 98 93 79 66 

Table C.31. 500-yr Joint Return Periods (Groupings). 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 25 50 100 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - - - 500 499 495 376 
RA < 7 ATOT > 350 mi2 0.59 - - 500 499 497 491 476 331 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 500 499 495 490 477 456 417 269 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - - - - 500 430 
RA < 7 ATOT > 350 mi2 0.77 - - - - - 500 499 414 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - - 500 499 496 490 473 327 

For example, if a designer determined that the representative value is appropriate and the joint 
return period required is 100-years, then the designer would consult Table C.30 for the potential 
combinations.  Assuming the site has a drainage area ratio of 5 and a total area of 50 mi2, the 
potential combinations are (main return period, tributary return period): (10,100), (25,98), 
(50,92), and (75,75).  Three additional combinations are derived by transposing the return 
periods for the main and tributary streams: (100,10), (98,25), and (92,50).  In total, this 
represents seven potential combinations.  The designer might elect to observe that the 98-year 
return period event is sufficiently close to the 100-year event and collapse the first two pairs to 
(25,100), thereby reducing the potential combinations to five for hydraulic analysis. 

The information presented in Tables C.27 through C.31 provides no guidance for appropriate 
combinations in cases where the area ratio exceeds 7 and the total area is less than 350 mi2.  
Based on previous assessments, one would expect that the correlation for this case would be 
greater than when the area ratio is greater than 7 and the total area is greater than 350 mi2, but 
less than when the area ratio is less than 7 and the total area is less than 350 mi2. 

In the absence of supporting data, a conservative strategy to apply the case where area ratio is 
less than 7 and the total area is less than 350 mi2 is recommended.  An alternative selection 
might be to use the case where the area ratio is less than 7 and the total area is greater than 
350 mi2. 
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C.9 Comparison of Regression and Grouping 
Two methods for estimating the correlation parameters Pearson’s ρ and Kendall’s τ have been 
developed.  Development of regression equations on watershed and meteorological 
characteristics was described in Section C.7.  Development of the correlation parameters based 
on data groupings was presented in Section C.8.  Both methods were applied to the database of 
85 gage pairs to compare the performance of the two methods.  The root mean square errors 
were determined and are summarized in Table C.32. 

Table C.32. Prediction Error Comparison. 
Correlation 
parameter Method 

POM Dataset 
RMSE 

POT Dataset 
RMSE 

Pearson’s ρ Regression 0.171 0.137 
Grouping 0.170 0.148 

Kendall’s τ Regression 0.147 0.138 
Grouping 0.147 0.142 

The root mean square errors (RMSE) for the two methods are nearly identical for the POM 
dataset.  The RMSE for the grouping method is slightly lower than the regression method for 
Pearson’s ρ, but identical for Kendall’s τ.  For the POT dataset, RMSEs are marginally lower for 
the regression method for both correlation parameters. 
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The objective of this portion of the research was to generate conditional probability matrices for 
the total probability method.  The application of the total probability method to river stage and 
the prototype analyses leading to the development of the conditional probability matrices is 
provided in this appendix. 

D.1 Theorem Application to River Stage 
The total probability theorem has been applied at river confluences (e.g. Dyhouse, 1985; Pingel 
and Ford, 2004).  For application of the total probability method for joint probability, the 
procedure described in EM 1110-2-1415 (USACE, 1993) is used.  The objective of the method, 
as applied in this research, is to produce a cumulative distribution function for tributary stage. 

The foundation of the total probability method is the total probability theorem: 

 [ ] ]A[P]A|B[PBP ii

n

1i
∑
=

=  (D.1) 

where, 
 P[B]  = probability that B will occur 
 P[B|Ai]  = probability that B will occur given Ai has occurred 
 P[Ai]  = probability that Ai will occur 
 
For continuous variables, Equation D.1 may be written as follows: 

 [ ] [ ] [ ]∫=
A

dAAPA|BPBP  (D.2) 

Application of Equation D.1 or D.2 over the range of values for the variable B results in a 
probability density function (PDF) for B as shown in Figure D.1.  The shape of the PDF in the 
figure is hypothetical; the actual shape will depend on the statistical nature of the variable. 

The PDF is transformed into the cumulative distribution function (CDF) by estimating the 
probability of nonexceedance for each value of B.  Conceptually, the probability of 
nonexceedance is the area under the PDF to the left of the value of B.  Performing this analysis 
over the range of B results in a CDF as is shown in Figure D.2.  Again, the shape in the figure is 
hypothetical and depends on the shape of the PDF. 

It is often desirable to express the CDF in terms of probability of exceedance, Pe, rather than 
probability of nonexceedance Pne.  It is straightforward to achieve this transformation since Pe + 
Pne = 1.  The result of this relation is shown in Figure D.2 by the addition of the second vertical 
axis (Pe) with the numerical values reversed from the first vertical axis (Pne). 

As stated previously, the application of the total probability method of interest for this research is 
to develop the CDF for stage of the tributary at a site of interest.  Therefore, the variable B in the 
previous discussion is tributary stage, yT.  Equation D.1 becomes: 

 [ ] ]Q[P]Q|y[PyP i,Mi,M

n

1i
TT ∑

=

=  (D.3) 
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where, 
 P[yT]  = probability that stage yT will occur 

 P[yT|QM,i] = probability that stage yT will occur given flow on the main stream, QM,i has 
occurred 

 P[QM,i]  = probability that main stream flow, QM,i will occur 

Figure D.1. Hypothetical Probability Density Function. 

 

Figure D.2. Hypothetical Cumulative Distribution Function. 
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Because the tributary stage, yT, is a function of both QM and QT, Equation D.3 might have been 
stated with QT rather than QM.  The preferred representation depends on which of the two 
discharges is considered the “dominant” variable.  Close to the confluence, QM may be the 
dominant variable while closer to the upstream end of the influence reach, QT may be the 
dominant variable.   

The subscript, i, represents an index ranging from 1 to n where n is the number groups (bins) 
into which the variable QM is divided.  QM,i represents the index value for that bin.  Bins for this 
analysis are defined based on annual exceedance probabilities (AEPs) of interest to designers 
analyzing coincident flooding.  Seven bins defined by an index value and range are summarized 
in Table D.1.  The “bin AEP Index Value” value is the average of the logs (base 10) of the upper 
and lower bounds of the bin AEP range.  Bin number 3, for example, includes flows that range 
from an AEP of 0.063 to an AEP of 0.141 with the index value being AEP equal to 0.1.  In terms 
of return period, bin number 3 includes flows that range from a 16-yr return period to a 7-yr 
return period with and index value of the 10-yr flow.  

Table D.1. AEP Bins. 

Bin number 
Bin AEP (Index 

Value) Bin AEP range P[QM,i] 
1 0.500 0.316 > AEP >= 1.000 0.684 
2 0.200 0.141 > AEP >= 0.316 0.175 
3 0.100 0.063 > AEP >= 0.141 0.078 
4 0.040 0.028 > AEP >= 0.063 0.035 
5 0.020 0.014 > AEP >= 0.028 0.014 
6 0.010 0.004 > AEP >= 0.014 0.010 
7 0.002 0.000 > AEP >= 0.004 0.004 

 

To apply Equation D.3, P[QM,i] and P[yT|QM,i] must be defined.  P[QM,i] is defined in Table D.1 
and is calculated as the range of the AEP bin.  For example, the probability of a flow falling in 
bin 3 is equal to the width of the range (0.141-0.063 = 0.078). 

P[yT|QM,i] is the conditional probability of experiencing a stage of yT given a flow on the main 
stream in bin i.  However, with coincident flows yT is a function of both QM and the flow on the 
tributary, QT.  Referred to as a “linking relationship,” there is some function used to calculate the 
tributary stage, yT.  Typically, this linking relationship is provided with a HEC-RAS model of the 
confluence with QT and QM as inputs.  Functionally, the relation is expressed as follows: 

 yT = f(QT,QM) (D.4) 

where, 
 yT = Tributary stream stage 
 QT = Tributary stream flow 
 QM = Main stream flow 
 
Although necessary, the linking relationship does not provide the conditional probability, 
P[yT|QM,i], needed to apply the total probability theorem.  Development of the conditional 
probabilities (conditional probability matrices) is the focus of this part of the research. 

D.2 Prototype Analyses 
The prototype gage pairs were used to evaluate data issues and demonstrate concepts.  The 
basic data for the prototype gage pairs are summarized in Table D.2. 
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Table D.2. Prototype Gage Pair Watershed Characteristics. 
Characteristic Pair 05 Pair 06 Pair 43 Pair 76 

Main watershed 
Gage ID 01403060 01445500 12082500 08164450 
Area (sq mi) 785 106 133 289 

Tributary watershed 
Gage ID 01403150 01446000 12083000 08164503 
Area (sq mi) 2 37 75 178 

Joint Characteristics 
Total Area (sq mi) 787 143 208 467 
Drainage Area Ratio 394.5 2.9 1.8 1.6 
Centroid Separation (mi) 7.5 7.0 11.0 14.8 

D.2.1 Instantaneous Versus Mean Daily Data 
For three of the prototype gage pairs, peak flow dates were obtained from the annual and partial 
duration flow series.  (Gage Pair 05 was not used for this assessment because no 
instantaneous data were available.)  The times of peak were then obtained by reviewing the 
instantaneous data for those dates.  For each gage pair, two sets of concurrent flow pairs were 
extracted.  One was using the peak flows on the main with the complementary tributary flows 
(POM) and the other was using the peak flows on the tributary with the complementary main 
flows (POT).  From these two sets of flow pairs two conditional probability matrices for each 
gage pair were developed. 

To explore the use of daily versus instantaneous data, the process was conducted twice, once 
extracting flow pairs from instantaneous (15-minute) flow data and once extracting flow pairs 
from mean-daily flow data.  The AEPs were computed separately for the instantaneous and 
daily data so that each value could be placed in its proper bin based on the appropriate AEP. 

The resulting empirically derived AEP pair count tables for the instantaneous data are shown in 
Tables D.3 through D.5.  A higher degree of correlation between the main and tributary 
watersheds is indicated when a higher frequency of observations fall on the diagonal indicated 
in the tables.  As has been noted elsewhere, the instantaneous data are limited in their scope. 
Consequently, the instantaneous pair counts for gage pairs 06 and 76 are less than 10. 

Table D.3a. Instantaneous Data Pair Counts for Gage Pair 06 (POM). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 1 1 
0.200 1 1 
0.100 1 1 2 
0.040 0 
0.020 0 
0.010 0 
0.002 0 
Total 2 2 0 0 0 0 0 4 
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Table D.3b. Instantaneous Data Pair Counts for Gage Pair 06 (POT). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 1 1 
0.200 1 1 
0.100 0 
0.040 1 1 
0.020 1 1 
0.010 0 
0.002 0 
Total 1 1 2 0 0 0 0 4 

Table D.4a. Instantaneous Data Pair Counts for Gage Pair 43 (POM). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 27 1 28 
0.200 3 4 7 
0.100 1 1 
0.040 1 1 
0.020 0 
0.010 0 
0.002 0 
Total 30 4 2 1 0 0 0 37 

Table D.4b. Instantaneous Data Pair Counts for Gage Pair 43 (POT). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 17 5 2 24 
0.200 1 2 1 1 5 
0.100 0 
0.040 0 
0.020 0 
0.010 0 
0.002 0 
Total 18 7 1 3 0 0 0 29 
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Table D.5a. Instantaneous Data Pair Counts for Gage Pair 76 (POM). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 3 3 
0.200 1 1 1 3 
0.100 0 
0.040 1 1 
0.020 0 
0.010 1 1 
0.002 0 
Total 5 1 2 0 0 0 0 8 

Table D.5b. Instantaneous Data Pair Counts for Gage Pair 76 (POT). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 4 1 5 
0.200 1 1 
0.100 0 
0.040 0 
0.020 1 1 
0.010 0 
0.002 0 
Total 4 2 1 0 0 0 0 7 

AEP estimates are required for the mean daily data series.  As with the instantaneous data 
series, Bulletin 17B procedures were applied to the annual maxima mean daily flow values to 
compute mean daily flow quantiles for each of the gages. 

The adopted skew coefficient was computed as the weighted value of the regional skew and 
station skew, rounded to the nearest tenth.  The regional skew was taken as the value 
estimated from Plate 1 of Bulletin 17B.  The estimates of regional skew provided on Plate 1 are 
based on (instantaneous) annual maxima flow values, not mean daily flow series.  Therefore, it 
was implicitly assumed that the regional skew for the mean daily flow series is the same as that 
for instantaneous flows series.  The station skew was computed from the mean daily flow series 
for the gage.  Following Bulletin 17B, the regional and station skew coefficients were weighted 
by inverse proportion of their mean square errors.  The mean square error for station skew was 
computed from the mean daily series, and the mean square error for the regional skew was 
taken to be 0.302 per Bulletin 17B.  The resulting number of events (excluding outliers), 
computed mean, standard deviation, and skew values for each gage are listed in Table D.6. 

For each gage, the set of mean daily POM and POT flow pairs was converted to AEP pairs by 
applying the previously computed gage statistical parameters (mean, standard deviation) to the 
log Pearson Type-III (LP3) distribution.  This process presumed that the LP3 distribution, 
adopted by Bulletin 17B for instantaneous flows, is also appropriate to describe mean daily 
flows. 
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Table D.6. Gage Statistics. 
Characteristic Pair 05 Pair 06 Pair 43 Pair 76 
Main Stream 

Gage ID 01403060 01445500 12082500 08164450 
Events 67 85 64 29 
Mean 4.1986 2.9110 3.6694 3.7235 
Standard Deviation 0.1813 0.1716 0.1969 0.3614 
Regional Skew 0.6890 0.5840 0.0000 -0.2910 
Station Skew 0.1833 0.0371 0.0627 0.3009 
Adopted Skew 0.3 0.1 0.0 0.1 

Tributary Stream 
Gage ID 01403150 01446000 12083000 08164503 
Events 27 42 64 29 
Mean 2.0004 2.6452 3.5549 3.6189 
Standard Deviation 0.1950 0.2131 0.1707 0.3191 
Regional Skew 0.6740 0.5610 0.0000 -0.2980 
Station Skew 0.3978 -0.0640 0.0437 0.0190 
Adopted Skew 0.5 0.1 0.0 -0.1 

The resulting AEP pair counts for the daily data are shown in Tables D.7 through D.9 for the 
POM and POT datasets for three prototype gage pairs.  If the distribution of pair counts in both 
the instantaneous and daily data are similar, the use of daily data is validated.  However, in two 
of the three prototype gage pairs, 06 and 76, there are insufficient instantaneous data 
observations for a meaningful comparison. 

A comparison between the instantaneous and daily data pair counts for Gage Pair 43 is 
feasible.  Because the instantaneous data include pair counts numbering 37 (POM) and 29 
(POT) while the daily data include pair counts of 64 (POM and POT) the counts are normalized 
to probabilities to illustrate their distribution.  The distributions for the POM and POT datasets 
are provided in Tables D.10a and D.10b for the instantaneous data and in Tables D.11a and 
D.11b for the daily data. 

Table D.7a. Daily Data Pair Counts for Gage Pair 06 (POM). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 30 3 1 34 
0.200 3 2 1 6 
0.100 1 1 2 
0.040 1 1 
0.020 0 
0.010 0 
0.002 0 
Total 34 5 3 1 0 0 0 43 
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Table D.7b. Daily Data Pair Counts for Gage Pair 06 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 28 7 1     36 
0.200  2 1   1  4 
0.100   1 1    2 
0.040        0 
0.020        0 
0.010        0 
0.002        0 

 Total 28 9 3 1 0 1 0 42 

Table D.8a. Daily Data Pair Counts for Gage Pair 43 (POM). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 42 5      47 
0.200 4 3      7 
0.100 1 2 2 1    6 
0.040    2    2 
0.020 1       1 
0.010        0 
0.002      1  1 

 Total 48 10 2 3 0 1 0 64 

Table D.8b. Daily Data Pair Counts for Gage Pair 43 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 43 5 1 2    51 
0.200 2 3      5 
0.100  2 1 1    4 
0.040    2    2 
0.020 1       1 
0.010        0 
0.002      1  1 

 Total 46 10 2 5 0 1 0 64 
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Table D.9a. Daily Data Pair Counts for Gage Pair 76 (POM). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 18 2 20 
0.200 2 2 2 6 
0.100 1 1 
0.040 1 1 
0.020 0 
0.010 1 1 
0.002 0 
Total 21 4 3 0 1 0 0 29 

Table D.9b. Daily Data Pair Counts for Gage Pair 76 (POT). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 19 2 21 
0.200 1 2 2 5 
0.100 1 1 2 
0.040 1 1 
0.020 0 
0.010 0 
0.002 0 
Total 20 5 2 1 1 0 0 29 

Table D.10a. Instantaneous Data Event Distribution for Gage Pair 43 (POM). 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 0.73 0.03 0.76 
0.200 0.08 0.11 0.00 0.19 
0.100 0.03 0.03 
0.040 0.03 0.03 
0.020 0.00 
0.010 0.00 
0.002 0.00 
Total 0.81 0.11 0.05 0.03 0.00 0.00 0.00 1.00 
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Table D.10b. Instantaneous Data Event Distribution for Gage Pair 43 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 0.59 0.17  0.07    0.83 
0.200 0.03 0.07 0.03 0.03    0.17 
0.100        0.00 
0.040        0.00 
0.020        0.00 
0.010        0.00 
0.002        0.00 

 Total 0.62 0.24 0.03 0.10 0.00 0.00 0.00 1.00 

Table D.11a. Daily Data Event Distribution for Gage Pair 43 (POM). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 0.66 0.08      0.73 
0.200 0.06 0.05      0.11 
0.100 0.02 0.03 0.03 0.02    0.09 
0.040    0.03    0.03 
0.020 0.02       0.02 
0.010        0.00 
0.002      0.02  0.02 

 Total 0.75 0.16 0.03 0.05 0.00 0.02 0.00 1.00 

Table D.11b. Daily Data Event Distribution for Gage Pair 43 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 0.67 0.08 0.02 0.03    0.80 
0.200 0.03 0.05      0.08 
0.100  0.03 0.02 0.02    0.06 
0.040    0.03    0.03 
0.020 0.02       0.02 
0.010        0.00 
0.002      0.02  0.02 

 Total 0.72 0.16 0.03 0.08 0.00 0.02 0.00 1.00 
 

Strategies for comparing the instantaneous and daily data distributions for Gage Pair 43 include: 
1) examine the marginal distributions in the respective “total” columns and rows and 2) compare 
the total portion of the events located on the diagonal, which would indicate comparable 
representations of correlation.  For example, in Table D.10a (instantaneous), 87 percent of the 
observations are on the diagonal while in Table D.11a (daily) 77 percent are on the diagonal.  
Qualitatively, both comparative methods indicate that the two sets of tables are “close.” 

