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Abstract

This report describes.a.laboratory prototype.designed to identify, map, track and fill
pavement cracks. Video imaging and electronic scanning equipment installed in a van is......
followed by a rack carrying a hot-air lance, a sealant wand, and a supply trailer.

The video sensor identifies potential cracks while the depth sensor verifies actual depth.
A map plotter defines the crack length, size and depth. Using the combination of visual
and depth sensing equipment, the cracks located and mapped were filled with an
accuracy of better than 1 cm. (0.5 in.).

Approximately, $125 million per year is spent by states on crack-filling with labor
representing 50 percent of the costs. Assuming a four-year system life at a cost of
$100,000 plus annual maintenance and operating costs of $25,000 per year, potential
savings could be as much as $60,000 per unit, per year or 19 percent of costs on a
national basis equal'to $24"r_Iffoh-ia'el:year.

.. .. . . ..

....... , ... - . . i
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Executive Summary

1 Introduction

Automation of roadway maintenance presents substantial oppommities to reduce labor costs, improve

work quality, and decrease worker exposure to roadway hazards. This report describes a research project

investigating an automated method for sealing pavement cracks. A prototype laboratory system was

initially constructed and demonstrated as pan of the project. A second phase field prototype system was

...... desi_q1_ll t_uiitancid'e'monst_. Also, the economic-feasibility-of automation for this application'w_

analyzed. The major result of the research was demonstrating the feasibility of identifying, mapping and

tracking pavement cracks. Using a combination of video imaging and electronic range scanning, routed

and unrouted cracks of I cm. (0.5 in.) could be located, mapped and traversed.

In the recommended field system for an automated crack f'flling system, a lead vehicle would tow an

xy-table assembly or robot ann (Figure I). The lead vehicle would _rt generators, computers,

sensor processing hardware, and controllers. Mounted on the rear of the vehicle would be a video camera

used for identifying cracks. The xy table is similar to a pen plotter with a cart moving within a rectangular

frame. Tools mounted on the xy table would be: a depth sensor for verifying cracks, a hot air lance for

cleaning cracks, and a sealant wand for filling cracks. Bulk supplies of sealant material and propane trail

behind the xy table.

/T--,-.
I Im°''*°'*

I I="u. 'm

neatw_

Figure 1: Illustration of a Possible Field System for Filling Cracks
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The prototypesystems emulatedtheproposedsystem anddemonstratedthe following steps:

• The vision system identified potential cracks and generated a traversal plan for the depth

sensor to collect rangedata

• The range datawas fused with the video datainto a unified map. Potential cracks identified

by the vision system, but not corroboratedby range data_were dismissed as filled cracks,

shadowsor oil spots.

......... '*The"cen_r i_s for'the co_bol_a_d'craCkS .wereide_i_l a_l a trajectoryminimizingthe.....

motion of the tools was generated. The crackswere traversedfirst with a tool cleaning the

crack with compressed air. After the cracks were prepared, the laboratorysystem again

traversedthe crack andfilled the crackvolume.

A photograph of the second generation apparatusappears in Figure 2. Appendix m lists the various

descriptivedocuments availablein additionto this report.

2 Sensing Pavement Cracks

Sensing hardwareused in the prototypesystem included:

• A commercial VHS camera was used to generate the video signal requiredby the image

processing board.

• Animage processingboard,commonly referredto as a frame grabber,was used toconvert an

analog video image signal to a digital malrix of numbers representing grey scale. In the

prototype, individual rastercells in the digital image were approximately 4 mm by 4 mm (0.2

in x 0.2 in).

• An infra-red laser range sensor was used to develop three dimensional profdes of the

roadway surface. The range sensor had a "footprint_ of 5 mm (0.2 in) in the configuration

u_ed in the prototype and range readings were taken every 2 cm. (0.9 in.) across the

pavement surface. The range sensor used cost approximately $ 2.000,

Other sensors were considered for the system, particularly sonar as an alternative for range sensing.

However, sonar systems were susceptible to environmental noise from wind and precipitation.

CarnegieMellonUniversity 2 Crack-FillingRobot



Figure 2: Photographof theReld DemonstrationSystem

A dual sensor system was used because eithervideo or rangesensing was not adeq-a_. Surface dark

spots or lines could be easily mistakenfor cracks in the video image. Range sensing was rea_tlvelyslow

since the sensor'had to be moved above each spot being mapped. Range sensing from a single point

would be expensive to achieve the requiredaccuracy, and a linear array of multiple sensors would

Cameg_Me,onUatven_ 3 Crack-_ngRobot



likewise be expensive. Thus, video imaging was used to identify area of potential cracks, and range

sensing was used to confirm the location andidentity of pavement cracks.

.-- 3 Representing Pavement Cracks

A flexible method of representingpavement surfaces was appliedin this researchbased on a two-and-a-

halfdimensional"quadtree"computermodel.The "half'dimensionreferstoelevationorrangedata.

Thisrepresentationmodelaccommodatednumerousoperationsforsurfaceperceplionandmodelingsuch

asimagefiltering:-regiswatiorr'ufmulliple-se_0r-d_a,'a_l- g.enerationof_.k-traversalp_-_rns.Th.e

C++ object orientedlanguage was used forsoftwaredevelopment. The model has been appliedtogeneral

condition assessment data derived from several commercial sources in addition to the automated

maintenance system [Haas90a].

4 Filling Pavement Cracks

Once pavement cracks were identified and mapped,specialized control soft,rare was used to traverse

cracks on the pavement surface for cleaning and filling. The motor controls andrelated software in the

systemproved to be quite accuratefor single andrepeatedmovements, with an accuracyover a 3mby 3m
.,_ .... ...

(10ft.x I0ft.)areaof5mm (0.2in.)

$ Alternative System Designs

Several alternative system designs were consideredfor-commercial and field systems. These options
- . . -.... . ....

included:

• Continuousmovement systems with a set of linear nozzles. Unformnalely,control of sealant

application would be difficult since instant on-off is required, and the cost of crack

perceptionwould be high with such systems.

" * Small, mobile, highlymaneuverable robots tethet_l to a field vehicle were considered as an

alternative to the xy table. These effectors could provide continuous filling but might

increasecosts andcontrol problems.

• Alternativesensing systems such as single point laser rangesensors were examined. These

Camne_MellonU_ 4 Crack-Fill/rigRobot



type of sensors have the potential of dramatically reducing the time required for range

scanning, but the existing technology could not provide a t-meenough resolution.

• Alternative effectors such as robot arms could replace the xy-table system. However. these

pose difficulty in terms of load bearing capacity, controlling contact forces, spatial

constraints and computational intensity.

• 6 Economic-Analysis ..........

A robotic cmckfilling system can have significant and substantial economic benefits. These benefits

include reduced labor costs, and improved quality and safety. A review of literature and reports related to

crackfilling practice and survey of the 50 states and various turnpike, towns, counties and provinces

provided data on crack filling practice and expenditures for this project. Although crack filling practices

vary significantly between states, it is a widely used maintenance procedure. It is also relatively labor

intensive with labor costs representing over 61% of costs on a per lane mile basis. It is estimated that

about $53.3 million per year is spent by states on crack filling. This is considered to be conservative as it

ignores expenditures by counties and cities as well as airports, turnpikes, other authorities and private
. . . o.. ........ . . .

organizations. Complete automation of this process would require about 450 crack filling units

nationwide.

Benefits would be realized in the form of reduced labor costs, improved quality and improved worker

safety. Assuming a 6 year system life, based on 6 months of operation per year, system acquisition costs

of $I00,000 and annual operating and maintenance cost of $I0,000 per year, a 5% discount rate,

productivity rates comparable to existing appmacbes and the elimination of three laborers at $12 per hour,

the net savings realized using the automated crack filler is approximately $6,300 per unit per year or 19%

of costs on a national basis. This is equal to $2-8 million per year in national savings due to labor costs

alone.

CarnegieMellon University 5 Crack-FillingRobot



1. Introduction ..

Whilemany roadwayconstructionandmaintenancetaskshavebeenmechanized,automationhasnot

generally been applied to construction and maintenance activities. Maintenance procedures remain labor

-. .... intensive and expensive. Recent advances inrobotic technology and the related experience in

manufacturing facilities suggest that greater automation may be extremely beneficial [Skibniewski 90].