Given that there are approximately twice the number of observations in the daily data for Gage 
Pair 43 and that instantaneous data are limited for other gage pairs it can neither be definitively 
concluded that the daily data and instantaneous data carry similar statistical properties nor that 
they do not.  Since analysis is not feasible with instantaneous data, daily data were used. 
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D.2.2 Daily Data Conditional Probability Matrices 
This section illustrates development of conditional probability matrices (CPMs) based on mean 
daily data from four prototype gage pairs (05, 06, 43, and 76).  Separate CPMs for the peak on 
main (POM) and peak on tributary (POT) cases are developed to capture the asymmetry (above 
the diagonal in one case, below the diagonal in the other case) represented by these two cases. 

The event counts were previously presented in Tables D.7 through D.9 for gage pairs 06, 43, 
and 76.  A fourth gage pair, 05, was added to this analysis to assess the CPMs for a gage pair 
where the correlation between the main and tributary flows is not statistically significant.  Tables 
D.12a and D.12b summarize the event counts for Gage Pair 05 for the POM and POT datasets, 
respectively.  Of the four prototype gage pairs only Gage Pair 05 shows substantial asymmetry. 

Table D.12a. Daily Data Pair Counts for Gage Pair 05 (POM). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 18       18 
0.200 6       6 
0.100 1       1 
0.040 1       1 
0.020        0 
0.010        0 
0.002 1       1 

 Total 27 0 0 0 0 0 0 27 

Table D.12b. Daily Data Pair Counts for Gage Pair 05 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Total 

Main 
Stream 

AEP 

0.500 16 8 2   1  27 
0.200        0 
0.100        0 
0.040        0 
0.020        0 
0.010        0 
0.002        0 

 Total 16 8 2 0 0 1 0 27 
 
CPMs for each gage are shown in Tables D.13 through D.16.  CPMs for the POM case were 
obtained by dividing the AEP pair count in each cell by the total pair count for the row.  CPMs 
for the POT case were obtained by dividing the AEP pair count in each cell by the total pair 
count for the column.  The approach described with the prototype gages was expanded to all 
gage pairs to develop recommended CPMs for ungaged watersheds.  See Section 5.2 in the 
main report for a summary of this development. 
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Table D.13a. CPM for Gage Pair 05 (POM). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 1.00       1.00 
0.200 1.00       1.00 
0.100 1.00       1.00 
0.040 1.00       1.00 
0.020        0.00 
0.010        0.00 
0.002 1.00       1.00 

Table D.13b. CPM for Gage Pair 05 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 1.00 1.00 1.00   1.00   
0.200         
0.100         
0.040         
0.020         
0.010         
0.002         

 Sum 1.00 1.00 1.00 0.00 0.00 1.00 0.00  

Table D.14a. CPM for Gage Pair 06 (POM). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.88 0.09 0.03     1.00 
0.200 0.50 0.33 0.17     1.00 
0.100   0.50 0.50    1.00 
0.040 1.00       1.00 
0.020        0.00 
0.010        0.00 
0.002        0.00 

Table D.14b. CPM for Gage Pair 06 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 1.00 0.78 0.33 0.00     
0.200  0.22 0.33 0.00  1.00   
0.100   0.33 1.00     
0.040         
0.020         
0.010         
0.002         

 Sum 1.00 1.00 1.00 1.00 0.00 1.00 0.00  
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Table D.15a. CPM for Gage Pair 43 (POM). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.89 0.11      1.00 
0.200 0.57 0.43      1.00 
0.100 0.17 0.33 0.33 0.17    1.00 
0.040    1.00    1.00 
0.020 1.00       1.00 
0.010        0.00 
0.002 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 

Table D.15b. CPM for Gage Pair 43 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 0.93 0.50 0.50 0.40     
0.200 0.04 0.30       
0.100  0.20 0.50 0.20     
0.040    0.40     
0.020 0.02        
0.010         
0.002      1.00   

 Sum 1.00 1.00 1.00 1.00 0.00 1.00 0.00  

Table D.16a. CPM for Gage Pair 76 (POM). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.90 0.10      1.00 
0.200 0.33 0.33 0.33     1.00 
0.100   1.00     1.00 
0.040     1.00   1.00 
0.020        0.00 
0.010 1.00       1.00 
0.002        0.00 

Table D.16b. CPM for Gage Pair 76 (POT). 
  Tributary Stream AEP  
  0.500 0.200 0.100 0.040 0.020 0.010 0.002  

Main 
Stream 

AEP 

0.500 0.95 0.40       
0.200 0.05 0.40 1.00      
0.100  0.20  1.00     
0.040     1.00    
0.020         
0.010         
0.002         

 Sum 1.00 1.00 1.00 1.00 1.00 0.00 0.00  
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E.1 Marginal Analysis 
In Section 2.2.5, it was concluded that marginal analysis does not provide a useful framework 
for addressing the joint probability question that is the subject of this research.  However, before 
drawing this conclusion, application of the method on several prototype watersheds was 
completed.  Because the method may have utility in other contexts, this work is summarized in 
this appendix.  The general procedure is as follows: 

1. Estimate applicable peak flow for each watershed independently. 

2. Estimate peak flow for the combined watershed. 

3. Determine the design iso-probability line. 

4. Determine the critical combination. 

Step 1. Estimate applicable peak flow for each watershed independently. 
For the selected prototype gage pair watersheds the USGS regression equations are applicable 
and applied.  For Gage Pair 06, the statewide equation for New Jersey applies: 

 4321 bbbb
T IStSaAQ =  (E.1) 

where, 
 QT = design flow for return period, T 
 A = drainage area, mi2 
 S = channel slope, ft/mi 
 St = storage area, percent 
 I = impervious cover, percent, Dlog039.0792.0D117.0I −=  
 D = population density, persons/mi2 
 
Gage Pair 43 is located in USGS Washington region 2 for which the following regression 
equation applies: 

 21 bb
T paAQ =  (E.2) 

where, 
 QT = design flow for return period, T 
 A = drainage area, mi2 
 p = mean annual precipitation, in 
 
Gage pair 76 is located in USGS Texas region 9 for which the following regression equation 
applies: 

 221 bbb
T SHSLaAQ =  (E.3) 

where, 
 QT = design flow for return period, T 
 A = drainage area, mi2 
 SL = stream slope, ft/mi 
 SH = basin shape factor, dimensionless 
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Tables E.1 through E.3 summarize the input variables and results for the main and tributary 
gages for the New Jersey, Washington, and Texas gage pairs, respectively.  

Step 2. Estimate peak flow for the combined watershed. 
Estimates of the peak flow quantiles for the combined watersheds use the same USGS 
regression equations applied for the main and tributary watersheds.  The applicable data and 
results are summarized in the previous tables E.1 through E.3. 

Table E.1. Gage Pair 06 (New Jersey) Regression Data and Results. 

 
Main 

01445500 
Tributary 
01446000 Combined 

Tributary 
Residual 

Main 
Residual 

Name 
Pequest 

River 
Beaver 
Brook    

A (mi2) 106 36.7 142.7   
S (ft/mi) 7.5 22.8 7.5   
St (%) 0 0 0   
D (p/mi2) 282 282 282   
I (%) 5.95 5.95 5.95   
Q2 (ft3/s) 2,728 1,401 3,554 826 2,153 
Q10 (ft3/s) 5,701 3,027 7,406 1,705 4,379 
Q25 (ft3/s) 7,512 4,074 9,701 2,189 5,627 
Q50 (ft3/s) 9,334 5,059 12,018 2,684 6,959 
Q100 (ft3/s) 11,637 6,374 14,938 3,301 8,563 

 

Table E.2. Gage Pair 43 (Washington) Regression Data and Results. 

  
Main 

12082500 
Tributary 
12083000 Combined 

Tributary 
Residual 

Main 
Residual 

Name 
Nisqually 

River 
Mineral 
Creek    

A (mi2) 133 70.3 203.3   
MAP (in) 94 98 95.4   
Q2 (ft3/s) 6,256 3,809 9,279 3,023 5,470 
Q10 (ft3/s) 11,269 6,918 16,666 5,396 9,748 
Q25 (ft3/s) 13,885 8,552 20,505 6,620 11,952 
Q50 (ft3/s) 16,380 10,111 24,176 7,796 14,066 
Q100 (ft3/s) 18,435 11,391 27,202 8,767 15,811 
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Table E.3. Gage Pair 76 (Texas) Regression Data and Results. 

  
Main 

08164450 
Tributary 
08164503 Combined 

Tributary 
Residual 

Main 
Residual 

Name 
Sandy 
Creek 

West 
Mustang 

Creek    
A (mi2) 289 178 467   
SL (ft/mi) 5.3 2.6 5.3   
L (mi) 45.07 43.38 45.07   
SH 7.03 10.6 4.3   
Q2 (ft3/s) 5,476 4,244 7,049 1,572 2,805 
Q10 (ft3/s) 16,639 8,179 27,043 10,404 18,864 
Q25 (ft3/s) 25,019 10,581 43,571 18,552 32,990 
Q50 (ft3/s) 32,672 12,547 59,668 26,996 47,121 
Q100 (ft3/s) 41,728 14,670 79,762 38,034 65,092 

 
Step 3. Determine the design iso-probability line. 
The combined watershed quantiles represent the exceedance probabilities at the confluence.  
The discharge at the confluence may occur based on numerous possibilities of contributing 
discharges from the main and tributary streams.  These combinations represent the iso-
probability line. 

For example, Table E.1 shows that the 100-year discharges for the main, tributary, and 
combined watersheds are 11,637 ft3/s, 6374 ft3/s, and 14938 ft3/s, respectively.  The column in 
the table labeled “tributary residual” represents the flow occurring in the tributary during a 100-yr 
flow at the confluence if the main is simultaneously experiencing a 100-yr event.  Similarly, the 
column labeled “main residual” represents the flow occurring in the main during a 100-yr event 
at the confluence if the tributary is simultaneously experiencing a 100-yr event.  The iso-
probability line is described by these two endpoints where 1) main flow = 11,637 ft3/s and 
tributary flow = 3301 ft3/s and 2) main flow = 8563 ft3/s and tributary flow = 6374 ft3/s.  This 100-
yr line is shown in Figure E.1.  The figure also shows the iso-probability line for the 2-, 10-, 25-, 
and 50-year return periods. 

Figures E.2 and E.3 illustrate the iso-probability lines for gage pairs 43 and 76, respectively. 

Step 4. Determine the critical combination. 
All combinations of events on an iso-probability line have the same exceedance probability.  
The critical combination is determined by modeling two or more of these events in the water 
surface profile model set up for the site.  At a minimum, the two endpoints of the iso-probability 
line would likely be assessed. 

For the 100-year event at gage pair 06, the iso-probability endpoints were previously identified 
as: 1) main flow = 11,637 ft3/s and tributary flow = 3301 ft3/s and 2) main flow = 8563 ft3/s and 
tributary flow = 6374 ft3/s.  Both result in a 100-year discharge at the confluence.  In case (1), 
the 100-year event on the main stream is combined with a discharge between the 10-year and 
25-year event (3301 ft3/s).  In case (2), the 100-year tributary event is combined with an event 
between the 25-yr and 50-yr event (8,563 ft3/s).  As can be seen from Figure E.1, discharges of 
10,000 ft3/s on the main and 5,000 ft3/s on the tributary also result in a 100-yr event at the 
confluence. 
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The critical combination, that is, the one producing the highest stage at the design location, is 
used for design.  This stage represents the 100-yr stage at the design location. 

Figure E.1. Iso-Probability Lines for Gage Pair 06 (New Jersey). 

Figure E.2. Iso-Probability Lines for Gage Pair 43 (Washington). 
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Figure E.3. Iso-Probability Lines for Gage Pair 76 (Texas). 

E.2 Tabular/Graphical 
Tabular and graphical presentations are not considered a distinct method, but rather an 
alternative means of presenting the joint probabilities and appropriate design events.  In Section 
2.2.7, Table 2.1 was provided as an example of a tabular method.  Figures E.4 and E.5 
represent graphical isolines for the 100:1 and 1:1 drainage area ratios from that table. 

Application of the tabular/graphical presentation is illustrated with three gage pairs for a 10-yr 
design event.  First, Gage Pair 08 has a drainage area ratio of approximately 1.0.  According to 
Figure E.5, a 10-yr event for this drainage area ratio is simulated by using 10-yr events on both 
the main and tributary streams.  This is equivalent to assuming perfect correlation between the 
two streams.  For Gage Pair 21, the drainage area ratio is approximately 100.  Consulting 
Figure E.4, a 10-yr event is simulated using any point on the 0.1 isoline.  A third example is 
based on gage pair 76, which has a drainage area ratio of 1.6.  Therefore, intermediate values 
between those shown in Figures E.4 and E.5 are appropriate. 
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Figure E.4. Iso-Probability Lines for Area Ratio 100:1. 

Figure E.5. Iso-Probability Lines for Area Ratio 1:1. 
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Appendix F. Data Analysis 
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This appendix includes supplemental information referenced in the main report. 

F.1 Prototype Watershed Data 
Summaries of the available prototype watershed flow data, event plots, and correlations are 
provided in this section. 

F.1.1 Watershed Summaries 
Data availability for the prototype gage pairs are summarized in Tables F.1 through F.6. 

Table F.1. Data Summary for Gage Pair 05 (New Jersey). 
Main (01403060) Tributary (01403150) Notes 

Area (mi2) 784 2 
Annual Duration 
Series 

WY 1882, 1896, 
1904-1909, 1936-
1939, 1942, 1945-

2006 (n=75) 

WY 1980-2006 
(n=27) 

Mean Daily 1904-1909, 1945-
2006 (n=68) 

1980-2006 (n=27) 

Instantaneous 1981-2006 (n=26) 1981-2006 (n=26) 15 min data 

Table F.2. Data Summary for Gage Pair 06 (New Jersey). 
Main 

(01445500) 
Tributary 

(01446000) Coincident1 Data Notes 
Area (mi2)/Tc (h) 106/15.1 36.7/5.5 
Annual Duration 
Series 

WY 1922-2006 
(n=85) 

WY 1923-2006 
(nic 1996-2002) 

(n=77) 

65% (n=50) 

Partial Duration 
Series 

WY 1922-1996 
(n=196 over 75 

yrs, 2.6/yr) 

WY 1923-1995 
(n=141 over 73 

yrs, 1.9/yr) 

36% (n=71) Some yrs in both 
gages only have 
annual peaks. 

Mean Daily 10/1/1921-
8/28/2007 

10/1/1922-
9/30/1961; 
6/7/2003-
8/28/2007 

Instantaneous 10/1/81-
9/30/2006 

6/7/2003-
9/30/2006 

15 min data 

1. Peak on tributary occurs within plus or minus 1 day of the peak on the main.

Table F.3. Data Summary for Gage Pair 08 (Maryland). 
Main (01590000) Tributary (01590500) Notes 

Area (mi2) 8.5 6.9 
Annual Duration 
Series 

WY 1932-1974 
(n=43) 

WY 1944-1990 nic 
1953-1964 (n=35) 

Mean Daily WY 1932-1974 
(n=43) 

WY 1943-1990 nic 
1953-1974 (n=26) 

Instantaneous None available 12/12/83 – 4/2/84 30 minute data 
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Table F.4. Data Summary for Gage Pair 21 (Michigan). 
 Main (04140500) Tributary (04141000) 
Area (mi2) 117 1.2 
Annual Duration 
Series 

WY 1951-2006 
(n=56) 

WY 1952-1987 
(n=36) 

Mean Daily WY 1951-1982 
(n=32) 

WY 1952-1978 
(n=27) 

Instantaneous None available None available 

Table F.5. Data Summary for Gage Pair 43 (Washington). 

 
Main 

(12082500) 
Tributary 

(12083000) Coincident1 Data Notes 
Area (mi2)/Tc (h) 133/3.8 70.3/3.0   
Annual Duration 
Series 

WY 1943-2006 
(n=64) 

WY 1943-2006 
(n=64) 

53% (n=34)  

Partial Duration 
Series 

WY 1943-1995 
(n=187 over 53 

yrs, 3.5/yr) 

WY 1943-1995 
(n=136 over 53 

yrs, 2.6/yr) 

56% (n=105)  

Mean Daily 6/1/1942-
8/28/2007 

6/1/1942-
3/31/2007 

  

Instantaneous 10/1/1987-
9/30/2006 

10/1/1987-
9/30/2006 

 15 min data 

1. Peak on tributary occurs within plus or minus 1 day of the peak on the main. 

Table F.6. Data Summary for Gage Pair 76 (Texas). 

 
Main 

(08164450) 
Tributary 

(08164503) Coincident1 Data Notes 
Area (mi2)/Tc (h) 289/25.6 178/32.6   
Annual Duration 
Series 

WY 1978-2006 
(n=29) 

WY 1978-2006 
(n=29) 

45% (n=13)  

Partial Duration 
Series 

WY 1980-1995 
(nic 1992-1994) 
(n=26 over 13 

yrs, 2/yr) 

WY 1980-1995 
(nic 1992-1994) 
(n=13 over 13 

yrs, 1/yr) 

19% (n=5) Tributary does 
not appear to be 
a true PDS 
dataset. 

Mean Daily 10/1/1977-
8/28/2007 

10/1/1977-
8/28/2007 

  

Instantaneous 10/1/1997-
9/30/2005 

10/1/1991-
9/30/2005 

 
 

60 min data 
before 
9/11/1997; 15 
min data after 

1. Peak on tributary occurs within plus or minus 1 day of the peak on the main. 

F.1.2 Selected Events for Gage Pair 05 
In addition to those presented in the main report, selected flood event hydrographs for Gage 
Pair 05 are presented to provide illustration of potential issues with using daily data especially 
for the small tributary watershed in this gage pair.  Figures F.1a suggests that the daily and 
instantaneous peaks correspond to some degree, but the scale difference is the dominating 
feature of the hydrographs.  Figure F.1b expands the scale to better show the tributary 
hydrograph.  In this case, the daily value is much lower than the instantaneous peak because 
the hydrograph has a shorter duration as would be typical of the smaller drainage area and 
shorter time of concentration. 
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Figure F.1a. Gage Pair 05, October 1989 Event. 

Figure F.1b. Gage Pair 05, October 1989 Event (Expanded Scale). 
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Figure F.2 describes an event where the same storm may have caused the peaks at both 
gages, but the tributary peak is receding before the rising limb of the main stream hydrograph is 
established.  This event is an example where the daily average values completely miss the 
instantaneous peak for the tributary gage. 

Figure F.2. Gage Pair 05, May 1990 Event. 

Figure F.3a illustrates an earlier response for the tributary compared with the main for an 
October 2005 event.  It shows that the daily flows are not highly representative of the 
instantaneous flows for the tributary gage in absolute terms. 

However, the primary interest is how daily flows represent instantaneous flows in terms of their 
statistical nature.  For example, the instantaneous and daily average peaks for the main shown 
in Figure F.3a both represent flows within the 0.5 to 0.1 exceedance probability quantile bins.  
The instantaneous and daily average peaks for the tributary are shown in Figure F.3b.  Although 
the former falls within the 0.1 to 0.04-quantile bin, the daily average peak provides some 
evidence of an elevated condition.  Its value falls within the 0.5 to 0.1-quantile bin.  As expected 
for the smaller watershed, there is a loss of information, but not a total loss. 

F.1.3 Instantaneous Peaks and Mean Daily Flows 
Because of the wide availability of high quality mean daily flow data desirable for this research, 
it was important to determine whether mean daily data could reasonably be used as an 
alternative to instantaneous data.  Some of the analyses supporting the conclusion that the use 
of mean daily data would allow the research to meet its goals are described in this section. 

F.1.3.1 Correlation Plots for Instantaneous Peaks and Mean Daily Flows 
The correlations between instantaneous and mean daily flow peaks are shown in Figures F.4 
through F.15. 
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Figure F.3a. Gage Pair 05, October 2005 Event. 

Figure F.3b. Gage Pair 05, October 2005 Event (Expanded Scale). 
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Figure F.4. Daily and Instantaneous Peaks for Gage Pair 05 (POM). 

Figure F.5. Daily and Instantaneous Peaks for Gage Pair 05 (POT). 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 20,000 40,000 60,000 80,000 100,000

Instantaneous Peak Flow (cfs)

D
ai

ly
 P

ea
k 

Fl
ow

 (c
fs

)

0

50

100

150

200

250

300

350

0 500 1,000 1,500 2,000

Instantaneous Peak Flow (cfs)

D
ai

ly
 P

ea
k 

Fl
ow

 (c
fs

)

 F-6 



Figure F.6. Daily and Instantaneous Peaks for Gage Pair 06 (POM). 

Figure F.7. Daily and Instantaneous Peaks for Gage Pair 06 (POT). 
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Figure F.8. Daily and Instantaneous Peaks for Gage Pair 08 (POM). 

Figure F.9. Daily and Instantaneous Peaks for Gage Pair 08 (POT). 
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Figure F.10. Daily and Instantaneous Peaks for Gage Pair 21 (POM). 

Figure F.11. Daily and Instantaneous Peaks for Gage Pair 21 (POT). 
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Figure F.12. Daily and Instantaneous Peaks for Gage Pair 43 (POM). 

Figure F.13. Daily and Instantaneous Peaks for Gage Pair 43 (POT). 
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Figure F.14. Daily and Instantaneous Peaks for Gage Pair 76 (POM). 

Figure F.15. Daily and Instantaneous Peaks for Gage Pair 76 (POT). 
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F.1.3.2 Small Watersheds 
As described in Section 3.1.3 of the main report, there was particular concern that using daily 
data rather than instantaneous data would affect small watersheds (drainage area less than 6.5  
mi2).  Seven gage pairs include a tributary watershed meeting this definition of small: GP02, 
GP03, GP05, GP11, GP21, GP33, and GP44.  This represents less than 10 percent of the gage 
pairs in the 85 gage pair database. 

The research team estimated Pearson’s ρ and Kendall’s τ for each gage pair used in the 
analyses for both the Peak on Main (POM) and Peak on Tributary (POT) dataset along with the 
corresponding p-values.  If the use of daily data obscured a correlative relation between the two 
gages in a pair, one might expect that the p-value would show that the estimated correlations 
are not significant.  A summary of the number of pairs with p-values greater than 0.05 (not 
significant) is provided in Table F.7.  Depending on the dataset and parameter either 2 or 3 of 
the 7 gage pairs with a tributary area less than 6.5 mi2 resulted in correlation parameters that 
were not significantly different from zero at the 5 percent significance level.  In contrast, 
between 1 and 5 gage pairs with a larger tributary area were not statistically significant out of 
the remaining 78 gage pairs. 

Table F.7. Summary of Gage Pairs with p-value > 0.05. 

Dataset Parameter 
AT < 6.5 mi2 
(Gage Pairs) 

AT > 6.5 mi2 
(Gage Pairs) Total 

POM 

Pearson’s ρ 3 
(05,11,33) 

5 
(12,16,35,38,80) 

8 

Kendall’s τ 2 
(05,11) 

3 
(16,35,80) 

5 

POT 
Pearson’s ρ 2 

(05,21) 
2 

(66,84) 
4 

Kendall’s τ 2 
(05,21) 

1 
(66) 

3 

 

Five of the seven gage pairs with small tributary watersheds have an area ratio, RA, greater than 
7 and a total watershed area, ATOT, greater than 350 mi2.  According to the groupings discussed 
in Section 4.2.4 of the main report, these five gage pairs are a subset of the 19 gage pairs with 
these area ratio and total area characteristics.  An analysis was conducted to determine if use of 
daily data obscured correlative relations among gage pairs to such a degree that one can say 
the 5 gage pairs with small tributary watersheds represent a different population than the 14 
gage pairs with large tributary watersheds.  The other three groupings could not be examined 
because there was an insufficient number of gage pairs with small watersheds in each of these 
groups to produce meaningful results. 

Results of the t-test for significance on area ratio, total area, Pearson’s ρ, and Kendall’s τ are 
summarized in Table F.8.  At a five percent level of significance, the values of Pearson’s ρ and 
Kendall’s τ in the two groups (AT < 6.5 mi2 and AT > 6.5 mi2) are considered to be from different 
populations.  One might conclude that the use of daily values resulted in these pairs appearing 
to be from different populations when they should not be, especially, since the area ratios for the 
two groups are not considered to be from different populations statistically.  However, the total 
area measurements from the two groups are considered to be from different populations.  
Therefore, the question becomes are the correlation parameters statistically different because of 
the use of daily data, because the total areas are different, or for some other reason? 
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Table F.8. t-statistic; POM Dataset (RA > 7 & ATOT > 350 mi2). 

Parameter t 
t’ (at 5% 

significance) 
Significant 
(Yes or No) 

Area Ratio 1.53 1.92 No 
Total Area 1.81 1.73 Yes 

Pearson’s ρ 2.99 1.95 Yes 
Kendall’s τ 2.07 1.87 Yes 

 

To answer this question, the gage pairs with p-values for the correlation estimates greater than 
0.05 were dropped and the data reanalyzed.  Of the 19 gage pairs, 6 estimates of Pearson’s ρ 
have associated p-values greater than 0.05.  Of those, 3 gage pairs have a small tributary 
watershed and 3 gage pairs have a large tributary watershed.  Similarly, of the 19 gage pairs, 5 
estimates of Kendall’s τ have associated p-values greater than 0.05.  Of those, two gage pairs 
have a small tributary watershed and three gage pairs have a larger tributary watershed. 

The results of the t-tests with the reduced dataset are summarized in Table F.9.  With gage 
pairs where the p-value is greater than 0.05 removed, the conclusion is that the two groups are 
not from different populations.  The only contrary indication is for total area as it relates to 
Pearson’s ρ.  The results in Table F.9 compared with the results in Table F.8 suggest that the 
use of daily data may have hindered the estimation of a statistically significant correlation 
parameter (ρ or τ), but the gage pairs with the small tributary watersheds can be said to be from 
the same population as those with the larger tributary watersheds. 

Table F.9. t-statistic; POM Dataset (RA > 7 & ATOT > 350 mi2); p-value < 0.05. 

Assessment Parameter t 
t’ (at 5% 

significance) 
Significant 
(Yes or No) 

p-value < 0.05 for 
Pearson’s ρ (n=13) 

Area Ratio 0.54 1.81 No 
Total Area 2.71 1.81 Yes 

Pearson’s ρ 1.60 2.10 No 

p-value < 0.05 for  
Kendall’s τ (n=14) 

Area Ratio 0.70 2.22 No 
Total Area 1.29 1.81 No 
Kendall’s τ 1.89 1.96 No 

 

The POT dataset was examined in the same way.  The resulting t-tests are summarized in 
Table F.10.  For these data, the correlation parameter (ρ and τ) does not appear to be from 
different populations suggesting that the use of daily data did not introduce misleading data.  
Further analysis of these data after deleting gage pairs with a p-value greater than 0.05 was not 
pursued because only one gage pair of the 19 met that criterion (GP05). 

Table F.10. t-statistic; POT Dataset (RA > 7 & ATOT > 350 mi2). 

Parameter t 
t’ (at 5% 

significance) 
Significant 
(Yes or No) 

Area Ratio 1.53 1.92 No 
Total Area 1.81 1.73 Yes 

Pearson’s ρ 1.75 1.89 No 
Kendall’s τ 0.78 2.07 No 
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F.2 Watershed Regulation 
As stated in Section 2.3 of the main report, the gage pairs for this research were selected to be 
free of watershed regulation as identified by the USGS in the peak flow gage records.  However, 
many watersheds are affected by regulation to some degree and it is of interest to know what 
limits there might be on the application of the methods recommended in this report when at 
least one of the watersheds in a pair is regulated.  Two assessments are proposed. 

The first level of assessment is for the designer to determine if it is appropriate to apply methods 
for estimating peak flow to a regulated watershed when those methods do not explicitly account 
for regulation.  That is, if the regulation is sufficiently small in relation to the scope of the 
watershed, the designer can estimate peak flows using the preferred methods for the site.  
Defining “sufficiently small” requires application of professional judgment on the part of the 
designer.  It follows that if the designer has determined that regulation on a pair of watersheds is 
sufficiently small that application of the same methodologies for estimating peak flows is 
acceptable, then the methods developed for this research are also considered valid. 

The second level of assessment is required when the designer determines that regulation 
invalidates flow estimation techniques that do not address regulation explicitly.  The literature is 
relatively quiet regarding the potential impact of regulation on watershed output.  Benson 
examined flood frequency curves from relatively wet New England states (Benson, 1963) and 
relative dry western states of Texas, New Mexico, and Colorado (Benson, 1964).  His threshold 
for a "significant" impact was a ten percent reduction in annual peak flows.  (This would 
correspond to about a ten-percent reduction in the flood frequency curve).  Benson reported that 
for watersheds in relatively wet regions, useable storage of 100 ac-ft/mi2 was sufficient to cause 
the threshold impact in the annual peak series.  For dryer climates, useable storage of 50 ac-
ft/mi2 was similarly sufficient to cause the threshold impact in the annual peak flow series. 

Asquith (2002) examined the impact of regulation on Texas watersheds as measured in the 
peak discharge L-moments.  He used maximum capacity, normal capacity, surface area, and 
the difference between maximum and normal reservoir storage as predictor variables in his 
research.  His conclusion was that "regulation" is a complex interaction of watershed 
characteristics and that the impact is most apparent in the L-mean statistic.  The remaining L-
moments, L-CV and L-skew, might be affected, but no statistically significant effect was 
measured. 

Asquith (2002) noted that the U.S. Geological Survey (USGS) standard practice is to consider 
"regulated" watersheds to be those in which at least ten percent of drainage area is affected by 
storage. Although his comments pertained to the Texas Water Science Center, this definition is 
generally used nationwide. 

A set of watershed pairs was selected to test whether the impact of reservoirs on the resulting 
correlation between peak discharges from confluent watersheds could be observed, and if so, 
what implications might there be for applying the methods developed from this research.   Four 
gage pairs were identified; one from the original database retrieved for this study (GP07) and 
three identified from the work of Asquith (2002).  Watershed characteristics from these gage 
pairs are listed in Table F.11.  These gage pairs are intended to inform the issue and are not 
considered statistically representative.  The analysis performed here may suggest a more 
comprehensive analysis based on a larger and more representative dataset. 

The objective was to determine if there is a measurable difference in the correlation parameter 
(Pearson’s ρ and Kendall’s τ) caused by regulation.  The gage pairs in Table F.11 were 
assessed to identify the cause, period, and degree of regulation within the pair.  An unregulated 
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period for the gage pair was identified as well as one or more regulated periods.  A summary of 
these characteristics is provided in Table F.12. 

Table F.11. Regulated Gage Pair Watershed Characteristics. 
Characteristic Pair 07 Pair R2 Pair R5 Pair R6 

Main watershed     
Gage ID 01536500 07346000 08172000 08104700 
Area (sq mi) 9,600 850 838 248 
State PA TX TX TX 
Tributary watershed     
Gage ID 01537500 07346070 08173000 08104900 
Area (sq mi) 15.7 675 309 138 
State PA TX TX TX 
Joint Characteristics     
Total area (sq mi) 9976 1525 1147 386 
Drainage area ratio 634 1.3 2.7 1.8 

Table F.12. Regulation Characteristics. 

Characteristic 
Pair 07 
(1950) 

Pair 07 
(1979) Pair R2 Pair R5 Pair R6 

Regulated Gage 01536500 01536500 07346000 08173000 08104700 
Main or Tributary? Main Main Main Tributary Main 
Unregulated Period of Record 
(Water years) 

1941-1949 1941-1949 1947-1957 1940-1963 1969-1979 

Regulated Period of Record 
(Water years) 

1950-1978 1979-1990 1958-1959, 
1980-2009 

1964-1983 1980-2009 

Number of Unregulated Years 9 9 11 24 11 
Number of Regulated Years 29 12 32 20 30 
Regulation Source 4 flood 

control 
reservoirs 

9 flood 
control 

reservoirs 

1 flood 
control 

reservoir 

27 flood 
retarding 
structures 

1 multi-
purpose 
reservoir 

Percent of Watershed Affected 
by Regulation 

4 12 100 39 99 

Unit Storage (ac-ft/mi2) 25 69 2052 225 804 
 

Reservoirs were put into service at various times for Gage Pair 07.  To represent this 
sequencing, two separate unregulated/regulated comparisons were determined.  The 
unregulated period is the same for both: 1941-1949.  In the first column for Gage Pair 07 the 
regulated period begins in 1950 based on the construction of 4 flood control reservoirs.  
Additional reservoirs were constructed later resulting in a second column for Gage Pair 07 with 
the regulated period beginning in 1979. 