Relevant technological improvements include new sensors, microchip computer processors, sensor

interpretation algorithms, vehicle control hardware and manipulator hardware. This report describes a

prototype automated l_/vement crack filling sys__m th.._,has ...beenimplemented in a laboratory setting for

concept demonstration and testing on routed crack scenes. It also suggests a design for an actual system

and provides an economic assessment of automated pavement crack filling.

1.1 Current Crack Filling Practice

Crack filling is normally conducted by a five or six person road crew [AASHTO 87]. The equipment

used includes pylons, a heavy truck, a sealant tank, a heated air torch, a sealant wand, and a muting

machine if the cracks are being muted prior to being filled. One or two crew members may be necessary

to direct traffic and place pylons. If the cracks are being muted, the router precedes the truck. An
...... ., . _ ..

operator walking behind the u'uck blows out the cracks with the torch and another in turn fills them in

with sealant material. A sand covering may be applied to permit immediate use by traffic. The procedure

varies significantly from region to region [FHWA 87]. For example, the Ontario Ministry of

.... Transpo'.rtafionuses an equipment train With .tWOreuters tObalance workloads [C_o.ng 8.8]. .....

Many states and provinces routinely fill cracks as a maintenance activityon an "as required"basis. The

expenditures on this activity often represent a significant portion of pavement maintenance budgets as

shown in Table 1-1. Unit costs vary from approximately $0.44 per linear foot in North Dakota [FHWA

- .. 87] to $1.55 per linear foot on Air Force bases [Brown88] in 1990 dollar. "-
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Table 1-1: Selected Crack Sealing Expenditures by States [FI-IWA87] (1984 Dollars)

Califomia Iowa North North Pennsylvania
(flexible) Carolina Dakota

Annual Crack Sealing 9,546 3,642 1,144 1,500 6,658
Program (l,000's $)

Annual Maintenance 102,000 75,000 298,208 35,000 637,000
Budget (1,000's $)

Maintenance Budget 9% 5% ........... 0.4_ ........... 4% ......... 1% "

1.2 Justification For Automated Crack Filling Research

Automation of crack filling operations is of considerable interest for several reasons. First, cracFallingis

a widespread and common operation in the United States. If even modest cost savings could be achieved

in crack filling operations, the total savings would be substantial. Second, automated crack filling may

achieve improved quality over existing field operations, so that the need for maintenance operations may

be reduced over time. Finally _ _tom.ated crack filling would reduce the exposure of maintenance

workers to injury and accident.

Automated pavement crack filling is a technically challenging operation for several reasons. Since

pavement cracks are irregular in nature and extent, simple numerically controlled devices cannot be used

directly. Some means of perceiving crack location and controlling maintenance equipment is required.

Moreover, crack filling is undertaken under field conditions which may involve extremes of temperature,

precipitation and debris. Maintenance of the equipment used in roadway work varies considerably in

quality, therefore robust and reliable equipment is required. Finally, introduction of automated equipment

in this domain must be justified by cost savings and quality improvements, so inexpensive and effective

equipment is imperative.

CarnegieMellon University 7 Crack-FillingRobot



1.3 Project Activities

The following specific work tasks were performed in Phase I of this research:

I. Functional Specification of a Crack Filling Robot

An overall specification of equipment and functional software capabilities was an important initial

step in the project. This specification constituted the primary design document for the system.

2. Purchase of Required Equipment and Software for a Laboratory Prototype

The laboratory system relied on commercially available parts and either commercial or public

.................... domain.sQf_,are, tO the maximmn extent possible. This .approach minimized development costs
and also insured that further development and deployment of the system could be undertaken. ......

3. Assembly of the Prototype Crack Filfing Robot

Construction of apparatus and integration of software in the laboratory was performed.

4. Software Development for Vision, Evaluation, Planning and Control

Considerable programming for the system was required, particularly for evaluation, planning and

control. The language used in this work was C++, an object oriented C dialect available with

numerous operating systems [Stroustrup 87]. The programs were written in a modular fashion to

permit extension to later system designs.

5. Demonstration of the Laboratory Prototype Crack Filling Robot

Laboratory demonstration Occupied the final stages of the research project. Several test specimens

were assembled and used to test the system. For simplicity, laboratory tests were done using a

powder substitute for actual sealant.

6. Evaluation of Economic Impact and Overall Technical Feasibility

In the process of developing and using the System, more refined es"timatesof the costs of a field

level crack filling robot were developed. Possible benefits were also assessed by interviewing

experts and examining state records of crack filling costs.

The following tasks were performed in Phase II of this research:

1. Functional specification of Modifications Required for Un-routed Crack Perception

Included in this specification are both sensor and software modifications. •....

2. Purchase of Required Sensors, Field Computer and Table Frame

_The need for a more sensitive range sensor than the infra red laser sensor currently used to identify
routed cracks was reviewed. The existing sensor was still used. To produced a more robust

system for field testing, the stronger, mobile system frame was produced.

Carnegie Mellon University 8 Crack-F'fllingRobot



3. Modification of Perception Software

Existing software coded in C++ was modified to permit perception and modeling of tm-muted
cracks. No modification of table control software should be required.

4. Laboratory Testing of Un-routed Cracks

Laboratory testing of the refined sensors and software was conducted.

5. Field Demonstration of the Crack Filling Robot
Field demonstration was conducted at the Caltrans Research Laboratories in Sacramento.

6. Evaluation of Economic Impact and Overall Technical Feasibility

In the process of developing and using the system, more refined estimates of the costs of a

commercial crack filling robot will be developed. Possible benefits were assessed by interviewing

experts surveying possible users and examining field records of crack filling costs.

7. Documentation and Reporting

An important component of the research effort was documentation of the system, including the

design, operation and performance. Documentation included written reports. Professional papers

were presented at conferences or in refereed publications describing the research work. The

system was also demonstrated at the AASHTO Technology Transfer Fair in Milwaukee.

Phase II was conducted with support from Caltrans. Meetings were also conducted with the University

of Davis and Caltrans researchers working-on .ContractH-107, "Fabrication and Testing of Maintenance

Equipment for Pavement Surface Repairs".

CarnegieMellonUniversity 9 Crack-FillingRobot



2. System Architecture

2.1 Introduction

.... Identifying cracks in the road surface automatically is not aa easy problem [Haas 84, Butler

89, Fukuhara 90, Bomar 88, Maser 87, Mendelsohn 87, Wigan 87]. Mapping the layout of the cracks in

detail and selecting those to be filled increases the difficulty. In the case of muted cracks, the problem is

simplified by distinct visual p_n_ms and by consistent groove dimensions. To identify the cracks,

.......characteristic,surfacedataisn_luire_Applicable-sensingtechnologyincludesvision,range,and heat
............. ,_..... .-I.... -._

sensitivedevices.Inpractice,allthesesensorsexperiencenoisebecmse of thevariedtopologicaland

colorconditionsof thepavementsurface,and becauseof environmentalfactorssuchas wind and

sunlight.Even withgood data,a crackidentificalionsystemcanbe fooled.Analysisofa videoimage

aloneshows thatitisalmostimpossibletoautomaticallydetectthedifferencebetweena routedcrack,a

filledcrack,and a stripofdarkoil.With thecorroborationofrangeinformation,however,routedcracks

can be distinguishedfrom impostors.Conversely,rangedataaloneistoonoisytobuilda good crack

representationby itself,itssensitivityrangeisnarrow,and itistimeconsumingtocollectAltema_vely,

combininginformationfrom bothrangeand visionsourcesintoa common surfacerepresentationcan
.... .... ...... , "I. ._* • ,. ". . •

increasetheoverallaccuracyand speedofcrackperception.The capabilitiesrequiredtodo thisexistin

thepavementsurfacemodelpresentedinChapter4.

A schematicillusWationof thepro.totype.systemdesign,appear.s,in Figure2-I.A leadvehiclewould

tow an x_,-tableassembly,thesealant_pply ai_lp/6panetanl_.The leadVehiclewould carrythepower

sourceforthemanipulatorand thenecessarycomputingequipment.A camerawould be mountedon an

extendableboom which couldbe suspendedabovethework surfaceduringoperation.A videomonitor

wouldbe locatednexttothedrivertoallowmonitoringandmanualintervention.The monitorcouldalso

be used in an interactive configuration in which the driver would enter of rough directions to the system

via a joy stick in the form of graphics overlayed on the monitored scene. Three tools would be mounted

on the xy-manipulator. They include a hot air lance, a sealant wand, and an infi'ar_ laser range sensor.

The laboratory prototype system pictured in Figure 2-2 performs the same crack filling process that

would be used in a field hardened version. Assuming a stop-start strategy, the following procedure would

be followed as the system moves down the road:

Carnegie Mellon University 10 Crack-FallingRobot
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computer I / [ [ materials

[I'_lQen'r"T, molifier I / I I_...d

J XV.lable emmment

Figure 2-1: A Schematic Illustrationoftbe CrackFilling Robot System

I. Sensordatais acquiredandused to develop a representationof lhe pavementsurface.

2. A mapof thecrackstobefilledisgenerated.

3. An efficient traversalplanfor thesurfacepreparationandfilling operationsis developed.

4. The CrackF'dlingRobotperformstheblowing andfl, ing operation.

5. The CrackF'dlingRobot advances andrepeatsthe foursteps describedabove.

In practice, the above steps involve a numberof substepsor components (Figure 2-3). First a video

image of the site is acquired. The information is pmces.u_ to extractregions requiringrangescanning to

corroboratecracks. Since rangescanning is relativelyslow, this approachminimizes the total areato be

rangescanned and lowers the time requiredfor the whole process. Range data acquiredby the table is

returnedto the perception system andmerged with the video data. Marks and objects thatwould have

misled a single video sensor based system are rejected with the use of the range data The model's

resulting crack representationis used to generate an orderedlists of cartesian coordinates describing

points along the cracks' medial axes. This derived vector of coordinatesis interpreted to yield a graph

reprererererere_ntationof the cracknetworkin the &,cato be repaired. The most efficient traversalthroughthis

networkcan be derivedby a varietyof means [Peter_90a]. The resultingtraversalplan is thencompiled

into a list of commands to the manipulatorand effector actuatorsfor cleaning and titling the muted

cracks.

.. _ _.no. univen_ _l C,w.k-FdUngRObot



Figure2-2: CrackF-tllingPrototypeSystem
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Figure :2-3: Crack Filling Process
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2.2 XY.Table Assembly

Before a description of the process begins, it would be beneficial m illustrate how the entire operation

fits in with the actual work environment. The manipulator used for the entire crack filling process was an

xy-table. It offered durable construction which provided sufficient accuracy for acquiring range data and

moving the tools for cleaning and filling cracks. The laboratory model consisted of a gantry and a can

together providing tl_ planar motion. The entire assembly is pictured in Figure 2-4, and the dimensions

and coordinate systems in Figure 2-5.

2.3 Crack Sensing

Vision Data Acquisition

The objective of visual data acquisition was to provide an accurate model of the surface of the mad which

contains the crack. Any aberrations such as oil markings or gravel, would also be captured. Vision data

was collected as a square-pixel image (512x512) measuring 2x2 meters (6.6x6.6 ft.). It was also

necessary to carefully align the reference frames used by the vision system and the range data system.

Range Data Acquisition

Because the vision algorithms could potentially identify pavement anomalies such as oil spots or shadows

as cracks it is necessary to corroborate areas of cracking identified by the vision algorithms. This is

accomplished by collecting range data on the areas of interest and fusing this data with the vision data.

Areas with intersecting details were corroborated as cracks, while those areas not corroborat_edwere

dismissed.

Range data acquisition was collected using the xy-table to position the range sensor located on the can.

Range-scans for the initial testing scanned the entire scene. This of course would not be the case in the

actual process because only areas of buerest, determined by the vision algorithms, would be range

scanned.

Carnegie Mellon University 14 Crack-FillingRobot



Figure 2..4: An mus_ration of the XY Table Mechanism
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2.4 Processing Sensor Data for Surface Characterization

Once the scenes were digitized and adjusted to be of equal size, they were processed to enhance details

that would precisely locate cracks. A Command Language Interpreter (CLI) image processing utility was

developed that offered a wide variety of useful tools for inter-actively extracting features from the video

and range data= Briefly, there were a set of primary operations which altered the image (vision or data) to

enhance the outline of the crack. Those functions included: ..........

• Binarization: set the threshold for which all grey values were converted to black or white.

Processing was simplified by working with only black or white, rather than 255 shades of

grey. The crack was represented as black and the background as white.

• Filtering: was used to remove much of the noise and to fill in small holes in the image. It

was useful for reducing spurious noise and for smoothing jagged edges of the raw data. This

operation is often referred to as soft.ening or blurring the image.

• Skeletonization: reduced the remaining details to their basic skeleton structure. This skeleton

structure was one pixel wide centered along the medial axis of detected cracks.

• Connecting: a process necessary fo_"quadtree conversion (explained in Section 5-9 that .,

removed lone diagonals.

The preprocessing softwme (CLI) is versatile, and supportedmany other ancillary features, described in

[Grove 90].

2.5 Pavement Representation

In addition to preprocessing, the perception software, CLI, also put the images into a quadtree

representation. The use of the quadtree analysis was to fuse the vision and range data into one multi-layer
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quadtree that could precisely locate and corroborate cracks. With this g:complished, a quadtree encoded

file could bc interfaced to the path planning and table control software. Those steps are described below:

........ * Video image loaded, processed and converted to the quadtree rep_:scntation.

• Components of the quadtrec (cracks) were labeled and sized.

• Range data was grafted into the quadtree model containing the data collected by the vision

.......... , system.--- --............. ...................................

• Components not corroborated by the vision system were rejected.

• The quadtree representation of the corroborated cracks was written to a file for use by the

path planning and table control modules.

2.6 Path Planning and Table Control

Once the crack had been identified and placed in the quadtree structure, the representation was passed

to the path planning software package. This consisted of several files. First, the crack was extracted from

the quadtree so as to allow"forrc_le output. This initial output was composed of several vectors of

coordinates describing the locations of cracks detected. The output of this crack description module was

a vector of short, linear-crack approximations described by start and end coordinates.

Path optimization software then planned a next-nearest neighbor traversal scheme. Crack _e-t and end

coordinates, which included crack intersections called nodes, were traversed in a sequence such that after

one short segment had been traversed, the next one closest would then be traversed. The program for

planning an efficient route was implemented using a recursive formulation.

The output of the path optimization module was compiled into a trajectory description file, written in a

Table Control Language (TCL). The TCL had its own working coordinate systems and primitives that

execute]:rack blowing and filling.

Before implementing any control on the table, a set of coordinate systems was defined. Those included
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a world coordinatesystem (Ow), a test scene coordinatesystem (Os), a cartcoordinatesystem (Oc), a tool

coordinate systems for theblower (Ob), filler (On),andrangesensor(Or),anda motorcoordinatesystem.

The TCL defined a set of absoluteandincrementalmotion commandsfor each of the effectom, relative

to the scene coordinatesystem. Those commandsconlzolled displacement,velocity, and tool actuation

(on/off/percemflow). Velocities were adjustedby the control algorithm_to provide piecewise linear

trajectorytracking. Velocity adjuslmentswere necessaryto follow a path similarto A, insteadof pathsB

orC shownin Figure_-_ .......................

iX2, Y2)
C

(x,YO

Figure 2-6: PossibleXY trajectorytrackingscenarios

CarnegieMellonUniversity 19 Crack-F'dlingRobot



3. Sensing Hardware

3.1 Vision

Acquisition and processing of visual information is a fundamental step for automated crack filling.