For gage pair R5, both watersheds became regulated in 1984.  Therefore, 1964 to 1983, when 
only one watershed was regulated and the other was unregulated, was considered the 
regulated period.  Gage pairs R2 and R6 required no additional considerations and their 
characteristics are summarized in the table. 

Pearson’s ρ and Kendall’s τ were calculated for each unregulated and regulated period of 
record for both the peak on main (POM) and peak on tributary (POT) datasets.  The p-value, 
indicating whether the result should be considered significantly different from zero, was also 
calculated for each estimate of Pearson’s ρ and Kendall’s τ.  Elsewhere in this report, a p-value 

 F-15 



less than 0.05 has been considered to represent a significant result; that criterion is also applied 
here.  Summaries of the computations are presented in Tables F.13a, F.13b, F.14a, and F.14b. 

Table F.13a. Unregulated/Regulated Pearson’s ρ (POM) 

  
GP07 
(1950) 

GP07 
(1979) GPR2 GPR5 GPR6 

Pearson's ρ Unregulated 0.75 0.75 0.78 0.19 0.88 
Regulated 0.26 0.40 0.91 0.60 0.43 

p-value Unregulated 0.020 0.020 0.004 0.371 0.000 
Regulated 0.175 0.202 0.000 0.006 0.151 

Regulated-Unregulated ρ -0.49 -0.35 0.12 0.40 -0.45 

Table F.13b. Unregulated/Regulated Pearson’s ρ (POT) 

 
 

GP07 
(1950) 

GP07 
(1979) GPR2 GPR5 GPR6 

Pearson's ρ Unregulated -0.55 -0.55 0.80 0.72 0.76 
Regulated 0.39 0.57 0.38 0.74 0.39 

p-value Unregulated 0.122 0.122 0.003 0.000 0.007 
Regulated 0.039 0.050 0.030 0.000 0.032 

Regulated-Unregulated ρ 0.94 1.12 -0.42 0.02 -0.37 

Table F.14a. Unregulated/Regulated Kendall’s τ (POM) 

 
 

GP07 
(1950) 

GP07 
(1979) GPR2 GPR5 GPR6 

Kendall's τ Unregulated 0.63 0.63 0.53 0.25 0.67 
Regulated 0.42 0.47 0.13 0.64 0.21 

p-value Unregulated 0.020 0.020 0.026 0.087 0.003 
Regulated 0.001 0.033 0.284 0.000 0.101 

Regulated-Unregulated τ -0.21 -0.16 -0.39 0.39 -0.46 

Table F.14b. Unregulated/Regulated Kendall’s τ (POM) 

 
 

GP07 
(1950) 

GP07 
(1979) GPR2 GPR5 GPR6 

Kendall's τ Unregulated -0.56 -0.56 0.75 0.67 0.67 
Regulated 0.26 0.21 0.16 0.60 0.19 

p-value Unregulated 0.045 0.045 0.001 0.000 0.003 
Regulated 0.045 0.381 0.200 0.000 0.143 

Regulated-Unregulated τ 0.82 0.77 -0.59 -0.07 -0.48 
 
The difference between the unregulated and regulated correlation parameter is included in each 
table.  It was hypothesized that correlation between coincident watersheds is reduced with 
regulation because regulation attenuates peak flows.  The presence of reservoirs on one 
watershed appears to interrupt the arrival of peak discharges at the confluence.  For Pearson’s 
ρ for the POM datasets (Table F.13a) 3 of the 5 cases show a decrease in Pearson’s ρ in the 
regulated period of record compared to the unregulated period of record.  For Pearson’s ρ for 
the POT dataset (Table F.13b), Kendall’s τ for the POM dataset (Table F.14a), and Kendall’s τ 
for the POT dataset (Table F.14b), 2, 4, and 3, respectively, of the 5 cases show a decrease in 
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the correlation parameter.  In the aggregate, 12 of 20 cases show the hypothesized decrease in 
the correlation parameter. 

It is noted that gage pair 07 exhibits negative correlations for the unregulated period of record 
for the POT datasets (Tables F.13b and F.14b); negative correlation is not a reasonable result.  
For Pearson’s ρ (Table F.13.b), it statistically insignificant as determined by the high p-value.  
Eliminating these four cases from consideration means that in the aggregate 12 of 16 cases 
show a decrease in correlation with regulation. 

Because of the small sampling of regulated gage pairs in this analysis, few definitive 
conclusions can be drawn.  The short record lengths of many of the datasets (several were less 
than or equal to 12 years), the potential for outliers in the subdivided periods of record, and the 
questionable levels of significance  (p-values) for many of the computations all limit the 
prescriptive nature of the analysis. 

However, two observations are offered: 

1. Small levels of regulation might affect the estimated correlation.  For example, 
the Gage Pair 07 (1950) comparison includes regulation that affects only 4 
percent of the watershed with an average storage of 25 ac-ft/mi2.  Yet, the 
Kendall’s τ (Table F.14a) was reduced from 0.63 to 0.42. 

2. Regulation tends to reduce correlation.  Therefore, if the methods of this 
research are applied to a regulated watershed, the application is likely to be 
conservative. 

These observations are qualified by the small, non-representative set of data analyzed.  The 
dataset also has variations in drainage area ratio and total area that may affect statistical 
behavior.  In addition, Gage Pair R5 tends to show increased correlations with regulation.  
Possibly significant is that this gage pair includes a regulated tributary whereas the others 
include a regulated main stream. 

Given the dataset comprised only four gage pairs (five unregulated/regulated comparisons), the 
results should not be considered a statistical analysis.  However, the observations represent an 
initial review of a complex problem.  A complete analysis would require at least another dozen 
watershed pairs.   

If the standard protocol developed for this research were to be applied in the presence of 
regulation on one or both of the paired watersheds, then the greatest risk appears to be 
additional conservatism. That is, the presence of correlation between two watersheds will 
generally result in greater estimates of peak discharge for design. Therefore, the assumption of 
correlation when such correlation is not present should result in a conservative design (a 
somewhat larger structure), but should not result in a structure size that is insufficient to pass 
the required event at the selected risk level. 
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The purpose of this appendix is to provide guidelines for applying the methods developed from 
this research.  The designer is encouraged to review the main report to understand the 
foundation of the methods.   

Application of the methods is limited to watershed pairs satisfying three conditions: 1) neither 
watershed in the pair is substantially affected by regulation, 2) the sum of the watershed areas 
is less than 9,000 mi2, and 3) the drainage area of the smaller watershed of the pair exceeds 1 
mi2.  The watershed pairs used to develop the methods presented in this report satisfy these 
criteria. 

The preliminary steps in the application of joint probability methods are implemented prior to 
selecting a method.  They are:   

1. Specify the design objective. The designer might be interested in determining
tributary stage and/or velocity at the design location for a given annual
exceedance probability (AEP).  The desired design event or range of events is
specified by the designer.

2. Determine if the project site is within the influence reach.  If not, joint probability
design techniques are not required.

3. Select the joint probability method.

Application of each method is described in subsequent sections of this appendix.  Two methods 
are discussed: 1) a copula-based method and 2) the total probability method.  See Appendix F.2 
for a discussion of the implications of watershed regulation in the context of these methods. 

G.1 Specify the Design Condition 
The AEP and relevant design parameters are established.  The design AEP might range from 
0.1 to 0.002, corresponding to return periods from 10-yr to 500-yr.  The relevant design 
parameters might include water-surface elevation (stage) for evaluating flooding potential and 
structure freeboard or velocity for evaluating erosion and scour.  If both, the designer should 
recognize that different combinations of conditions on the two streams could be required.  The 
designer might also wish to examine a range of design conditions as part of a cost benefit 
analysis. 

G.2 Influence Reach Determination 
Joint probability design techniques are necessary only if the project site on the tributary stream 
is sufficiently close to the confluence with the main stream such that the backwater from the 
main stream influences stage and velocity at the project site.  (The converse of this is also true, 
but the following discussion is written assuming the project site is on the tributary.)  To assess 
the potential interaction of flow and stage at the site of interest, the designer creates a hydraulic 
model for the site using HEC-RAS or other appropriate tool and runs two scenarios.  Scenario A 
will use the design return period discharge on the tributary and the 2-yr return period discharge 
on the main stream.  Scenario B will also use the design return period discharge on the 
tributary, but will use the design return period discharge on the main stream.  Scenario B 
represents the conservative assumption that the two streams are completely dependent. 

If the stage at the project site is the same between the two scenarios, within some tolerance, 
then the project site is outside the influence reach; joint probability techniques are not 
necessary.  If the stage differs, the site is probably within the influence reach and one of the 
joint probability design procedures presented herein should be applied.  In some situations 
where the project site is sufficiently far from the confluence or the statistical dependence 
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between the two watersheds is weak, application of a joint probability design procedure may 
ultimately show that the project site is not within the influence reach even though the initial 
assessment indicated that it was so located. 

The professional engineer must define the acceptable tolerance on a case-by-case basis.  If, for 
example, the purpose of the analysis is to redefine a FEMA floodplain, then a very small 
tolerance is appropriate.  If the purpose is documentation of a hydraulics and scour analysis for 
a bridge with no encroachment and generous freeboard a higher tolerance is likely to be 
acceptable.  Ambiguity favors selection of a small tolerance. 

G.3 Select Joint Probability Method 
Two methods were developed for use: 1) the copula-based method, and 2) the total probability 
method.  Choice of the most appropriate method is dependent on the designer’s goals, skills, 
experience, and preference.  Both methods require the setup and calibration of a HEC-RAS (or 
other hydraulic model) to produce stage and velocity conditions for the analysis and design. 

The copula-based method is a new method that allows for direct estimation of combinations of 
design discharges for a given exceedance probability, which are evaluated through a series of 
applications of a hydraulic model to determine the critical combination.  Application of the copula 
method is described in Section G.4. 

The total probability method (TPM) is well established, however development of conditional 
probability relations is a challenge for ungaged watersheds.  One of the products of this 
research is a series of conditional probability matrices to meet that challenge.  A stage-
probability relation that conveniently facilitates comparison of a range of alternatives and events 
and requires several iterations of the hydraulic model is produced by application of the total 
probability method.  Application is described in Section G.5. 

 If a designer needs to examine a single exceedance probability, the copula method might be 
preferred because it can likely be implemented in less time.  If, however, the designer wishes to 
analyze a range of exceedance probabilities for a cost-benefit analysis of design alternatives, 
for example, the TPM might be preferred.  It can be noted that a complete stage-frequency 
curve can also be generated using the copula method by repeating the copula method over a 
range of exceedance probabilities. 

An illustrative example of each method is provided along with the description of the required 
steps.  The sample watershed pair is described in Table G.1 and is gage pair 43 from the state 
of Washington.  Although gage information is available, those data are not used so that 
application of the technology to an ungaged watershed pair is demonstrated.  It is assumed that 
the design site is on the tributary stream: Mineral Creek. 

Table G.1. Example Watershed Pair Data 
Nisqually 

River 
Mineral 
Creek 

Gage ID 12082500 12083000 

A (mi2) 133 70.3 

PM (in) 94 98 
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G.4 Copula-Based Method 
If the copula-based method is selected, the design process continues with the following steps: 

1. Assess site-specific dependence (correlation) between hydrologic events
occurring on the main and tributary streams.

2. Determine possible AEP/return period combinations for the site for a selected
joint exceedance probability and dependence parameter.

3. Estimate the discharges for the identified combinations.

4. Analyze the hydraulics of the system using the discharge combinations to
determine the critical combination, that is, the one with the most severe
(conservative) conditions.  This result is the appropriate design condition.

G.4.1 Assess Site-Specific Dependence 
Kendall’s τ is used to quantify dependence between discharges from the two watersheds in the 
copula-based method.  Two methods were developed and are described in more detail in 
Chapter 4: regression equations and data groupings.  For the present discussion, the 
recommended data groupings method is illustrated. 

With the data groupings method, the estimate of Kendall’s τ depends on whether the drainage 
area ratio, RA, is greater than or less than 7 and whether the total area, ATOT, is greater than or 
less than 350 mi2.  It also depends on whether the best-fit or envelope estimates are appropriate 
for the design situation.  The estimates of τ for each of these conditions are summarized in 
Table G.2.  (Watershed pairs where RA > 7 and ATOT < 350 mi2 are treated with the group where 
RA < 7 and ATOT < 350 mi2.) 

Table G.2. Kendall’s τ Based on Grouping 

Method 
Drainage Area 

Ratio ATOT < 350 mi2 ATOT > 350 mi2 

Representative RA < 7 0.68 0.58 
RA > 7 - 0.45 

Envelope RA < 7 0.81 0.77 
RA > 7 - 0.57 

For the example, the representative method is selected.  With the drainage area ratio, RA, equal 
to 1.9 and ATOT equal to 203 mi2, Kendall’s τ is taken as 0.68.  (The estimated Kendall’s τ values 
from the gage data are 0.50 and 0.53 for the POM and POT datasets, respectively.) 

G.4.2 Determine Potential Combinations 
Potential combinations for the 10-, 25-, 50-, 100-, and 500-yr joint design frequency events are 
provided in Chapter 4 and are repeated here in Tables G.3 through G.7.  Within each table, the 
row labeled with the appropriate values of RA and ATOT for the project site contains combinations 
of events the designer might analyze with the hydraulic model to determine which is most critical 
for the design objective.  The column labeled “equal” represents the return period on both the 
main and tributary streams equivalent to the target joint return period.  All combinations in each 
row correspond to the joint return period given in the table title. 
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Table G.3. 10-yr Joint Return Periods (Groupings) 
Return Period on One 

Stream 
Kendall’s 

τ 1.25 2 5 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - 10 9 8 
RA < 7 ATOT > 350 mi2 0.59 - 10 9 7 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 10 9 7 6 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - 10 9 
RA < 7 ATOT > 350 mi2 0.77 - - 10 8 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - 10 8 7 

Table G.4. 25-yr Joint Return Periods (Groupings) 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - 25 24 19 
RA < 7 ATOT > 350 mi2 0.59 - 25 24 22 17 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 25 24 22 18 14 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - 25 22 
RA < 7 ATOT > 350 mi2 0.77 - - - 25 21 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 25 24 22 17 

Table G.5. 50-yr Joint Return Periods (Groupings) 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 25 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - - 50 48 38 
RA < 7 ATOT > 350 mi2 0.59 - 50 49 48 40 33 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 50 49 47 43 30 27 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - 50 43 
RA < 7 ATOT > 350 mi2 0.77 - - - 50 49 41 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - 50 49 48 40 33 
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Table G.6. 100-yr Joint Return Periods (Groupings) 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 25 50 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - - 100 98 92 75 
RA < 7 ATOT > 350 mi2 0.59 - - 100 98 94 80 67 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 100 99 96 92 80 58 54 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - - 100 99 86 
RA < 7 ATOT > 350 mi2 0.77 - - - 100 98 83 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - 100 99 98 93 79 66 

Table G.7. 500-yr Joint Return Periods (Groupings) 
Return Period on One Stream 

Kendall’s 
τ 1.25 2 5 10 25 50 100 Equal 

Representative 

RA < 7 ATOT < 350 mi2 0.68 - - - - 500 499 495 376 
RA < 7 ATOT > 350 mi2 0.59 - - 500 499 497 491 476 331 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.45 500 499 495 490 477 456 417 269 

Envelope 

RA < 7 ATOT < 350 mi2 0.81 - - - - - - 500 430 
RA < 7 ATOT > 350 mi2 0.77 - - - - - 500 499 414 
RA > 7 ATOT < 350 mi2 
RA > 7 ATOT > 350 mi2 0.57 - - 500 499 496 490 473 327 

For the example, the 50-yr joint design frequency event, and therefore Table G.5, is relevant. 
Within the table, the row labeled with the grouping for representative evaluation (and value of 
Kendall’s τ) contains combinations of events the designer should analyze with the hydraulic 
model to determine which is most critical for the design objective. 

The grouping is RA < 7 and ATOT < 350 mi2 (Kendall’s τ = 0.68) for the example.  By inspection of 
Table G.5, the following return period pairs are equivalent to the coincident 50-yr event (main 
stream return period, tributary return period): (10,50), (25,48), and (38,38).  A 10-yr event on the 
main stream combined with a 50-yr event on the tributary stream represents a 50-yr coincident 
event for this watershed pair, as does the simultaneous occurrence of 38-yr events.  The 
intermediate event also represents a coincident 50-yr event. 

The transpose pairings provide two additional events: (50,10) and (48,25).  Therefore, a 50-yr 
event on the main stream combined with a 10-yr event on the tributary also represents a 50-yr 
coincident event.  In total, five potential combinations are identified. 

Depending on the location of the site in the influence reach and the design objective, some 
combinations might be discarded before proceeding with the remainder of the analyses.  For 
example, if the site is close to the confluence of the two streams, the main stream is 
substantially larger than tributary, and stage is the design variable, the (10-yr, 50-yr) 
combination might be discarded as its use is unlikely to produce the highest stage. 
Combinations might also be discarded if they are not substantially different from other 
combinations. 
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G.4.3 Estimate Discharges 
The designer determines the discharges corresponding to the potential combination return 
periods using any appropriate method for the watersheds.  Because the set of potential 
combinations will likely include return periods not generally estimated using standard methods, 
interpolation will be necessary for some return periods.  Regression equations, and other 
methods, do not always produce “well-behaved” flood frequency curves.  For this reason, it is 
recommended that the designer plot the estimated discharges prior to interpolating at the 
required exceedance probabilities. 

In the illustrative example based on the Nisqually River and Mineral Creek, United States 
Geological Survey (USGS) regression equations are applied (Sumioka, et al., 1998).  The 
watershed pair is located in USGS region 2 for which the following regression equation applies: 

21 b
M

b
T PaAQ = (G.1) 

where, 
QT = design flow for return period, T, ft3/s 
A = drainage area, mi2 
PM = mean annual precipitation, in 
a,b1,b2 = regression constants (See Table G.8) 

The input variables for the main and tributary watersheds were listed in Table G.1.  The typical 
return period estimates of discharge are summarized in Table G.8.  The discharge estimates 
resulting from application of Equation G.1 are displayed in Figure G.1.  Discharges for return 
periods not shown in Table G.8 can be interpolated graphically from Figure G.1 or estimated 
algebraically. 

Table G.8. Example Regression Discharge Results 

Return Period 

Regression Constants Discharge (ft3/s) 

a b1 b2 
Nisqually 

River 
Mineral 
Creek 

2 0.817 0.877 1.02 6,260 3,810 

10 0.845 0.875 1.14 11,300 6,920 

25 0.912 0.874 1.17 13,900 8,550 

50 0.808 0.872 1.23 16,400 10,100 

100 0.801 0.871 1.26 18,400 11,400 

The 1.25-yr return period discharge can be calculated by extrapolating from the 2-yr and 10-yr 
discharges as follows: 

102 Qlog292.0Qlog292.1
25.1 10Q −=  (G.2)
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where, 
Q1.25 =  1.25-yr discharge, ft3/s 
Q2 =  2-yr discharge, ft3/s 
Q10 =  10-yr discharge, ft3/s 

Other discharges between values summarized in Table G.8 may be interpolated in log-space 
using Equations G.3 and G.4. 

( ) LLH
LH

Lx
x QlogQlogQlog

TlogTlog
TlogTlogQlog +−

−
−

=  (G.3)

xQlog
x 10Q = (G.4) 

where, 
Qx = Discharge at return period x, ft3/s 
QH = Known discharge at return period higher than x, ft3/s 
QL = Known discharge at return period lower than x, ft3/s 
Tx = Return period of interest, years 
TH = Return period of QH, years 
TL = Return period of QL, years 

Figure G.1. Watershed Pair Discharge versus Return Period 

For example, the discharge corresponding to a 38-yr return period for the Nisqually River is 
calculated as follows.  The resulting discharge is rounded to three significant figures to be 
consistent with the values in Table G.8. 
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( ) )900,13log()900,13log()400,16log(
)25log()50log(
)25log()38log(Qlog x +−

−
−

=

( ) 186.4143.4)143.4215.4
398.1699.1
398.1580.1Qlog x =+−

−
−

=

300,15346,151010Q 186.4Qlog
x

x ====

Discharges for the combinations identified previously are graphically or algebraically 
interpolated and summarized in Table G.9.  Each of the combinations in the table represents a 
joint exceedance probability of 0.02 or the joint 50-yr return period event for the discharges. 

Table G.9. Potential Combination Discharges 

Combination 

Nisqually River 
Return Period 

(yrs) 

Mineral Creek 
Return Period 

(yrs) 
Nisqually River 
Discharge (ft3/s) 

Mineral Creek 
Discharge (ft3/s) 

1 10 50 11,300 10,100 
2 25 48 13,900 10,000 
3 38 38 15,300 9,420 
4 48 25 16,200 8,550 
5 50 10 16,400 6,920 

G.4.4 Analyze Combinations 
After development of discharge pairs for the potential combinations, a hydraulic model such as 
HEC-RAS is applied to site conditions using those discharge combinations.  The initial data 
collection, setup, and calibration of HEC-RAS are completed.  Then, in the case of this example, 
the five combinations in Table G.9 are executed changing only the main and tributary 
discharges.  Although HEC-RAS was not executed for this example, the hypothetical results in 
Table G.10 illustrate the process. 

Table G.10. Hypothetical Stage and Velocity at the Example Project Site 
Combination Stage (ft) Velocity (ft/s) 

1 28.7 14.2 
2 29.6 11.1 
3 30.2 10.2 
4 30.4 9.5 
5 29.8 11.7 

Depending on the design objective (stage or velocity) and site location within the influence 
reach, one of the combinations will yield the extreme condition for that design objective.  In this 
example, combination 4 results in the highest stage; 30.4 ft is the 50-yr water surface elevation 
at the site.  Similarly, combination 1 yields the highest velocity; 14.2 ft/s is the 50-yr velocity. 

Results from different combinations are not combined.  If the design objective is most 
concerned about stage, the maximum stage is used.  If the design objective is most concerned 
about velocity, the maximum velocity is used.  For scour analyses, which depend on both stage 
and velocity, scour computations using each combination are completed, and the maximum 
scour is used.  The extreme condition for the appropriate design objective is considered the 
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design condition corresponding to that return period.  As in this example, a different combination 
might be the design condition for stage and velocity. 

The designer might analyze all combinations identified in the previous step.  However, 
inspection of the combinations might reveal that some combinations will result in computations 
that do not differ substantially from another and can be dropped from consideration.  Similarly, 
the location of the design site within the influence reach might be such that certain combinations 
will not require analysis to determine the critical combination and the design event.  If there is 
uncertainty as to which combinations, all combinations should be tested. 

G.4.5 Combination Development Using Alternative Method 
The designer might choose to use the regression equations rather than the data groupings to 
estimate Kendall’s τ and to subsequently develop the alternative combinations.  The same 
example is used to illustrate the process. 

G.4.5.1 Assess Site-Specific Dependence 
Best-fit equations were developed using the least-squares method for determining equation 
parameters.  The envelope equations were developed to cover (envelope) 90 percent of the 
data in the fitting process.  Therefore, the envelope equations provide a more conservative 
estimate of the correlation between discharges of the confluent watersheds.  An equation 
selection matrix is provided in Table G.11. 

Table G.11. Kendall’s τ Equation Selection Matrix 
  Group 1. Smaller 

watershed less than or 
equal to 400 mi2. 

Group 2. Smaller 
watershed greater than 

400 mi2. 
Best-fit POM Eq. 4.3 Eq. 4.7 
Best-fit POT Eq. 4.4 Eq. 4.8 
Envelope POM Eq. 4.11 Eq. 4.15 
Envelope POT Eq. 4.12 Eq. 4.16 

 
The equations and their limitations are repeated here.  Chapter 4 in the main report may be 
consulted for more information.  The equations for Group 1 are presented first followed by the 
equations for Group 2. 

For Kendall’s τ, the POM analysis resulted in the best-fit equation of: 

 ( ) 15.0
AR69.0 −=τ    (Equation 4.3) 

where, 
 τ = Kendall’s τ, dimensionless 
 
The best-fit equation for estimating Kendall’s τ for the POT case is: 

 ( ) 11.0
AR66.0 −=τ    (Equation 4.4) 

 
When applying Equations 4.3 and 4.4, the mainstream drainage area should be adjusted to 
2,000 square miles if it exceeds that value before the area ratio is computed.  If RA is estimated 
to be greater than 400, then 400 should be used in the equations.  
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The database used for this study did not include data pairs where the smaller watershed 
drainage area was less than one square mile.  Therefore, the results of this research may not 
apply for watershed pairs with this characteristic.  However, a professional engineer must 
exercise judgment on a site-specific basis to determine if Equations 4.3 and 4.4 are appropriate 
or if better design alternatives exist.  

For Group 2, the best-fit equation for estimating Kendall’s τ for the POM dataset is: 

( ) 76.0
MP035.0=τ  (Equation 4.7) 

For the POT dataset, the best-fit equation for Kendall’s τ is: 

( ) 46.0
MP12.0=τ   (Equation 4.8) 

Equations 4.7 and 4.8 are limited to a range of PM between 15 and 52 inches.  If PM is estimated 
to be greater than 52 inches, then 52 should be used in the equation.  If PM is estimated to be 
less than 15 inches, then 15 should be used. 

In addition to the best-fit equations, envelope equations were also developed.  The envelope 
equations provide a design option where the designer could be confident that the correlation 
would not be underestimated.   

Group 1, Kendall’s τ, POM: 

( ) 23.0R69.0 15.0
A +=τ −   (Equation 4.11) 

Group 1, Kendall’s τ, POT: 

( ) 23.0R66.0 11.0
A +=τ −   (Equation 4.12) 

Group 2, Kendall’s τ, POM: 

( ) 21.0P035.0 76.0
M +=τ   (Equation 4.15) 

Group 2, Kendall’s τ, POT: 

( ) 09.0P12.0 46.0
M +=τ   (Equation 4.16) 

If the design site is more likely to be influenced by the main stream because it is closer to the 
main stream than the upstream end of the influence reach, then use of the Peaks on Main 
(POM) equations might be justified.  If the converse is true, the Peaks on Tributary (POT) 
equations might be justified.  If the designer is not confident which (POM or POT) is applicable, 
then both should be used and the maximum value selected for the design. 

The computed value of τ should be rounded to the nearest tenth.  The value of τ is limited to a 
maximum value of 0.9, which indicates substantial dependence between the two watersheds; a 
value of 0.2 is the practical minimum value. 

For the example, the best-fit equations are selected.  With the drainage area ratio, RA, equal to 
1.9, Equations 4.3 and 4.4 are applied as follows: 

( ) ( ) 63.09.169.0R69.0 15.015.0
A ===τ −−   (Equation 4.3) 

( ) ( ) 62.09.166.0R66.0 11.011.0
A ===τ −−   (Equation 4.4) 
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In this example, the Kendall’s τ value is nearly identical for the POM and POT cases.  It is 
rounded to the nearest tenth resulting in an estimate of 0.6. 

G.4.5.2 Determine Potential Combinations 
Potential combinations for the 10-, 25-, 50-, 100-, and 500-yr joint design frequency events are 
provided in Section 4.3 and are repeated here as Tables G.12 through G.16.  Within each table, 
the row labeled with the value of Kendall’s τ for the project site contains combinations of events 
the designer may analyze with a hydraulic model to determine which is most critical for the 
design objective.  The column labeled “equal” represents the return period on both the main 
stream and tributary that is equivalent to the joint return period. 

Table G.12. 10-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 Equal 
0.2 9 7 3 4 
0.3 10 8 5 5 
0.4 - 9 6 6 
0.5 - 10 8 6 
0.6 - - 9 7 
0.7 - - 10 8 
0.8 - - - 9 
0.9 - - - 9 

Table G.13. 25-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 Equal 
0.2 23 20 13 7 8 
0.3 24 22 17 11 11 
0.4 25 24 21 16 13 
0.5 - 25 23 20 15 
0.6 - - 24 22 17 
0.7 - - 25 24 19 
0.8 - - - 25 21 
0.9 - - - - 23 

Table G.14. 50-yr Joint Return Periods 
 Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 25 Equal 
0.2 47 41 30 21 7 15 
0.3 49 46 39 31 15 20 
0.4 50 49 45 40 25 25 
0.5 - 50 48 45 34 30 
0.6 - - 50 48 42 34 
0.7 - - - 50 47 39 
0.8 - - - - 49 43 
0.9 - - - - 50 46 
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Table G.15. 100-yr Joint Return Periods 
Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 25 50 Equal 
0.2 95 86 67 53 32 12 28 
0.3 98 94 84 74 54 28 39 
0.4 100 98 94 88 73 48 49 
0.5 - 100 98 95 87 68 59 
0.6 - - 100 99 95 83 68 
0.7 - - - 100 99 93 77 
0.8 - - - - 100 99 85 
0.9 - - - - - 100 93 

Table G.16. 500-yr Joint Return Periods 
Return Period on One Stream 

Kendall’s τ 1.25 2 5 10 25 50 100 Equal 
0.2 485 452 395 354 294 239 167 132 
0.3 496 486 462 439 398 353 286 189 
0.4 499 497 489 480 459 431 381 243 
0.5 - 500 498 496 488 474 445 293 
0.6 - - - 500 498 494 481 341 
0.7 - - - - 500 499 497 385 
0.8 - - - - - - 500 426 
0.9 - - - - - - 500 464 

For the example application, the table for the 50-yr joint design frequency event is required and 
Kendall’s τ is estimated to be 0.6.  By inspection of Table G.14, the following pairs of coincident 
events are equivalent to the coincident 50-yr event (main stream return period, tributary return 
period): (5,50), (10,48), (25,42), and (34,34).  A 5-yr event on the main stream combined with a 
50-yr event on the tributary represents a 50-yr coincident event for this watershed pair, as does 
the simultaneous occurrence of 34-yr events.  All of these combinations represent a coincident 
50-yr event. 

In addition, the transpose pairings provide three additional events: (50,5), (48,10), and (42,25). 
Therefore, a 50-yr event on the main stream combined with a 5-yr event on the tributary 
represents a 50-yr coincident event.  In total, seven potential combinations are identified. 

Depending on the location of the site in the influence reach and the design objective, some 
combinations might be discarded at this point.  For example, if the site is close to the confluence 
of the two streams, the main stream is substantially larger than tributary, and stage is the design 
variable, the (5,50) combination may be discarded as its use is unlikely to produce the highest 
stage.  Combinations may also be discarded if they are not substantially different from other 
combinations. 

G.4.5.3 Estimate Discharges 
The designer determines the discharges corresponding to the potential combination return 
periods using any appropriate method for the watersheds.  Because the set of potential 
combinations will likely include return periods not generally estimated using standard methods, 
interpolation will be necessary for some return periods.  Regression equations, and other 
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methods, do not always produce “well-behaved” flood frequency curves.  For this reason, it is 
recommended that the designer plot the estimated discharges prior to performing any 
interpolations. 

Flows are estimated using the information and techniques previously applied in Section G.4.3.  
The resulting combination discharges are summarized in Table G.17. 

Table G.17. Potential Combination Discharges for Alternative Method 

Combination 

Nisqually River 
Return Period 

(yrs) 

Mineral Creek 
Return Period 

(yrs) 
Nisqually River 
Discharge (ft3/s) 

Mineral Creek 
Discharge (ft3/s) 

1 5 50 8,760 10,100 
2 10 48 11,300 10,000 
3 25 42 13,900 9,680 
4 34 34 15,000 9,210 
5 42 25 15,700 8,550 
6 48 10 16,200 6,920 
7 50 5 16,400 5,350 

G.4.5.4 Analyze Combinations 
After development of discharge pairs for the potential combinations, a hydraulic model such as 
HEC-RAS is applied to site conditions using those discharge combinations.  The initial data 
collection, setup, and calibration of HEC-RAS are completed.  Then, in the case of this example, 
the seven combinations in Table G.17 are executed changing only the main and tributary 
discharges.  Although HEC-RAS was not executed for this example, the hypothetical results in 
Table G.18 illustrate the process. 

Table G.18. Hypothetical Stage and Velocity at the Example Project Site 
Combination Stage (ft) Velocity (ft/s) 

1 28.0 14.0 
2 28.6 12.8 
3 29.5 11.0 
4 30.0 10.0 
5 30.3 9.4 
6 29.7 10.6 
7 29.2 11.6 

Depending on the design objective (stage or velocity) and location within the influence reach, 
one of the combinations will yield the extreme condition for that design objective.  In this 
example, combination 5 results in the highest stage such that 30.3 ft is taken as the 50-yr water 
surface elevation at the site.  Similarly, combination 1 yields the highest velocity such that 14.0 
ft/s is the 50-yr velocity. 

Results from different combinations are not combined.  If the design objective is most 
concerned about stage, the maximum stage is used.  If the design objective is most concerned 
about velocity, the maximum velocity is used.  For scour analyses, which depend on both stage 
and velocity, scour computations using each combination are completed, and the maximum 
scour is used.  The extreme condition for the appropriate design objective is considered the 
design condition corresponding to that return period.  As in this example, a different combination 
might be the design condition for stage and velocity. 
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The designer might analyze all combinations identified in the previous step.  However, 
inspection of the combinations might reveal that some combinations will result in computations 
that do not differ substantially from others and can be dropped from consideration.  Similarly, 
the location of the design site within the influence reach might be such that certain combinations 
will not require analysis to determine the critical combination and the design event.  If there is 
uncertainty as to which combinations of potential design events should be used, all 
combinations should be tested. 

G.5 Total Probability Method 
If the total probability method has been selected, the design process continues with the 
following steps: 

1. Construct marginal exceedance frequency curves for the main and tributary
streams.  Index values of QM,i may be used, that is discreet values of QM that
represent a range of Q and a corresponding probability of occurrence P(QM,i).

2. Select the conditional probability matrix representing the probabilities of yT given
an occurrence for each value of QMi,i.  The result is P[yT|QMi,i].

3. Compute stages, yT, for various combinations of QT and QM.  A HEC-RAS model
of the confluence and design location is a likely tool.

4. Compute the total probability of occurrence P[yT] for each stage.

5. Construct the total probability curve.  Sort the results of Step 4 by stage and plot
the exceedance probability curve.  Select the stage corresponding to the
selected design event.