Data which accurately represents pavement features is necessary for crack detection, path planning,

blowing, and f'flling. A commercial Panasonic video camera already available in the Civil Engineering

Laboratory was used to provide the raw image. A frame grabber accepting live video information was

.... used to digitize the image obtained-from-the' vid_o"camera- for image processing. Since there were..

numerous companies which manufacture digitizing boards, the problem of selecting video imaging

hardware was reduced to finding one which conformed to the following criteria.

I. Many complex frame grabbers can cost thousands of dolla_. A fairly strict budget limited the

search to a low-end frame grabber which still had the flexibility to meet specific processing

demands.

2. The frame grabber needed to digitize an image and produce a 512x512 square array of digital

information in a string file format. The square array was necessary to implement the quadtree

strucvare which the data would ultimately possess. The (512x512) size was needed to insure that

resolution of the image was fine enough to capture all details of an image.

3. The frame grabber had to produce pixel (p!.cture"element) _a_as with a 1;1 aspe.ct ratio (the width

to height ratio of the pixel). Most frame grabbers digitize visual elements with the same aspect

ratio of a television screen (4:3). Correlation of vision data with range data was best

accomplished when both data arrayshad corresponding aspect ratios.

4. Each pixel had to represent a grey level corresponding to a brighmess level. These pixels range

.... from 0 to 255 representing absolute-grey levels.

5. The frame grabber had to produce information in a convenient form not requiring time consuming

data translating operations.

6. Software support had to accompany the board and have interfaces to Microsoft C 5.1:
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A product search revealed that the number of boards meeting the requirements were few. The

HRT512-8 manufacturedby High Res Technologies was selected. Itprovidedthe functionalitynecessary

for the project andoffered featureswhich wouldreducethedifficulty of dataacquisition. One drawback

- concerning the frame grabber'sability to processdatacenteredon the fact thatprocessingof datawas not

done on board, which meantprocessing was handled by relatively slow programsrunningon a personal

computer. A change made in the boardsusual configuration,in orderto meet projectrequirements,was

the installation of new oscillator. Normally, the frame grabberboard operated with a 40MHz clock

frequencyproducinga pixei aspectratio0f 4:3.. Thiswould.have been veryinconvenientfor reasonscited -

earlier. However, the fiexibility of the boardallow installationof an oscillatorwith a higherfrequencyof

48MHz which generatedimages with a 1:1pixel aspectratio.

The frame grabberalso offered a continuous video monitoring mode along with its capturingmode.

Live video informationcould therefore be monitoredbefore digitizing occurs. Upondigitizing, all analog

signals within the specified areawere digitized by a flash A/D converterand storedon the boardsmemory

buffer. This buffer of informationcould then be transferredto a computer buffer for analysis and

processing, which was done by means of software on the PC. Because of the oscillator change,a new

initialization routine was deveiopedto account fortiming changes for synchronization. Anotherproblem

encountered was introducedby limitationsof video information. Since a video camera and television

signals only contain 480 scan lines of actual video information,the digitizing board filled the remaining

lines of the bufferwere filled with meaningless 'information. Modifications had tobe made to the buffer

arrayto adjust the image and fill empty lines with tokendata In the end, each video pixel correspondsto

an area on the scene surfaceof 3.9 x 3.9 mm. (0.2 x 0.2 in.).

3.2 Range Sensing

The range data was acquired using an infrared laser range sensor (Hamamatsu H3065-10 Optical

Displacement Sensor and C3359-10 Controller). An A/D boardwas used to digitize the rangedata (Data

Translation Single Board Analog and Digital I/O System DT2805/5716). The range sensor was mounted

on the xy-table cart which was used to draw the sensor in a raster scan pattern over the scene. The

"footprint"of the laser range finder was 15 mm (0.6 in.) or less, and its range was 350 to 650 mm.(14 in.
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to 26 in.). Its range resolutionwas :1:0.5 m 4.0 mm (0.02 in. m 0.2 ilk) depending on surface conditions

includingreflectanceand texture. For the2 m x 2 m (6 ft. x 6 _) work areaof the rangesensor,an array

of 128 x 128 range values were acquiredfor each scene. More efficiency would have been possible by

limiting the range scanning to areas of interest. This would require further software development to

control subsequentperception operations,but it should be implementedin furoresystems. Each range

value correspondedto an areaon the surface of 15.6 x 15.6 mm (0.6 in X0.6 in). For rangescanning,the

scene surfaces were covered with debrisin a realistic pan_rnabout the cracks. The rangenoise produced

by this debriswa_ apparentin-the-rangedataimages, however the,varions algorithmseffectively removed

the noise fromthe final binaryimage.

.-- :.

CarnegieMellonUnive_ty 22 Crack-FillingRobot



4. Representation

4.1 Introduction

The pavement surfaces model applied in this project (Figure 4-1) is a combination of a surface

representation model and an associated characteriT_tlon process [Haas 90a]. The surface representation

was comprised of characteristics at several levels of abstraction and aggregation. Characterization was

comprised of four basic operations: filtering, aggregation, fusion and structuring. Characterization

transformed the state of the surface repn:senmtion.Common dam structures supported characterization

and facilitated the surface representation; in this way the elements of the model were unified.

unter area

L
surtl_=e charlicterizauon

reWesenUll:(m (process)
....... i

P

• .. surf am ....
dilSCIrlptlO#t ..

Figure 4-1: Overview of Pavement Surfaces Model

The model assumes pavement surfaces could be effectively characterized in two and one half
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dimensions, providing for the inclusion of pavement contour information. This assumption implied that

all significant parts of the surface would be visible from directly above. Therefore pavement surfaces

could be described in two dimensions with elevation as a scalar component. Surfaces can be represented

by characteristics at different levels of aggregation and abstraction. The level of aggregation of a

characteristic refers to its spatial extent and its distance hierarchically from original sensed data. Three

levels of characteristics are defined, in hierarchical order:.

• properties - derived from other properties or measured directly
- . . . - . ...

• features - derived from properties and other f6atures, find......

• regions - spatial aggregations of sets of features and properties

The surface representationis composedprimarily of two data structures. The first is a grid for mapping

sensor data measurements. Measurements from different sensors are referenced to common points on the

grid and thereby related to each other spatially. The grid supports sensor data filtering and reduction, and

it forms the foundation of a generalized quadtreewhich is used to relate characteristics in a framework

useful for data fusion and structuring. The generalized quadtree has advantages over other surface

descriptions. It is compac'r_c_s_ofitShierarchical structure and is unified because its nodes create a

useful parallelism among surface characteristics. Each node is a data structure, with slots for each surface

characteristic in a quadrant and with values for each slot. Descriptions of uniform characteristics

spanning a wide area o_fthe surface may be contained in higher.nodes and propagated down the tree to

access information at any level, including points, For example, Figure 4-2 illustrates the qu'adtlee"s

hierarchical representation of pavement depression and cracking information. In their final state, each

quadrant encompassed an area in which the property or feature value was relatively uniform.

The model was implementedas a software kemel or library using C++, an object oriented language

[Haas 90b]. As a result, the grid, the tree types, and even nodes were implementedas data objects that

have functions associated with them. For example the node object could be split, meaning it could grow

four descendants, or pruned, meaning it could remove its four descendants. This form of implementation

promotes modularity, independence and data hiding, and simplifies some algorithms.
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l_ire 4-2: Multi-layer Surface Quadu_e
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4.2 Surface Characteristics

Data was stored at different hierarchical levels of surface aggregation and abstraction in the model.

The levels deirmed included properties, features, and regions.

Properties are values associated directly with a grid point. A pml_:rty is defined as the value of a

phenomenon measured or calculated at or about a point in the xy grid. l_roperties may include:

• elevation - the distance in the negative z direction of a point with respect to an xy reference

• plane above the surfat:e

• color - the intensity of the red, green, and blue spectrums of light sampled at a point on the

surface

• grey level - the intensity of a pixel in a monochrome video image

• infrared level - the degree of infrared radiation detected at a position on the surface

• electro-magnetic potential - the magnitude and direction measured at a point on or just

above the surface

• gradient - calculated for elevation, grey level, color, or other local properties

• texture - the phenomena of globally repetitive surface elements

• edges - the boundary between two different areas. Points on the grid could be identified as

belonging to an edge through simple gradient thresholding operations.