The total probability method is applied twice.  The conditional probability matrices for both the 
POM and POT cases are applied in Step 2.  Steps 3 through 5 are completed separately for 
both cases and the highest stage computed from Step 5 from the POM and POT analyses is 
selected for design.  The following sections illustrate the application of this method using the 
watershed pair from Washington State described in Table G.1. 

G.5.1 Develop the Marginal Exceedance Frequency Curves 
The marginal exceedance frequency curves provide a relation between discharge on a given 
stream and the probability of occurrence of that discharge.  To simplify the process, the 
complete range of exceedance probabilities are divided into several groups or “bins.”  Each bin 
is represented by an index value that is centrally located within the bin.  In this example, the 
marginal exceedance values are divided into seven bins as summarized in Table G.19.  These 
bins were selected so that the annual exceedance probability (AEP) index values of 0.5 through 
0.002 represent common design events (2-yr through 500-yr, respectively).  The index value is 
approximately the geometric mean of the range for each bin as shown in Table G.19.  Using bin 
number 3 for illustration, the index value of 0.1 represents a range of events with AEPs from 
0.063 to 0.141.  In terms of return period, the index value of the 10-yr event represents all 
events between the 16-yr and 7.1-yr events. 

The probability that a flow will be in the given bin is summarized in the fourth column of Table 
G.19 and is determined from the AEP range.  The difference between the upper and lower bin 
values represents the probability of a flow occurring in the range defined by the bin.  Using bin 
number 3 for illustration, P(Q) = 0.141-0.063 = 0.078.  Therefore, the probability of an event 
occurring within this bin is 0.078 or 7.8 percent.  The sum of the values in the P(Q) column must 
equal 1 to account for all possible outcomes. 
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The corresponding flow rates are computed from the regression equations used in Section 
G.4.3, and summarized in Table G.8, including an interpolation for the 0.2 AEP and an 
extrapolation for the 0.002 AEP.  The flow rates (QM and QT) in conjunction with the probability 
of occurrence, P(Q), represent the marginal exceedance frequency curves for the main and 
tributary watersheds. 

Table G.19. Exceedance Frequency Curves Based on Bin AEPs 

Bin 
number 

Bin AEP 
(Index 
Value) Bin AEP range P(Qi) 

Nisqually 
River 

QMi (ft3/s) 

 
Mineral 
Creek 

QT (ft3/s) 
1 0.5 0.316 > AEP >= 1.000 0.684 6,260 3,810 
2 0.2 0.141 > AEP >= 0.316 0.175 8,760 5,350 
3 0.1 0.063 > AEP >= 0.141 0.078 11,300 6,920 
4 0.04 0.028 > AEP >= 0.063 0.035 13,900 8,550 
5 0.02 0.014 > AEP >= 0.028 0.014 16,400 10,100 
6 0.01 0.004 > AEP >= 0.014 0.010 18,400 11,400 
7 0.002 0.000 > AEP >= 0.004 0.004 23,900 14,800 

G.5.2 Select the Conditional Probability Matrix 
As described in Chapter 5, the appropriate conditional probability matrix (CPM) is based on the 
drainage area ratio and the total area.  The selection table from that section is repeated below 
as Table G.20.   

Table G.20. CPM Selection Table – Degree of Correlation 
Area 
ratio 

Total area (sq. mi.) 
1 to 50 50 to 100 100 to 1000 1000 or greater 

1 to 10 High Moderate Mixed Mixed 
10 to 100 High Moderate Mixed Poor 

100 or greater High Moderate Poor Poor 
 

For the subject watershed pair, the drainage areas of the main and tributary watersheds are 133 
mi2 and 70.3 mi2, respectively.  Consequently, the total area is 203 mi2 and the area ratio is 1.9.  
Consulting Table G.20 reveals that the appropriate selection is the “mixed” CPM. 

There are two CPMs for each correlation selection.  One is for the POM and one for the POT.  If 
the designer is certain that one or the other is applicable, based on the location of the design 
site in the influence reach, that matrix should be selected.  However, if the designer is uncertain 
which governs, both should be analyzed and the highest stage selected for design.  The CPM 
tables from Chapter 5 are repeated below as Tables G.21a through G.24b. 

For this illustration, the POM for the “mixed” flow condition is selected first (Table G.23a).  
Because QM and QT are dependent (to some degree), each row of the table represents a 
member of the family of curves for the conditional probability of QT given QM.  For example, if a 
flow on the main stream is represented by the 0.10 AEP bin (10-yr event), there is a 0.3 
probability of coincident occurrence on the tributary of a 2-yr event (AEP=0.50), a 0.3 probability 
of a 5-yr event (AEP=0.20), a 0.3 probability of a 10-yr event (AEP=0.10), and a 0.1 probability 
of a 25-yr event (AEP=0.04). 
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Table G.21a. CPM for Highly Correlated Flows (POM) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 1 1 
0.200 1 1 
0.100 1 1 
0.040 1 1 
0.020 1 1 
0.010 1 1 
0.002 1 1 

Table G.21b. CPM for Highly Correlated Flows (POT) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 

Main 
Stream 

AEP 

0.500 1 
0.200 1 
0.100 1 
0.040 1 
0.020 1 
0.010 1 
0.002 1 
Sum 1 1 1 1 1 1 1 

Table G.22a. CPM for Moderately Correlated Flows (POM) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.9 0.1 1 
0.200 0.4 0.5 0.1 1 
0.100 0.2 0.3 0.4 0.1 1 
0.040 0.2 0.3 0.4 0.1 1 
0.020 0.2 0.3 0.4 0.1 1 
0.010 0.2 0.3 0.4 0.1 1 
0.002 0.2 0.4 0.4 1 

Table G.22b. CPM for Moderately Correlated Flows (POT) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 

Main 
Stream 

AEP 

0.500 0.9 0.4 0.2 
0.200 0.1 0.5 0.3 0.2 
0.100 0.1 0.4 0.3 0.2 
0.040 0.1 0.4 0.3 0.2 
0.020 0.1 0.4 0.3 0.2 
0.010 0.1 0.4 0.4 
0.002 0.1 0.4 
Sum 1 1 1 1 1 1 1 
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Table G.23a. CPM for Mixed Correlated Flows (POM) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.9 0.1 1 
0.200 0.5 0.4 0.1 1 
0.100 0.3 0.3 0.3 0.1 1 
0.040 0.3 0.1 0.2 0.3 0.1 1 
0.020 0.3 0.1 0.2 0.3 0.1 1 
0.010 0.3 0.1 0.2 0.3 0.1 1 
0.002 0.3 0.1 0.3 0.3 1 

Table G.23b. CPM for Mixed Correlated Flows (POT) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 

Main 
Stream 

AEP 

0.500 0.9 0.5 0.3 0.3 0.3 0.3 0.3 
0.200 0.1 0.4 0.3 0.1 
0.100 0.1 0.3 0.2 0.1 
0.040 0.1 0.3 0.2 0.1 
0.020 0.1 0.3 0.2 0.1 
0.010 0.1 0.3 0.3 
0.002 0.1 0.3 
Sum 1 1 1 1 1 1 1 

Table G.24a. CPM for Poorly Correlated Flows (POM) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 Sum 

Main 
Stream 

AEP 

0.500 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.200 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.100 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.040 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.020 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.010 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 
0.002 0.684 0.175 0.078 0.035 0.014 0.010 0.004 1 

Table G.24b. CPM for Poorly Correlated Flows (POT) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 

Main 
Stream 

AEP 

0.500 0.684 0.684 0.684 0.684 0.684 0.684 0.684 
0.200 0.175 0.175 0.175 0.175 0.175 0.175 0.175 
0.100 0.078 0.078 0.078 0.078 0.078 0.078 0.078 
0.040 0.035 0.035 0.035 0.035 0.035 0.035 0.035 
0.020 0.014 0.014 0.014 0.014 0.014 0.014 0.014 
0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 
0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 
Sum 1 1 1 1 1 1 1 
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G.5.3 Compute Stages 
The tributary stage is computed using a HEC-RAS model or other appropriate tool.  For each 
pair of main and tributary flows of interest from the CPM, a stage at the design location is 
computed.  For the CPM in Table G.23a there are 28 non-zero entries each requiring a HEC-
RAS run.  Generally, the majority of effort preparing HEC-RAS analyses is the initial data 
collection, setup, and calibration.  Executing multiple scenarios, as is anticipated here, requires 
only changing the main and tributary discharges within the calibrated model 

The stage computations for each pair are summarized in Table G.25.  (The stage values are 
hypothetical to illustrate the computation process as no HEC-RAS runs were actually 
performed.)  For example, the 24 ft stage in the upper left box results from using the 0.5 AEP 
flow on the main stream and the 0.5 AEP flow on the tributary stream, which from Table G.19 
are 6,260 ft3/s and 3,810 ft3/s, respectively. 

Table G.25. Summary of Stage Computations (ft) 
Tributary Stream AEP 

0.500 0.200 0.100 0.040 0.020 0.010 0.002 

Main 
Stream 

AEP 

0.500 24.0 24.6 
0.200 25.2 26.0 26.6 
0.100 26.2 27.2 28.0 28.6 
0.040 27.3 28.2 29.2 30.0 30.6 
0.020 28.3 30.2 31.2 32.0 32.6 
0.010 29.3 32.2 33.2 34.0 34.6 
0.002 30.3 34.2 35.2 36.0 

G.5.4 Compute Total Probability 
The total probability is computed using Equation 2.2 for each computed stage.  Equation 2.2 is 
repeated here as follows: 

[ ] ]Q[P]Q|y[PyP i,Mi,M

n

1i
TT ∑

=

=   (Equation 2.2) 

where, 
P[yT]  = probability that yT will occur 
P[yT|QM,i] = probability that yT will occur given QM,i 
P[QM,i]  = probability that QM,i will occur 

The computations use the marginal probabilities, P(QM,i), from Step 1, the conditional 
probabilities, P(yT|QM,i), from Step 2, and the stages from Step 3.  The results are summarized 
in Table G.26.  Each row in the table represents an entry in Table G.25 starting at the upper left 
then moving from left to right and then from top to bottom.  For example, the first row in Table 
G.26 represents the probability of occurrence of the 24.0 ft stage in the upper left corner of 
Table G.25.  Using Equation 2.2: 
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3
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The remaining rows in Table G.26 represent the analogous computation for the other stage 
entries in Table G.25. 

Table G.26. Total Probability Computation (POM) 
yT P(QM) P(yT|QM) P(yT) 

24.0 0.684 0.9 0.6156 
24.6 0.684 0.1 0.0684 
25.2 0.175 0.5 0.0875 
26.0 0.175 0.4 0.0700 
26.6 0.175 0.1 0.0175 
26.2 0.078 0.3 0.0234 
27.2 0.078 0.3 0.0234 
28.0 0.078 0.3 0.0234 
28.6 0.078 0.1 0.0078 
27.3 0.035 0.3 0.0105 
28.2 0.035 0.1 0.0035 
29.2 0.035 0.2 0.0070 
30.0 0.035 0.3 0.0105 
30.6 0.035 0.1 0.0035 
28.3 0.014 0.3 0.0042 
30.2 0.014 0.1 0.0014 
31.2 0.014 0.2 0.0028 
32.0 0.014 0.3 0.0042 
32.6 0.014 0.1 0.0014 
29.3 0.010 0.3 0.0030 
32.2 0.010 0.1 0.0010 
33.2 0.010 0.2 0.0020 
34.0 0.010 0.3 0.0030 
34.6 0.010 0.1 0.0010 
30.3 0.004 0.3 0.0012 
34.2 0.004 0.1 0.0004 
35.2 0.004 0.3 0.0012 
36.0 0.004 0.3 0.0012 

G.5.5 Construct Total Probability Curve 
The computations from Step 4 (Table G.26) are sorted by stage as illustrated in Table G.27.  If 
any values of stage, yT, are identical, the rows should be combined so that each row represents 
a unique value of yT.  The final step is to create the probability of exceedance estimates. 

For the first row in the table, the probability of occurrence of a stage of 24 ft is represented as 
0.6156.  Therefore, the probability of exceedance is 1-0.6156 = 0.3844.  For the next row, the 
probability of exceedance is 1-0.6156-0.0684 = 0.3160.  The computation of exceedance 
probability for each stage value is summarized in the table.  The result is then plotted as shown 
in Figure G.2. 

The stage for a design exceedance probability can be taken either from Figure G.2 or Table 
G.27.  For the design example, the 50-year stage (AEP = 0.02) is approximately 30.4 feet. 
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Table G.27. Total Probability Curve (POM) 
yT P(yT) Pe 

24.0 0.6156 0.3844 
24.6 0.0684 0.3160 
25.2 0.0875 0.2285 
26.0 0.0700 0.1585 
26.2 0.0234 0.1351 
26.6 0.0175 0.1176 
27.2 0.0234 0.0942 
27.3 0.0105 0.0837 
28.0 0.0234 0.0603 
28.2 0.0035 0.0568 
28.3 0.0042 0.0526 
28.6 0.0078 0.0448 
29.2 0.0070 0.0378 
29.3 0.0030 0.0348 
30.0 0.0105 0.0243 
30.2 0.0014 0.0229 
30.3 0.0012 0.0217 
30.6 0.0035 0.0182 
31.2 0.0028 0.0154 
32.0 0.0042 0.0112 
32.2 0.0010 0.0102 
32.6 0.0014 0.0088 
33.2 0.0020 0.0068 
34.0 0.0030 0.0038 
34.2 0.0004 0.0034 
34.6 0.0010 0.0024 
35.2 0.0012 0.0012 
36.0 0.0012 0.0000 

 

The total probability curve shown in Table G.27 and Figure G.2 is based on the POM conditional 
probability matrix.  The process is repeated beginning at Step 2 for the POT scenario.  The POT 
conditional probability matrix  for the “mixed” scenario is selected.  Stages are then computed in 
Step 3, however, many will already be computed for the POM case.  Many of the same 
combinations of flows remain relevant; it is their probability of occurrence that changes.  In Step 
4, the total probability is computed.  Equation 2.2 is used again, but is rewritten with QT as the 
dominant variable: 

 [ ] ]Q[P]Q|y[PyP i,Ti,T

n

1i
TT ∑

=

=  

where, 
 P[yT]  = probability that yT will occur 
 P[yT|QT,i] = probability that yT will occur given QT,i 
 P[QT,i]  = probability that QT,i will occur 
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The total probability curve is then constructed in Step 5 as it was for the POM scenario.  The 
highest stage from the two computations (POM or POT) is used for design. 

Figure G.2. Total Probability Curve (POM) for Example Watershed 
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Appendix H.  Step-by-Step Application Guide
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H.1 Introduction 
Highway drainage structures are often located near the confluence of two streams where they 
may be subject to inundation by high flows from either stream. These structures should be 
designed to meet specified performance objectives for floods of a specified return period, e.g., 
the 100-year flood, as specified by the applicable design criteria. Because the flooding of 
structures on one stream can be affected by high flows on the other stream, it is necessary to 
know the relationship between the joint exceedance probability of the confluent stream pair, i.e., 
the joint probability of the coincident flows, with the individual exceedance probability on each 
stream. 

The joint probability question arises when a structure is located where the hydraulic behavior of 
some combination of the main and tributary streams may result in critical hydraulic design 
conditions.  Specifically, there is a portion of the tributary stream that is influenced by both the 
discharge of the tributary stream and the backwater caused by the main stream.  This is 
referred to as the influence reach. The location of the structure within the influence reach, as 
well as the joint hydrologic behavior of the confluent streams, will determine the importance of 
the confluent streams on the appropriate design conditions for the structure. 

The concept of an influence reach is shown schematically in Figure H.1 along with three 
possible alternative structure locations relative to the influence reach. For any given confluent 
pair of streams, there is a distance upstream of the confluence within which the flow from both 
streams will influence the hydraulic conditions at the structure. This distance is referred to as 
Xmax in the figure and will vary with the magnitude of the discharge. If the distance of the 
structure location above the confluence, x, is less than Xmax, then the structure is said to be 
located in the influence reach and joint probability analysis may be necessary to design a cost-
effective and reliable structure. Although the figure shows the structure location and influence 
reach on the tributary stream, the analysis is the same if the structure and influence reach is on 
the main stream. 

Figure H.1. Influence Reach Schematic 
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For a structure located very close to the confluence of the main and tributary streams (location 
A in Figure H.1), the structure is sufficiently close to the confluence such that the critical design 
condition is determined by the backwater at the confluence. This case essentially reduces to an 
analysis of the flow at the confluence and joint probability analysis may not be necessary. If the 
designer is unsure if the site is sufficiently close, the joint probability design procedure should be 
applied. 

For a structure located a significant distance from (or at a much higher elevation than) the 
confluence (location C in Figure H.1), the structure is beyond the influence reach and joint 
probability analysis is not needed. This case represents the typical riverine hydraulic design 
condition. 

Alternative location B in Figure H.1 represents the joint probability problem where the distance 
of the structure from the confluence, x, is less than Xmax and the structure is within the influence 
reach. The hydraulic conditions, e.g. depth and velocity for a structure at location B is a function 
of the flow at the confluence, which establishes the downstream control elevation, and the flow 
in the tributary, which determines the water surface profile from the downstream control to the 
design location. More simply put, the hydraulic conditions at location B can be considered a 
function of the main and tributary stream discharges. 