• deflection - the center point

Only some of these properties were used in the laboratory prototype crack filling robot.

A feature was defined as a spatial attribute ofthesurface which helps to characterize it. Features were

associated with areas of the surface. For example, the grey level of a pixel wass a property, but a number

of pixe]s with low grey levels in an area of an imagecould form a feature called crackingwhich was

associated with the corresponding surface area. In the generatized quadtree there was a state associated

with each feature for each quadrant.
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A region was defined as a contiguous area of a set of features and/or properties. Regions could be

areas of hypothetical condition/cause pairs, areas of a particular condition, or areas where a set of features

was relatively constant such as areas of a type of material or substance. In the generalized quadtree,

regions were described by a set of adjacent quadrants, and they could be derived using manual,

algorithmic, or knowledge based processes.

4.3 Surface Representation

The kn'id was the basic-common-slructure bywhiclr sensor da_'was unified. It wa_ an arrayof points

laid out in a rectangular pattern in an xy reference plane. The plane was normally located above the

surface with and arbitrary orientation The spacing between the pointsalong an axis was constant, but the

number of points along either axis was variable. Two conditions were imposed, however. First, the

number of points in each dimension had to be a power of two. Second, the number of points in each

dimension had to be divisible by a common denominator equal to the length of the smallest dimension or

one half the length. Those conditions facilitated subsequent conversion to the generalized quadtree

representation.

The grid dimensions were choserrso that all sensor data could be associated in a one to one mapping

with points on the grid, which meant that no two datums from one sensor could be mapped to the same

grid point. This condition was satisfied if the data type with the highest spatial resolution was used as a

basis for the grid dimensions. The highest resolution data was the digitized image data in this application.

The definition of the grid ignored sensor performance in terms of spatial resolution, range resolution,

scanner position accuracy, and dynamic range. Instead, those factors could be considered in a measure of

variance associated with each sensor. This variance could then be used for a number of purposes

including sensor fusion. In practice, sensor spatial and range resolutions should be evaluated using good

engineering judgment when configuring a sensing system. In this research the grid was concerned only

that sensor measurements were centered on points and that those points could be related to a common

rectangular grid.

To permit efficient characterization of pavement surfaces and to provide a useful representation for
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applications, it was necessary to closely relate features and properti_; spatially and to access related

characteristicsquickly. This was a requirementfor both the data fusion and data structuringoperations

which formedfeatureextraction. It is also requiredfor applicationssuch as pavement conditiondiagnosis

where featureshave to be compared and related spatially in order to draw conclusions. The approach

used in this research was to generalize the quadtree by merging the single quadtrees corresponding to

individual propertiesand features of an area into one multi-layer quadtree(Figure 4-2). Thus each node

contained information concerning the state of _e propertiesand features in the quadrant that the node

represented,,a keypmpeny of th_ multi-layer quadU'_-wben implementing spatial set operations. A

feature is spatially a subset of another featureff the node at which its state is "black" is a descendentof

the node where the first feature's state is blackor is the same node. In orderfor this to be truephysically,

the sourcesof surfar,¢datamust be aligned spatially.

A multi-layer quadtree implemented as a single data swacture is a unique approach,and it provided

several advantages over implementing a group of single feature parallel quadtrees. For n-feature

comparison the multi-layer quadtn.'erequires only one traversal versus order n for the single feature

quadtr_s, therefore it is much faster for set operations. The multi-layer quadtr_ was more space

efficient for n types of d_t_: because,it-required only one set of pointers versus order n requiredfor

implementing the separate quadtrees. Orafdng new data sources onto the tree was faster than creating

new separate trees, because the memory allocation process was minimized. Those advantages vary in

magnitude with the level of aggregation and dispe.t_'m,ent o,f the source ¢)a)_...and were affected by the

method of data storage at the nodes. Another advantage of the multi-layer tree was the support for

queries at nodes for co-occurance and adjacency information, because the information resides in one

unified structure.

The multi-layer quadtree results in some descendent nodes having slots which had been as black or

white in predecessor nodes. This raises the issue of value inheritance. While such node slots do inherit

their predecessor's value in operations, the multi-layer quadtree could leave them undefined in the

structu_. Because of this and because slots could exist unfilled before and after some operations, the

multi-layerquadtreedefined four slot statP$"

• black - the characteristicfilled the areaencompassedby the slot's node
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• white - the characteristic did not exist in the area encompassed by the slot's node

• grey - the characteristic existed in part of the area encompassed by the slot's node

• undeg'med - no information was retained concerning the characteristic at this node

The state of black could have several values. For example rutting could exist as low, medium, and high.

In most cases it makes sense to discretize continuous valued properties into a few representative ranges

such as those for rutting, however wide ranges of black values are acceptable. The multilayer quadtree

_ reqult_cl't_ clefi_'tion of tWOty_ of"leaves, "Virtual"and "real'!. Real leaves had no descendants and

were at the bottom of the tree. Virtual leaves were defined with respect to a particular slot If the slot had

a state of black or white, then its node were a virtual leaf with respect to the characteristic that uses the

slot Virtual leaves could be intermediate nodes or real leaf nodes.

Further generalization of the multi-layer quadtree could be achieved by extending it to represent non-

square pavement surface areas in a functionally continuous manner. In practice, functional continuity

means that for a section of road perhaps as much as 1 km long, its representation should consist of a

single unified data structure. Quadtree algorithms should work without modification over the entire

structure. For a square area such as that selected for automated surface work, the structure would be a

standard multi-layer quadtree with a single root

4.4 Surface Characterization

Characterization changes the state of the surface representation in order to produce a useful description

of the surface. The four basic operations of the characterization process aredescribed below.

I. data filtering - linear and non-linear transformations,

2. data reduction - deriving a rep.resentative value from a set of d_t_:

3. data fusion - combining two or more spatially concurrent datmns into a new datum, and

4. data structuring - linking and integrating data.

Computer processing and space conswaints along with the nature of the application affect how the balance

of these operations were divided between the grid and the generalized quadtree. Generally, data filtering
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and reductionwereperformedmosteffectivelyon griddata,anddatafusionand structuringwere

performedmosteffectivelyonthegeneralizedquadtr_.

Thecharacterizationoperationscouldbegroupedintopracticalclasses.The f_stincludedoperations

on thegridtopreparerawsensordataforconversiontothegeneralizedquadtr_.Thenextincluded

operationstoconvertgriddatatothequadtmerepresentation.Quadtmesetoperationsformedaclass,and

adjacencyand regionlabelinganother.Theseclassesofoperationsam,describedinthefollowing

sections.

........ ° ..h ............. . . - :.

First, in order to understandthe general relationship between the grid, the multi-layer quadtree and

characterization,a hypothetical example may be useful. To extract the feature "fatigue cracking" the

characteristics tuning, strength,and crackingmight be used. This information could be acquiredin raw

form as propertydata using range, deflection, and vision sensors respectively and reportedas arraysof

data mapped onto points of the grid. The grid data is processed _d convened at appropriatelevels of

aggregation to the generalized quadtreerepresentation. Conversion is a structuringoperationthatplaces

the properties in the generalized quadtree as slot values in node data structures. The slot values are

datumswhicharecombinedbyafe.am.reextractionalgorithmcomposedof setoperationsintodatumsina

new slotwhichrepresentsfatiguecracking.Thisprocessisdatafusion.Becauseitisachievedatthe

highestlevelofaggregationpossibleitisextremelyefficient.Thestructureofthegeneralizedquaduee

relatesthefatiguecrackingfeaturespatiallytotheothercharacteristicsandtothepavementsurface.
....... . ......... _ .....- ,....... _ .........

The objectiveofgriddataprocessingistopreparerawsensordataforconversiontothegeneralized

quadtreerepresentation.Itshouldresultineachdatumindicatingwithashighadegreeofconfidenceas

possibletheexistenceornon-existenceofthecharacteristicitrepresentsintheareaitcorrespondsto.

Aggregationtoashigha levelasispracticalandusefulisalsopanoftheobjectivesincethesubsequent

conversionoperationiscostly.Reduceddatamustbe arrangedin-anarmyformatwiththesame

row:columnratioastheunderlyinggridandwithdimensionsequaltothegriddimensionsdividedbytwo

toapower.Also.eachdatummusthaveawhiteorblackstatevalue.