In a typical riverine situation (one stream) we have a three-step design procedure: 

1. Select an appropriate design return period.

2. Estimate the flow rate associated with that return period.

3. Apply that flow rate to a hydraulic analysis of the structure.

For confluent streams, we will still use the appropriate design return period for the site, but refer 
to it as the joint probability. Then, we require additional analyses to determine the appropriate 
return periods to use on the main stream and the tributary stream such that the joint probability 
is as we require it to be. This design procedure provides the necessary tools. 

The purpose of this appendix is to provide a step-by-step applications guide in a user friendly 
format. The approach used in this guide is intended to be applied to most design situations and 
objectives. However, for situations of high sensitivity or vulnerability either for the infrastructure 
itself or for the traveling public, the designer is encouraged to review the main report to 
understand the foundation of this method as well as to review the more detailed application 
guidelines in Appendix G. 

Application of this design procedure is limited to watershed pairs satisfying three 
conditions: 1) neither watershed in the pair is substantially affected by regulation, 2) the 
sum of the watershed areas is less than 9,000 mi2, and 3) the drainage area of the smaller 
watershed of the pair exceeds 1 mi2. (Refer to Appendix F.2 for a detailed discussion of 
regulation. The key point to remember is that the application of this confluent stream procedure 
requires use of a hydrologic method to generate peak discharges on the main and tributary 
streams. If either of the watersheds is regulated such that a designer would not use the 
hydrologic procedure on the watershed in a typical single stream analysis because of regulation, 
then the designer should not use that hydrologic procedure in the context of confluent stream 
analyses either.] 

The next section provides an overview of the design steps. The final section provides two 
example applications. 
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H.2 Design Steps 
Application of joint probability analysis to a site potentially affected by confluent streams 
includes six basic steps: 

1. Specify the design condition.

2. Compute the discharge range of interest.

3. Determine if the site is within the influence reach.

4. Determine potential hydrologic combinations.

5. Estimate discharges for each potential hydrologic combination.

6. Perform hydraulic analyses for each hydrologic combination.

H.2.1 Step 1: Specify the Design Condition 
The designer must choose the appropriate annual design condition appropriate for the site and 
type of structure, e.g. bridge, culvert, etc. This step must be made for any waterway crossing or 
other channel work and is no different for the joint probability problem. The annual exccedance 
probability (AEP) and relevant design parameters are established first. The design AEP might 
range from 0.1 to 0.002, corresponding to return periods from 10-yr to 500-yr. The designer may 
also wish to examine a range of design conditions as part of a cost benefit analysis. 

The designer must also choose whether a representative (best-fit) or envelope analysis is 
appropriate for the site and design objectives. For this methodology, the representative 
approach results in the best estimate, while the envelope approach provides a more 
conservative estimate based on applying a design envelope around the underlying data. In most 
design situations, the representative approach is appropriate as it will result in the best estimate 
of conditions at the site. If, however, there is reason to be more conservative, the envelope 
approach is recommended. 

This distinction can be compared to application of USGS regression equations for estimating 
discharges. In most situations we use the number from the equation as the best representative 
estimate. However, the equation also comes with information on the standard error of the 
equation that provides a basis for increasing the discharge if there is reason to be more 
conservative. 

H.2.2 Step 2: Compute Discharge Range of Interest 
Four discharges – two on the main stream and two on the tributary stream – establish the range 
of discharges that are of interest. For both the main and tributary streams the 2-yr and design 
condition discharges are calculated. The 2-yr discharge is a widely available low flood flow 
value used to define the lower end of the range. The design condition is the return period 
selected in Step 1 and defines the higher end of the range. For example, if a 100-yr design 
condition has been chosen, we calculate the 2-yr and 100-yr events for the two confluent 
streams. 

Joint probability analysis does not require that a designer use special hydrological techniques to 
estimate discharge from a watershed. Depending on the watershed and applicable guidance, 
any appropriate peak flow or hydrograph technique may be used. For example, if USGS 
regression peak flow techniques are acceptable in a given situation for a typical riverine 
application, that technique would also be acceptable in a joint probability context. 
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H.2.3 Step 3: Determine Influence Reach
Joint probability design techniques are necessary only if the project site is within the influence 
reach. To determine this, the designer creates a hydraulic model for the site using HEC-RAS or 
other appropriate tool. The hydraulic model must extend downstream of the confluence to 
properly capture the interaction between the confluent streams. For the stream with the 
hydraulic structure, it must extend upstream of the hydraulic structure to the same extent as we 
would extend it in a typical riverine situation. For the other confluent stream, the model needs 
only to be extended upstream sufficiently so that the boundary condition does not influence the 
water surface elevation at the confluence. 

Once the hydraulic model is setup, two hydrologic scenarios are run to determine if our structure 
is within the influence reach. Both scenarios, summarized in Table H.1, will use the 2-yr return 
period discharge for the stream with the hydraulic structure. Scenario I will include the 2-yr 
return period discharge on the other stream and Scenario II will include the design return period 
discharge on the other stream. 

Table H.1. Influence Reach Determination Options 

Scenario 
Stream Where Hydraulic 

Structure is Located Confluent Stream 

I 2-yr 2-yr 

II 2-yr design return period 

The two water surface elevations at our hydraulic structure site are compared. If the water 
surface elevations at the project site are the same between the two scenarios the project site is 
outside the influence reach (not affected by backwater from the confluent stream) and joint 
probability techniques are not necessary.  If not, the site is within the influence reach and the 
joint probability design procedure should be applied. 

Determining whether hydraulic conditions are different between Scenario I and Scenario II 
requires a definition of how close the two conditions must be to be considered the same. 
Defining this must consider many factors including the purpose of the analysis, the potential for 
error in the discharge estimates, and the sensitivity of the hydraulic conditions to the discharge 
estimates. Equation H.1 provides a guideline for making this determination. If the equation is 
true, the site is considered within the influence reach. 

( )I%10IIII WSEWSE,HmaxWSEWSE −≥− + (H.1) 

where, 
WSEI  = water surface elevation at site for Scenario I, ft 
WSEII  = water surface elevation at site for Scenario II, ft 
WSEI+10% = water surface elevation at site for Scenario I with discharge rates on both 

streams increased by 10 percent, ft 
H  = reference elevation change set at 0.2 ft 

WSEI+10% represents the water surface elevation at the site under Scenario I when the 
discharges on both confluent streams are increased by 10 percent. This provides an indicator of 
the sensitivity of the water surface elevation to the discharge estimates. The reference elevation 
change, H, is a constant that provides a minimum guideline value for those situations where the 

H-4 



system is less sensitive to discharge. When in doubt about the use of the guideline in Equation 
H.1, the designer should assume that the site is within the influence reach and proceed with the 
joint probability analysis. 

When setting up the HEC-RAS, or other, hydraulic model, the respective discharges for the 
main and tributary are applied to those reaches above the confluence. The flow below the 
confluence is the sum of the flows on the confluent streams. 

H.2.4 Step 4: Determine Hydrologic Combinations 
Appropriate combinations of flow to be considered for a pair of confluent streams depend on the 
degree to which their flood flow patterns are correlated. Based on the research data base and 
analyses on which this method is based, this may be determined by the ratio of the watershed 
areas and the combined watershed area. The drainage area ratio, RA, is computed by dividing 
the drainage area of the larger watershed by the drainage area of the smaller watershed. The 
total watershed area, ATOT, is computed by summing the two drainage areas. Table H.2 
summarizes the categories. 

Table H.2. Watershed Categories 

Total Watershed Area 

ATOT < 350 mi2 ATOT ≥ 350 mi2 

Drainage Area 
Ratio 

RA < 7 SS SL 

RA ≥ 7 LS LL 

The category label is a two-letter code. The first letter references the drainage area ratio. If it is 
less than 7, the ratio is considered to be small and is indicated by an “S.” If it is greater than or 
equal to 7 then the ratio is considered to be large and is indicated by an “L.” Similarly, the 
second letter in the code references the total watershed area. If the total watershed area is less 
than 350 mi2, the letter “S” is assigned for small. If not, the letter “L” is assigned for large. 

Combinations of individual return period flows on the tributary and main streams for the 10-, 25-, 
50-, 100-, and 500-yr joint design frequency events are summarized in Table H.3 through Table 
H.7. The designer selects the table corresponding to the joint design return period and finds the 
watershed category within that table. Then, depending on whether the representative approach 
or envelope approach has been adopted, a series of return period combinations are listed. For 
the 10- and 25-year joint return periods there are 3 combinations while for the 50-, 100-, and 
500-year joint return periods 5 combinations are listed. 
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Table H.3. Return Period Combinations for the 10-yr Joint Return Period 

Category Approach Location 
Combination 

1 2 3 

SS 
Representative Tributary 3 8 10 

Main 10 8 3 

Envelope Tributary 5 9 10 
Main 10 9 5 

SL 
Representative Tributary 2 7 10 

Main 10 7 2 

Envelope Tributary 4 8 10 
Main 10 8 4 

LS 
Representative Tributary 3 8 10 

Main 10 8 3 

Envelope 
Tributary 5 9 10 

Main 10 9 5 

LL 
Representative Tributary 1.25 6 10 

Main 10 6 1.25 

Envelope Tributary 2 7 10 
Main 10 7 10 

Table H.4. Return Period Combinations for the 25-yr Joint Return Period 

Category Approach Location 
Combination 

1 2 3 

SS 
Representative Tributary 6 19 25 

Main 25 19 6 

Envelope Tributary 13 22 25 
Main 25 22 13 

SL 
Representative Tributary 3 17 25 

Main 25 17 3 

Envelope Tributary 10 21 25 
Main 25 21 10 

LS 
Representative Tributary 6 19 25 

Main 25 19 6 

Envelope 
Tributary 13 22 25 

Main 25 22 13 

LL 
Representative Tributary 1.25 14 25 

Main 25 14 1.25 

Envelope Tributary 3 17 25 
Main 25 17 3 
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Table H.5. Return Period Combinations for the 50-yr Joint Return Period 

Category Approach Location 
Combination 

1 2 3 4 5 

SS 
Representative Tributary 11 31 38 43 50 

Main 50 43 38 31 11 

Envelope Tributary 25 39 43 46 50 
Main 50 46 43 39 25 

SL 
Representative Tributary 5 26 34 40 50 

Main 50 40 34 26 5 

Envelope Tributary 20 36 41 45 50 
Main 50 45 41 36 20 

LS 
Representative Tributary 11 31 38 43 50 

Main 50 43 38 31 11 

Envelope 
Tributary 25 39 43 46 50 

Main 50 46 43 39 25 

LL 
Representative Tributary 2 19 27 35 50 

Main 50 35 27 19 2 

Envelope Tributary 4 25 33 40 50 
Main 50 40 33 25 4 

Table H.6 Return Period Combinations for the 100-yr Joint Return Period 

Category Approach Location 
Combination 

1 2 3 4 5 

SS 
Representative Tributary 20 62 75 86 100 

Main 100 86 75 62 20 

Envelope Tributary 50 77 86 92 100 
Main 100 92 86 77 50 

SL 
Representative Tributary 9 52 67 81 100 

Main 100 81 67 52 9 

Envelope Tributary 39 72 83 91 100 
Main 100 91 83 72 39 

LS 
Representative Tributary 20 62 75 86 100 

Main 100 86 75 62 20 

Envelope 
Tributary 50 77 86 92 100 

Main 100 92 86 77 50 

LL 
Representative Tributary 2 37 54 70 100 

Main 100 70 54 37 2 

Envelope Tributary 7 50 66 79 100 
Main 100 79 66 50 7 
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Table H.7. Return Period Combinations for the 500-yr Joint Return Period 

Category Approach Location 
Combination 

1 2 3 4 5 

SS 
Representative Tributary 98 308 376 429 500

Main 500 429 376 308 98 

Envelope Tributary 249 385 430 462 500 
Main 500 462 430 385 249 

SL 
Representative Tributary 39 257 336 402 500

Main 500 402 336 257 39 

Envelope Tributary 200 361 414 453 500 
Main 500 453 414 361 200 

LS 
Representative Tributary 98 308 376 429 500

Main 500 429 376 308 98 

Envelope 
Tributary 249 385 430 462 500 

Main 500 462 430 385 249 

LL 
Representative Tributary 5 182 269 349 500

Main 500 349 269 182 5 

Envelope Tributary 30 246 327 395 500 
Main 500 395 327 246 5 

H.2.5 Step 5: Estimate Discharges for Combinations 
The next step is to estimate the discharges corresponding to the combination return periods 
using the hydrologic method applied in Step 2. Because the set of combinations will include 
individual return periods not directly estimated using standard methods, interpolation will be 
necessary in those cases. This is illustrated by example flow-frequency curves for hypothetical 
main and tributary streams shown in Figure H.2. The plotted points represent the return periods 
generally available from various hydrologic techniques: 2-, 10-, 25-, 50-, and 100-yr. The curves 
represent the range of values in between the plotted points. 

Figure H.2. Hypothetical Flow-Frequency Curves 
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When other return periods are required, for example, a 77-year return period discharge, it is 
obtained by interpolating between the 50-year and 100-year values. This interpolation is 
accomplished using Equations H.2 and H.3. 

( ) LLH
LH

Lx
x QlogQlogQlog

TlogTlog
TlogTlogQlog +−

−
−

=  (H.2) 

xQlog
x 10Q =  (H.3) 

where, 
Qx = Discharge at return period x, ft3/s 
QH = Known discharge at return period higher than x, ft3/s 
QL = Known discharge at return period lower than x, ft3/s 
Tx = Return period of interest, years 
TH = Return period of QH, years 
TL = Return period of QL, years 

For the 10- and 25-year return periods in the LL watershed category using the representative 
approach an estimate of the 1.25-yr return period is needed. The 1.25-yr return period 
discharge can be calculated by extrapolating from the 2-yr and 10-yr discharges as follows: 

102 Qlog292.0Qlog292.1
25.1 10Q −= (H.4) 

where, 
Q1.25 =  1.25-yr discharge, ft3/s 
Q2 =  2-yr discharge, ft3/s 
Q10 =  10-yr discharge, ft3/s 

H.2.6 Step 6: Analyze Combinations 
After development of discharge pairs for the potential combinations, the same hydraulic model 
applied in Step 3 for each discharge combination is used to analyze the discharge 
combinations. Depending on the design objective (stage or velocity) and site location within the 
influence reach, one of the combinations will yield the extreme condition for a given design 
objective. 

Results from different combinations are not combined.  If the design objective is most 
concerned about stage, the maximum stage is used.  If the design objective is most concerned 
about velocity, the maximum velocity is used.  For scour analyses, which depend on stage and 
velocity, scour computations using each combination are completed, and the maximum scour is 
used.  The extreme condition for the appropriate design objective is considered the design 
condition corresponding to that joint return period.  A different combination might be the design 
condition for stage, velocity, and scour. 
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H.3 Design Examples 
Two design examples are provided to illustrate the joint probability analysis procedure. They are 
based on actual watersheds in the states of Washington and New Jersey. In addition to the 
hydrologic analyses, application of HEC-RAS, or another hydraulic model, is required to 
complete a joint probability analysis. However, the implementation of riverine hydraulic models 
in the context of joint probability analyses is not unique. Therefore, these examples do not 
feature actual HEC-RAS analyses. Rather, they provide realistic, but synthetic, data 
representative of hydraulic model outputs to illustrate the procedures. 

H.3.1 Nisqually River and Mineral Creek 
Mineral Creek flows into the Nisqually River in the state of Washington. The drainage areas for 
the two watersheds at the confluence are 70.3 and 133 square miles, respectively. A bridge is 
being proposed over Mineral Creek upstream of the confluence. 

Step 1. Specify the Design Condition. 
The appropriate joint probability return period is the same as the return period for the type of 
structure being evaluated in a typical riverine situation. For this example, the 50-year return 
period (with certain freeboard requirements) is required. Therefore, we select the 50-year return 
period as our specified design condition for the joint probability. 

We also need to decide whether we will choose the representative approach or the more 
conservative envelope approach. Since there are no features of the proposed project that 
suggest a more conservative approach is justified, the representative approach is selected. 

Step 2. Compute the Discharge Range of Interest. 
The discharge range of interest is from the 2-year to the 50-year (design condition) events. 
These values are estimated using an acceptable hydrologic methodology for the site. One 
acceptable method for this location is the United States Geological Survey (USGS) regression 
equations for the area. (Sumioka, S.S., D.L. Kresch, and K.D. Kasnick, “Magnitude and 
Frequency of Floods in Washington, USGS Water Resources Investigations Report 97-4277, 
1998). The watershed pair is located in USGS region 2 for which the following regression 
equation applies: 

21 b
M

b
T PaAQ = (H.5) 

where, 
QT = design flow for return period, T, ft3/s 
A = drainage area, mi2 
PM = mean annual precipitation, in 
a,b1,b2 = regression constants 

The regression constants are provided in Table H.8. 
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Table H.8. Nisqually/Mineral Regression Constants 

Return Period 

Regression Constants 

a b1 b2 

2 0.090 0.877 1.51 

10 0.129 0.868 1.57 

25 0.148 0.864 1.59 

50 0.161 0.862 1.61 

100 0.174 0.861 1.62 

The drainage areas of the two watersheds were previously noted as 70.3 and 133 square miles 
for Mineral Creek and the Nisqually River, respectively. The mean annual precipitation for these 
watersheds is 98 and 94 inches, respectively. Applying USGS equations to the site-specific data 
yields the discharge range summarized in Table H.9. 