Filteringisusedtosegmentgriddam andtoextractfeatures.Linearfiltersareimplementedusing

convolutionoperators[Ballard82.Castleman79].Thresholdingandedgedetectionareexamples.Edge
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detection has been used on video image data of pavement surfaces to segment datums possibly located

along cracks since cracks form an edge between regions in an image [Haas 84]. Non-linear filters

include, for example, median fdters which are used to remove spurious data.

Skeletonizing is an operation that derives the skeletons of blobs in a black and white image. It is one

method of reducing data as illustra_d in the next chapter. Another is to divide the grid into areas

corresponding to quadrants at some arbitrarylevel of aggregation and derive a summary statistic for each

area. For example, U'ansyerse,.profile_datamay, yield approximate range.values over a 2m x 21 areafrom

which rut depth values can be derived along the wheel path and averaged for a summary value.

Alternatively, thresholded (black and white) video data can be summarized in small 1.6" square are.asthat

have or do not have cracking based on the number of black pixels in each area.

Continuous valued properties such as rut depth must be discretized to yield conversion ready values.

Rutting below a threshold value is not considered significant so areas where this is the case are labeled

white. Otherwise rutting can be discretized into three levels of severity, each one a "black" state value.

Several distinct conversion operations are necessary to convert grid data to the generalized quadtree

representation. Conversion from grid data to a quadtree can be performed using existing bottom-up and

top-down methods. The multi-layer quadtree structure makes an additional operation necessary, that of

"grafting" layers of grid data onto an existing quadtree structure. The strip quadtree requires its own

unique root structure and related algorithms to direct the standard conversion operations. Conversion

from generalized quadtree d_t_to raster data is also required to display and print graphic results.

Algorithms for converting grid data to a quadtree were cited earlier. A very simple algorithm was been

implemented in the model's kernel making use of the node object's split and prune functions. The

algorithm was slow, however, and created a bottleneck in overall processing. Replacement in a future

generation of the model would thus speed processing. The algorithm functioned re,cursively, splitting and

priming_the tree as it visited each point in the grid array. The grid data level of the tree was defined as 0

for this aigorithm. Otherwise, the generalized quadtree trca_d the root node as level 0. The grid data to

quadtree conversion function started at the root node. The algorithm is summarized in Figure 4-3.
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maintainlowerr_ht arraycoordinateso!the currentnode'squadrant,and
maintaincurrentlevelof thetreeforeachrecursion

IF the levels 0
insertthe arraycel valueinthecurrent node

,. ELS_.......
....... ".... s_kthen°d"_ _ _is_n_n ior"_ _,,ng..-._ .-

IFthe siblngs amd blackor allwhite
prone_n, and

_ valueintheparent(cutterS)node

ELSE
put_ greystatevaluein theparentnode

retum

Figure _.3:..Grid Data to Quadtree Conversion Algorithm

1"his algorithm works equally well for multiple values of black. However black nodes with different

values were not merged. A flexible slot-_=,_ predicate.object was implemented that allowed a current
• _ •. ._ ,. . .._.- .'. ,_,

black st,,_ value to be specified for algorithms acting on the tzee. With the predicate object, a _xle could

be identified as black, white, or g_y with gcspect to a particular S]OL The pw.dicate object was also used

to identify virtual leaves.

The generalized quadtree was convened to raster data for display and printing. The model's softwat_

kernel facilitated conversion of quadtree data from the root or any branch root level down any number of

levels, or for any section along a strip quadtxee up to a maximum length determined by the

implementation. It also allowed graphic overlay of slot layers, and black states for a single slot using grey

levels, and it Could write quadmr_ division lines cotresIxmding to any depth. The arguments for

specifying output were described in the application developers guide to the kernel ['Haas90b].
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The model implements two binary set operations, namely union and intersection, from which more

complex set operations could be constructed (Figu_ 4-4). Each operation acted on two slot-value pairs

building the result of the operation in a "target" slot and _turning a value for the area of the resulL This

_luires a traversal of the multi-layer quadtree comparing slot values at nodes. Each operator makes a

full pass over the tree.

......................... A...... B C

n

O= ((AU B)N C)

Figure 4-4: Set Operations

Storage and Retrieval of The Model

There a_ many well developed methods of storing quadtree information which use an encoding
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scheme to order and store only the leaves of the tree [Shaffer 86]. In a nmlti-layer quadtree however,

because virtual leaves exist, the whole tree must be stored. A simple encoding scheme was implemented

that dismantled and reconstructed the generalized quadtree for any subtree or section along the snip

quadtree.

A function recursively traversed the quadtree writing the slot values for each node into a file. Each

node's slot values were followed by a control character indicating whether the node was a physical leaf of

the tree or an intemal node. After this, the tree was pruned from the root node. The process was reversed

using a simple recursive function for reconstruction; .............................

4.5 Handling Uncertainty

Sources of uncertainty arise from instrument sensing errors, imprecision and slippage in mechanical

components, missalignmenL data registration, data fusion operations, and propagation of error through the

aggregation and abstraction involved in the surface model's characterization processes. Sensing errors

can sometimes be reduced by using more sophisticated technology such as an infrared range finder with

built in automatic gain control. For imaging, increased precision and reduced exposure time can be

achieved with special video, cameras _and.lighting: In both these cases, there is a clear trade off between

cost and quality of data. In most cases, some error is acceptable and unavoidable.

Incorrect registration of data can occur because the scanning mechanism exhibits mechanical

imprecision. Ina work system such as an au_mat.ed p_yemcnt m.ainmnan'ce m_hi_. , there is potential

for error due to vibrations and relative shift between different sensor components. Also, environmental

factors such as dust, wind, heat, shadows, and even noise can affect sensor performance. Ultrasonic range

sensors are especially sensitive to many of these factors.

Misalignment of scans results when the different sensing systems are not rigidly connected to each

other, when the areas scannedarenotprecisely the same dimensions in terms of their outer boundaries, or

when there are liming irregularities. In laboratory experiments, the first two problems were reduced by

clearly marking the boundaries of the test scene, and adjusting scanning mechanisms to those boundaries.

In practice, the scanning systems can be engineered for alignment, but there will always be some error. In
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a field system, it is therefore useful to have a calibration procedure for alignment. Alignment error can

also be the result of cumulative round off errors in sensor scanning mechanism control algorithms.

The sources of error discussed so far are impossible to eliminate, and difficult to compensate for or to

model [McNeil 89]. The pavement surfaces model provides mechanisms for handling some types of

uncertainty in the form of its ability to work at different levels of aggreg_on and to associate confidence

measures with characteristics using additional slots. There has been significant research in the areas of

modeling and reducing.seusor_error-inzobetic and automated sensing systems. For instance, methods for

reducing error have been developed that nfuse" data from multiple time and position displaced scans and

from multiple sensors. There is a large body of literature in this area [Durrant-Whyte 87, Durrant-Whyte

86, Elfes 88, Duncan 87a, Duncan 8"70,Faugeras 86, Luo 88, Allen 84, Chiu 86, Crowley 87, Huntsberger

87, Henderson 8"/,Richardson 84]. However it is probably not practical for pavement surveying and

automated pavement work tasks to make multiple scans with the same sensor of the same general surface

area, since such redundancy is not feasible in a field operational system because of real time constraints.

Changing position would likely not create any useful new perspectives either given the generally two

dimensional nature of the surface unless very precise stereo vision processing was applied. Modeling

uncertainty withinthe c0ntext of _e pavement surfaces model is worthy of further investigation however.
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5. Software Implementation for Perception and Control

5.1 Introduction

Implementation of the pavement surfaces model should meet two key goals. First, the software that

constitutes its core functions and data structures should be as generally applicable in practice as the model

is in theory. Second, the software should be efficient and well designed. Good software design stresses

modularity and independence, sometimes at the expense of efficiency.

Object oriented program design encourages _data hiding' and "polymorphism for independence.