Table H.9. Nisqually/Mineral Discharge Range 

Return Period 

Discharge (ft3/s) 

Nisqually 
River 

Mineral 
Creek 

2 6,260 3,810 

50 16,400 10,100 

Step 3. Determine if Site is Within Influence Reach. 
A hydraulic model appropriate for the site is setup. HEC-RAS is a common choice when one-
dimensional analysis is acceptable. Since the proposed bridge is to be located on Mineral 
Creek, the following two scenarios are analyzed in the hydraulic model: 

• Scenario I includes the 2-year discharge on the Nisqually River and the 2-year discharge
on Mineral Creek.

• Scenario II includes the 50-year discharge on the Nisqually River and the 2-year
discharge on Mineral Creek.

The water surface elevations at the proposed bridge site are extracted from the two scenario 
runs and the difference is computed (WSEII – WSEI). These data are summarized in Table 
H.10. The difference in water surface elevation between scenarios I and II is 0.5 feet. Referring 
to equation H.1, this difference is greater than the reference elevation change, H, which is 0.2 ft, 
therefore we know that equation H.1 is true and our site is within the reference reach. 

Based on this conclusion, it is not necessary to run scenario I again with the discharges 
increased by 10 percent. However, for illustrative purposes scenario I+10% is run with the 
results summarized in Table H.10. Equation H.1 remains true for this site; our site is within the 
influence reach for the discharge range of interest. (There is no harm in performing a joint 
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probability analysis for a site beyond the influence reach in terms of the results as one of the 
discharge combinations is equivalent to the typical riverine situation.) 

Table H.10. Nisqually/Mineral Influence Reach Determination 

Scenario 

Mineral 
Creek Return 

Period 

Nisqually 
River Return 

Period 

Mineral 
Creek Flow 

(ft3/s) 

Nisqually 
River Flow 

(ft3/s) 

Water 
Surface 

Elevation 
(ft) 

I 2-year 2-year 3,810 6,260 28.0 

II 2-year 50-year 3,810 16,400 28.5 

I+10% 2-year + 10% 2-year + 10% 4,190 6,890 28.1 

Step 4. Determine Hydrologic Combinations. 
For this example, the drainage area ratio, RA, is equal to 133/70.3 = 1.9 and ATOT is equal to 133 
+ 70.3 = 203 mi2. From Table H.2 we determine that is site falls within category SS. 

For our joint design return period of 50-years, the relevant potential hydrologic combinations are 
found in Table H.5. With a watershed category of SS and using the representative approach we 
see that there are five potential combinations. Combination 1 is to use the 11-year return period 
on Mineral Creek and the 50-year return period on the Nisqually River. Combinations 2 through 
5 progressively increase the return period on Mineral Creek while decreasing the return period 
on the Nisqually River. All combinations represent the 50-yr joint return period. 

Step 5. Estimate Discharges for Hydrologic Combinations. 
For our example, we need to estimate the 11-, 31-, 38-, 43-, and 50-year discharges on both 
Mineral Creek and the Nisqually River. We previously estimated the 50-year discharges using 
the applicable USGS equations in Step 2. To estimate the others we use the same set of USGS 
equations to estimate the 10- and 25-year discharges and then interpolate to derive the 11-, 31-, 
38-, and 43-yr discharges. Table H.11 provides the results of applying equation H.5 for the 
return periods available in the USGS equations. 

Table H.11. Nisqually/Mineral Discharges 

Return Period 

Discharge (ft3/s) 

Nisqually 
River 

Mineral 
Creek 

10 11,300 6,920 

25 13,900 8,550 

50 16,400 10,100 

Discharges for the intermediate values are computed using Equations H.2 and H.3. For 
example, the discharge corresponding to a 38-yr return period for the Nisqually River required 
for combination 3 is calculated as follows: 
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( ) )900,13log()900,13log()400,16log(
)25log()50log(
)25log()38log(Qlog x +−

−
−

=

( ) 186.4143.4)143.4215.4
398.1699.1
398.1580.1Qlog x =+−

−
−

=

300,15346,151010Q 186.4Qlog
x x ====  

Using the same procedure, the remaining required discharges are computed and summarized in 
Table H.12.   

Table H.12. Nisqually/Mineral Discharge Combinations 

Combination 

Mineral Creek 
Return Period 

(yrs.) 

Nisqually River 
Return Period 

(yrs.) 
Mineral Creek 

Discharge (ft3/s) 
Nisqually River 
Discharge (ft3/s) 

1 11 50 7,070 16,400 
2 31 43 9,000 15,800 
3 38 38 9,460 15,300 
4 43 31 9,740 14,600 
5 50 11 10,100 11,500 

Step 6. Perform Hydraulic Analyses for Each Combination. 
After development of discharge pairs for the hydrologic combinations, each pair is applied to the 
hydraulic model developed for Step 3. Table H.13 summarizes the stage and velocity at the 
structure site for each combination of discharges. 

Table H.13. Stage and Velocity For Nisqually/Mineral Combinations 
Combination Stage (ft) Velocity (ft/s) 

1 28.7 14.2 
2 29.6 11.1 
3 30.2 10.2 
4 30.4 9.5 
5 29.8 11.7 

The most extreme results for the variables of interest are taken as the 50-year joint probability 
design conditions. For freeboard, stage is the driving variable; maximum stage is derived from 
combination 4. For scour, the designer takes the results from all five combinations and performs 
a scour computation for each. The maximum scour is used for design. 

It is important to remember that the most extreme values for depth, velocity, or scour may not 
come from the same combination. Results from different combinations are not combined. In this 
example, the designer should not take the maximum depth from combination 4 and the 
maximum velocity from combination 1 to compute scour. These do not occur under the same 
conditions and should not be evaluated as if they did. More information on the development and 
application of this joint probability method is found in the main report and appendix G. 
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H.3.2 Raritan River and Middle Brook 
The West Branch of Middle Brook flows into the Raritan River in the state of New Jersey. The 
drainage areas for the two watersheds at the confluence are 2 and 784 square miles, 
respectively. Approximately 11 square miles of the Raritan River watershed is noncontributing 
making the effective drainage area 773 square miles. A culvert installation is being proposed on 
the West Branch of Middle Brook upstream of the confluence. 

Step 1. Specify the Design Condition. 
The appropriate joint probability return period is the same as the return period for the type of 
structure being evaluated in a typical riverine situation. For this example, the 25-year return 
period is required. Therefore, we select the 25-year return period as our specified design 
condition for the joint probability. 

We also need to decide whether we will choose the representative approach or the more 
conservative envelope approach. Since there are no features of the proposed project that 
suggest a more conservative approach is justified, the representative approach is selected. 

Step 2. Compute the Discharge Range of Interest. 
The discharge range of interest is from the 2-year to the 25-year (design condition) events. 
These values are estimated using an acceptable hydrologic methodology for the site. One 
acceptable method for this location is the United States Geological Survey (USGS) regression 
equations for the area. (Watson, Kara M. and Robert D. Schopp, “Methodology for Estimation of 
Flood Magnitude and Frequency for New Jersey Streams,” Scientific Investigations Report 
2009-5167,  2009). The watershed pair is located in the unglaciated piedmont region of New 
Jersey for which the following regression equation applies: 

( ) ( ) 4321 bbbb
T 1DS1STaAQ ++= (H.6) 

where, 
QT = design flow for return period, T, ft3/s 
A = drainage area, mi2 
ST = percentage of basin covered by streams, lakes, and wetlands 
S = basin slope, ft/mile 
D = population density, persons/mi2 
a,b1,b2,b3,b4 =  regression constants 

The regression constants are provided in Table H.14. 
The drainage areas of the two watersheds were previously noted as 2 and 773 square miles for 
Middle Brook and the Raritan River, respectively. Additional data for the watersheds is 
summarized in Table H.15. 

Applying USGS equations to the site-specific data yields the discharge range summarized in 
Table H.16. 
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Table H.14. Raritan/Middle Brook Regression Constants 

A b1 b2 b3 b4 

2 37.8 0.753 -0.054 0.251 0.127 

5 75.3 0.741 -0.084 0.254 0.104 

10 108 0.736 -0.104 0.258 0.092 

25 159 0.732 -0.127 0.263 0.079 

50 204 0.729 -0.144 0.267 0.070 

100 256 0.728 -0.158 0.271 0.062 

Table H.15. Raritan/Middle Brook Watershed Data 

Data Type 
Raritan 
River 

Middle 
Brook 

Area (mi2) 773 2 

Storage (percent) 14.6 22.3 

Slope (ft/mi) 11.0 70.2 

Pop. Density (persons/ mi2) 523 765 

Table H.16. Raritan/Middle Brook Discharge Range 

Return Period 

Discharge (ft3/s) 

Raritan 
River 

Middle 
Brook 

2 19,700 360 

25 45,000 920 

Step 3. Determine if Site is Within Influence Reach. 
A hydraulic model appropriate for the site is setup. HEC-RAS is a common choice when one 
dimensional analysis is acceptable. Since the proposed bridge is to be located on the West 
Branch of Middle Brook, the following two scenarios are analyzed in the hydraulic model: 

• Scenario I includes the 2-year discharge on the Raritan River and the 2-year discharge
on Middle Brook.

• Scenario II includes the 25-year discharge on the Raritan River and the 2-year discharge
on Middle Brook.

The water surface elevations at the proposed bridge site are extracted from the two scenario 
runs and the difference is computed (WSEII – WSEI). These data are summarized in Table 
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H.17. The difference in water surface elevation between scenarios I and II is 0.4 feet. Referring 
to equation H.1, this difference is greater than the reference elevation change, H, which is 0.2 ft, 
therefore we know that equation H.1 is true and our site is within the reference reach. 

Table H.17. Raritan/Middle Brook Influence Reach Determination 

Scenario 

Middle Brook 
Return 
Period 

Raritan River 
Return 
Period 

Middle 
Brook Flow 

(ft3/s) 

Raritan 
River Flow 

(ft3/s) 

Water 
Surface 

Elevation 
(ft) 

I 2-year 2-year 360 19,700 43.8 

II 2-year 25-year 360 45,000 44.2 

I+10% 2-year + 10% 2-year + 10% 400 21,700 43.9 

Based on this conclusion, it is not necessary to run scenario I again with the discharges 
increased by 10 percent. However, for illustrative purposes scenario I+10% is run with the 
results summarized in Table H.17. Equation H.1 remains true for this site; our site is within the 
influence reach for the discharge range of interest. (There is no harm in performing a joint 
probability analysis for a site beyond the influence reach in terms of the results as one of the 
discharge combinations is equivalent to the typical riverine situation.) 

Step 4. Determine Hydrologic Combinations. 
For this example, the drainage area ratio, RA, is equal to 773/2 = 386 and ATOT is equal to 773 + 
2 = 775 mi2. From Table H.2 we determine that is site falls within category LL. 

For our joint design return period of 25-years, the relevant hydrologic combinations are found in 
Table H.4. With a watershed category of LL and using the representative approach we see that 
there are three combinations. Combination 1 is to use the 1.25-year discharge on Middle Brook 
and the 25-year discharge on the Raritan River. Combination 2 employs the 14-yr event on both 
streams and combination 3 uses the 25-year event on the Middle Brook and the 1.25-year event 
on the Raritan River. All combinations represent the 25-yr joint return period. 

Step 5. Estimate Discharges for Hydrologic Combinations. 
For our example, we need to estimate the 1.25-, 14-, and 25-year discharges on both Middle 
Brook and the Raritan River. We previously estimated the 25-year discharges using the 
applicable USGS equation in Step 2. To estimate the 14-yr discharge we need to use the same 
set of USGS equations to estimate the 10- and 25-year discharges and then interpolate. Table 
H.18 provides the results of applying equation H.5 for the return periods available in the USGS 
equations. 

Table H.18. Raritan/Middle Brook Discharges 

Return Period 

Discharge (ft3/s) 

Raritan 
River 

Middle 
Brook 

2 19,700 360 

10 35,800 720 

25 45,000 920 
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Discharges for the 14-year event are computed using Equations H.2 and H.3. For example, the 
discharge corresponding to a 14-yr return period for the Raritan River needed for combination 2 
is calculated as follows.  

( ) )800,35log()800,35log()000,45log(
)10log()25log(
)10log()14log(Qlog x +−

−
−

=

( ) 590.4554.4)554.4653.4
000.1398.1
000.1146.1Qlog x =+−

−
−

=

900,38905,381010Q 590.4Qlog
x x ====

Using the same procedure, the 14-year discharge on Middle Brook is also computed.  

The 1.25-year event is estimated using Equation H.4. For the Raritan River, the calculation is as 
follows: 

500,161010Q )800,35log(292.0)700,19log(292.1Qlog292.0Qlog292.1
25.1 102 === −−

All needed discharges are summarized in Table H.19.  

Table H.19. Raritan/Middle Brook Discharge Combinations 

Combination 

Middle Brook 
Return Period 

(yrs.) 

Raritan River 
Return Period 

(yrs.) 
Middle Brook 

Discharge (ft3/s) 
Raritan River 

Discharge (ft3/s) 
1 1.25 25 290 45,000 
2 14 14 790 38,900 
3 25 1.25 920 16,500 

Step 6. Perform Hydraulic Analyses for Each Combination. 
After development of discharge pairs for the hydrologic combinations, each pair is applied to the 
hydraulic model developed for Step 3. Table H.20 summarizes the stage and velocity at the 
structure site for each combination of discharges. 

Table H.20. Stage and Velocity For Raritan/Middle Brook Combinations 
Combination Stage (ft) Velocity (ft/s) 

1 44.2 4.9 
2 44.8 10.8 
3 45.0 11.8 

The most extreme results for the variables of interest are taken as the 25-year joint probability 
design conditions. For consideration of freeboard, stage is the driving variable; maximum stage 
is derived from combination 3. For consideration of scour, the designer takes the results from all 
three combinations and performs a scour computation for each. The maximum scour is used for 
design. However, in this case the maximum stage and velocity are both from combination 3, 
therefore, that combination should be the governing case for scour. 
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Although not true in this example, it is important to remember that the most extreme values for 
depth, velocity, or scour may come from different combinations. If that is the case, as in the first 
example in this document, results from different combinations are not combined. More 
information on the development and application of this joint probability method is found in the 
main report and appendix G. 

H-18 


	NCHRP Web-Only Document 199: Estimating Joint Probabilities of Design Coincident Flows at Stream Confluences
	Previoius Page
	Next Page
	==============
	Project Description
	Report Web Page
	==============
	Front Matter
	Contents
	Executive Summary
	1. Background
	1.1 Problem Statement
	1.2 Literature Review
	1.3 Research Objectives and Scope

	2. Research Method
	2.1 Work Plan
	2.2 Potential Strategies
	2.3 Database

	3. Data Evaluation
	3.1 Annual Versus Partial Duration Series
	3.2 Definition of Coincident Flow
	3.3 Mean Daily Versus Instantaneous Data

	4. Bivariate Distributions and Univariate Distributions with Copulas
	4.1 Fitting the Distributions
	4.2 Correlation Parameter Estimation
	4.3 Event Combination Development
	4.4 Complementary Data in Paired Datasets

	5. Total Probability Method
	5.1 Pair Count Matrices
	5.2 Conditional Probability Matrices

	6. Conclusions and Recommendations
	6.1 Factors Influencing Joint Probability
	6.2 Recommended Tools
	6.3 Suggested Research

	7. References
	Appendix A. Literature Review
	Contents
	A.1 Bivariate Distributions
	A.2 Total Probability Method
	A.3 Other Joint Probability Methods
	A.4 Storm Cell Characterization and the Use of Radar
	A.5 Bibliography

	Appendix B. Databases
	Contents
	B.1 Gage Pairs
	B.2 Instantaneous Data
	B.3 Watershed Parameters
	B.4 Statistical Summaries

	Appendix C. Bivariate Distributions and Copulas
	Contents
	C.1 Univariate Distributions
	C.2 Bivariate Distributions
	C.3 Copulas
	C.4 Empirical Distributions and Plotting Position
	C.5 Correlation Measures
	C.6 Prototype Analyses
	C.7 Correlation Parameter Regression
	C.8 Correlation Parameter Groupings
	C.9 Comparison of Regression and Grouping

	Appendix D. Total Probability Method
	Contents
	D.1 Theorem Application to River Stage
	D.2 Prototype Analyses

	Appendix E. Other Strategies
	Contents
	E.1 Marginal Analysis
	E.2 Tabular/Graphical

	Appendix F. Data Analysis
	Contents
	F.1 Prototype Watershed Data
	F.2 Watershed Regulation

	Appendix G. Application Guidelines
	Contents
	G.1 Specify the Design Condition
	G.2 Influence Reach Determination
	G.3 Select Joint Probability Method
	G.4 Copula-Based Method
	G.5 Total Probability Method

	Appendix H. Step-by-Step Application Guide
	Contents
	H.1 Introduction
	H.2 Design Steps
	H.3 Design Examples