Polymorphic functions perform the same task on objects of many different types. Data hiding is used to

protect data from unintended damage by unrelated or unauthorized functions. Objea oriented program

design also encourages modularity. Because of this, an object oriented design methodology was

followed. Top down design was also used to a limited extent. A design document was produced as a

guide for coding and testing the kernel software [Haas 90b]. An alternative implementation approach that

has some merit is to use a functional programing language. An interesting functional programing

approach for quadtrees is described in [Burton 89]. It differs from C++ in its language's additional

capabilities of higher order functions-and lazy evaluation. However the language used is not well

distributed or easily finked to other software packages, and the code produced is generally inefficient.

A C++ program is composed of objects which are instances of classes. A class includes data and the

funct3onsjwhich may operate on and modify this.d_t_ A class is also considered a data type. The data in

a class is normally hidden from other classes. The result is that the internal data structures may be

modified without affecting other classes or parts of a program. Classes can be derived from other classes,

inheriting their functions and data elements while at the same time adding new functions and data

elements. The ability to declare class member functions to be virtual allows external functions to treat

derived versions of aclass as a single type. Virtual member functions are different versions of the same

function specific to each derived class of a base class. This is an implementation of the principle of

polymorphism. In practice it means that general quadlree operations can be implemented that operate on

different versions of quadtree node objects as if they were the same type. So an implementation quadtree

constructed with a derived quadtree node type is treated by the kernel functions as a generic quadtree

type.
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A key to good object oriented design is defining classes that correspond to objects in the real world

such as an employee record which has data that can be updated, operated on, and accessed. Specific types

of employees such as a "manager" can be derived from the base class type "employee" inheriting its

elements and adding new ones specific to type manager including possibly a list of "employee" elements.

The pavement surfaces model kernel is composed of a set of base classes which can be used directly for

applications or from which application specific classes can be derived. The base classes correspond to

objects in the model that have been described. They are described in the following paragraphs.

(a) the quadlree node class: qnode

The qnode includes the pointers that implement the quadtree structure. It also includes virtual

declarations of modification and access functions that are redefined in derived qnode classes. The size of

the qnode in memory is critical, so member functions must be limited. Slots are declared in the derived

nodes and their implementation has a critical impact as well. They can be implemented as a fixed length

vector or a variable length linked list. A variable length linked list minimizes the number of slots by

making a slot at a node only if it is required. However because of the cost of pointers, depending on the

number of layers and the scat_ of thesource data, vector implementation can be more memory efficient.

It is also simpler and it permits faster data access.

(b) the grid view class: view

The view class has a 512 x S 12 array that acts as a buffer for the grid d_t_ It is a "view" of the grid. It

includes all the conversion functions between the grid and quadtree representation, and it includes

functions that read from and write to grid and raster data flies. A derived class is implemented for the

generalized quadtree called strip_view.

(c) the quad_'ee base tree class: tree

The tree class includes a pointer to the root qnode object of the quadtree. It includes several basic

member functions for acting on the quadtree that are useful for applications. The members include

functions that dismantle to and rebuild the quadtree from ascii files. The connected component labeling
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algorithm is also implcmented as several private members and one public member function. A few other

utility functions are also implemented. A derived class is implemented for the generalized quad_ree called

strip_tree.

(d) the traverser class" traverser

The traverser acts as an independent device somewhat like a cursor that can be moved over the tree

structure in an arbitrary pattern. Among its members, it includes neighbour finding functions that use the

..... qnode's parent pointer.*-No'otherke'mel object uses theparent pointer, _o if the traverser is not being used

it may be worth removing the parent pointer from the qnode for some applications.

(e) special classes: q_lookup_tables, equivalence..pairs, slotpredicates

These classes provide necessary support. The q_lookup_tables class implements special predicate and

lookup functions required for some of Samet's algorithms. The equivalence pairs class implements a set

of functions and tables required for connected component labeling. The slot_predicates class provides

predicate functions for slot states that take slot indices and values as arguments and return true or false.

The values for the states can be assigned. . This class is used by both the view and tree class members.

(O the generalized quadtree's root structure: strip_roots_index

The generalized quadtree requires a root slsucture for a su'ip shaped area as opposed to a single root

node. The strip_roots_index class implements the base elements of the root structure. A derived root

structure is required for each application much as a derived qnode is required, but the kernel is

polymorphic with respect to this class, because derived qnodes are used to flesh out the strip quadtree in

the derived versions. These derived classes are the ones actually passed to the other kernel objects using

base class pointers. The "strip" quadtree can be declared to have any length. For a parzicularapplicadon,

'- standard lengths are used and the data for a whole pavement section length is encoded into or decoded

from a single file.

The base class relationships to each other are illustrated in Figure 5-1. The connections indicate which

classes either declare objects of other classes within their own objects or call members of other classes.
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Fora pa_c,,]:_rapplication some of the connections may not exist or are replacedby connections between

derivedversions of theclasses. Also. applicationsprogramsmayinclude new classes. An exampleof the

relationshipbetween baseandderivedclasses is illustratedfor the quadueenode classes in Figure5-2.

..f ---..,
\ t/F¢mi,¢= •

r. .-.°.. ..... • .... -

Cl t_les main program

view _ file_management _ tree

slot.predicates

GIL hook

traverser

qnode

.. . . . ... . ,...

Figure $-1: Kernel Class Connections

Hgures 5-3 and5-5 mnstratetheprogressionof solYwaredevelopmentfor the applications describedin

this report. The kernel classes are mustrated in Figure 5-3. and new and derived classes for each

applicationare shown in Hgure 5-5.

Several implementationimprovemen_ should be considew_l. Implementationof the model on a PC

would inc_u¢ its availability and its utility, but to do this. memoryusage would have to be decreased.

Cummtlyothe model is implemented on a SUN 3 workstationrunning Unix. The dynamic memory
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Figure_3: Kernel Classes
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requiredby the generalizedquadtreecould be reducedby replacing its qnode's member functionswith a

separateclass. However, this would increase the complexity of the kernel software. Memoryuse can

also be reduced by converting at higher levels of aggregation. Dynamic memory allocation could be

implementedmore efficiently to improvethe model's performance. Performance couldalso be improved

by replacing a few of the algorithms,particularlythe rasterdatato quadtreeconversionalgorithm. Faster

alternatives exist. In addition,some filtering operationscouldbe hardwiredor runon special convolution

processing hardware,thus increasing processingspeed by as much as severalmagnitudes. Quadtreesare

also a'good c_dicla_efor _xploiling multipleprocessorarchitec_res sincethe kernelcodeconsists largely

of recursiveindependentfunctioncalls that could be allocated to separateprocessors.

In addition to the implementation issues discussed above, the efficiency of the generalized quadtree

representation in practice is worthconsidering. The generalizedquadtreenodes that are implementedin

the GQL require 4 bytes per node pointer, 2 bytes per member function pointer, and 2 bytes per slot

element. For many cases, one byte per slot element is sufficient. A generalizedquadtreenode with a

single slot requires 30 bytes of memory. For each exlra layer of data a slot must be added. At one

extreme, adding a slot ratherthan generating a new quadtreefor each layer can result in uemendous

memory savings. This is the case where the data for each layer is in a checkerboardpattern. Such a

patternresults in the largestpossible quadtreefor the layerof data. In thiscase, the separatequadtreefor

each additional layerwould require 15 times more memory than that used by adding a 2 byte slot to the

generalized quadtree and 30 times morememory than that used bya I.byte slot: If the objects in each

layer of data, however, are well separatedspatially from other objects in other layers, then for two such

layers approximately 1/15th more memory is used by the generalizedquadtree than if the quadtrees for

each layer were separatestructures. For 15 such layers as much as twice the memory wouldbe used for

the generalized quadtree than what would be used for 15 separate data structures.. Again, this is an

extremecase.

Whe_er the generalized quadtree results in memory savings in practice depends mostly on the

distributionof the data in each layer andpartlyon each layer's resolution before conversion. Empirical

analysis is requiredto estimatethe actualmagnitudeof any savings using the generalizedquadtree. Most

of the applications considered in this report howevershould experience a decrease in memoryusage. In
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any case, the cost ofa small increase in memoryusage is far outweighedby the benefits of faster and

simplified set operatorfunctions and the fact that graftingonto a largely pre-existing structureis faster

than creatinga new quadtreestructure,becausememory allocationproceduresarenot requitedwhere the

-- grd.qeddatahas quadrantdivisions correspondingto thecurrentstructure.

5.2 Raster Processing

The perception software is derived from the model's kernel. While some kernel functions such as

• conversion an: useddirectly,.othe= become the basis of application specific software. For instance, a
• . .'.... ," _e, - .......

new crack filler quadtreenode is derived fromthekemers base class quadtreenode (F'igtue5-4). Figure

5-5 illustratesthe prog_ssion of softwaredevelopmentfor the crackfiller applicationusing thekernel.
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Figure $-4: The CrackF'fllerQuadtreeNode Declaration
., °.,,_. . .--.... .... . , .. .... . . . .. ...

The steps involved in crack perception an: nlnstrated in Figure 5-6. The tim step is to acquire a

digitized video image of the pavement workarea(Figure 5-7 (a)). The image is segmented by binarizing

it (Figure 5-7 Co)). This means thatpixels with a grey level value below a _ld value are labeled

black and those with greateror equal values are labeled white. The thresholdis set automaticallybut

would be manuallyumed by the truckdriverforthe local pavement section conditions.

The'next step is to remove noise from the resulting binaryimage. This is done using a nonlinear filter

implemented using a convolution operator. If thecenterpixel is in a local groupof pixels where thereare

fewer than a threshold numberof black pixels, it is made while since it is considered spurious,but it is
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Figure5-5: CrackFillerl_rCcptJonSoftwareDevelopment ,.

made black if the thresholdnumberof blackpixels exist. Thus with the properthresholdvalue such as 5

or 6, most black noise is removed, edges of black boundaries an= smoothed, and white pixeis in the midst

of a black region are made black. The resulting image still includes many objects that are not cracks

_gere 5-8 (a)).
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FigureS-6:PerceptionSteps
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Figure $-7: Original and Binarized Video Images of Test Scene I
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._ .. Figure 5-8: l='dtere.dand Skelewnized Video Images of Test Scene I
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5.3 Quadtree Processing

To build a traversal plan of those objects that are eventually determined to be cracks, ordered lists of

coordinate pairs along the objects' central or median axes must be derived. Strings of pixels can serve as

ordered lists of coordinates. In order to derive these sn_ngs,an algorithmthat thins imageobjects to

something that resembles their skeleton can be used. For the crack objects, the skeleton normally

corresponds to their central axes, so it serves as a useful "mad map" for the blowing and filling

operations. The crack skeleton (Figure 5-8 (b)) may however include, side spurs resulting from rough

edges on the originalobject bourldades,-something wh/c.h the- p.riorno4.se filtering Iis .useful for reducing.

The noise filter reduces loops by filling in spurious white pixels in black regions. While the crack spurs

complicate matters, the spurs and branches formed on spurious image object skeletons become

inconsequential as a result of subsequent processing. A rigourous medial axis transform exists for the

quadtree [Samet 83], but it can result in double quadrant thick axes that create very difficult interpretation

problems for the Iraversal plan generation algorithms. The algorithm implemented for this application is

taken directly from [Zhang 84] with corrections from [Lu 86].

An important operation is required nexL The skeletons produced may be connected in some places

only by their 8-neighbours (only diagonally). The kernel's connected component labeling algorithm that

works on the quadtree representation only connects quadrants that are 4-neighbours. Extension to 8-

neighbour connected component labeling is more costly, and potentially more complex crack network

representations would ensue later in the perception process..An algorithm was therefore developed which

is applied to the skeletonized image in the form of two logical operators convolved over the image that

convert 8-neighbour connections to 4-neighbour connections while taking care not to create two pixel

thick segments. The second operatorremoves spurs that would otherwise be interpreted as graph edges

later. Its implementation ignores the comer pixels in the 3 x 3 convolution matrix thus increasing the

efficiency of the operation at the expense of cutting off the ends of pixel strings. The operators are

illustrated in Figure 5-9. The results are illustrated for test data in Figure 5-10. Figure 5-11 illustrates the

results on the lest scene objects' skeletons. The 4-connecting algorithm may be of general use to quadlree

applications involving images composed primarily of lines.

The skeletonlzed and a-connected image is still in grid data format. At-this point, it is converted to the
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Figure 5-9: Algorithm for4-connecting

multi-layer quadtme representation fimng the raw image data slot. Since U1cgrid data is artarrayof 512 x
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Figure $-10: 4-cormectingon Test Data
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Figure $-11: 4-connectedVideo Data of Test Scene 1

512 pixels, the resulting tree is up to nine levels deep. Figure 5-12 (a) i]luswaes the quadrantdivisions

down six levels overlayed on the binary video dam. Each image object is then identified _mdlabeled
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using the connected component labeling algorithm described earlier. Both these procedures are

implemented using the model's kernel. When the connected component labeling is done, each black

image node has an object label number in the label slot. Also, the size of each object is stored in a

look-up table ac.c.ess_ by label number.

I I I
•, -. ..... • ... , , .,i. - • -_., --..i... • ,. ' ,. • ° •.

i

i t
I I I

. . . : I

(a) [b)

Figure 5-12: Quadtree Images for Processed and Pruned Video Data
of Test Scene 1

Figure 5-12 (a) indicates that many spurious-objects will-still exist in the surface representation at this

point. Many of the objects can simply be removed based on a size threshold. A kernel function is used to

travezse the tree and prune those branches corresponding to objects below the threshold size (Figure 5-12

Co)). The result is that both the tree size (computer memory used), and the work requi_! for subsequent

algorithms are reduced. A concern is that if the crack skeletons are fragmented, significant poruons could

be removed by this procedure. Small gaps can be bridged at the traversal planning-stage, but if small

component removal creates large gaps with too high a percentage of images, then it need not be executed.

One of the purposes of integrating the video data into the multi-layer quadtree first is to use it to

determine areas of interest in the scene. Areas are interesting if there are vision objects in them. Time is

saved in the overall crack filling cycle by range scanning only the areas of interest, because range
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scanning is a time consuming operation. It requires physical traversal of the scene using the xy-table.

The basic range scanning pattern implemented is a raster scan pattern, because it has the advantage of

simple table cont_l requirements and it facilitates precise grid registration. The quadtree is a useful tool

for breaking down the scene into areas of interest that should be ran|e scanned. A traversal of the tree

down to a specific level will yield white quadrants that should not be scanned and grey and black

quadrants that should be scanned (Hgure 5-13). In a field system, the processed video data would be

represented at the third level of aggregation using the quadtree representation, and the resulting black

• '" quadrants would-be-scanned for range data while tbe ,-white-quadrants would .be ignored. For the

laboratory experiments, full range raster scans were acquired as an interim measure to simplify the

development process.

I iI

tI

i t

It

!
i I

I
... .,, . .

Ill ........

Figure $-13: Quadtree Image of Area-of-lnterest Quadrants for Test Scene I

The range data must be processed at the grid data level into an array of values that represent the

existence or non.existence of cracking with the highest degree of confiderge possible. The original range

data for the first test scene is presented in (Figure 5-14 (a)). A Laplacian filter is applied to enhance the

muted cracks and eliminate the low frequency noise associated with gradual changes in elevation in the

scene with _.spect to the table frame (Figure 5-14 Co)). The data is then tluea_lded (Figu_ 5-14 (¢)).
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FinaLly, the noise is filtered out prior w sending the range data to be grafted onto the generalized quadlree

(Figure5-14(d)).
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Figure $-14: Images of Test Scene I Range Data Preprocessing Steps

Once therange data has been prepared, it is grafted onto the multi-layer quadtree usingthe kernel

functionforthatoperation(Figure5-15(a)).The rangeinformationisthenusedtocorroborateordie-hiss
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the vision objects. The percentage intersectionof range black quadranLswith each vision object is

calculated. Vision objects with corrobora_g rangedataabove a thresholdpercentageare retainedwhile

those below are removed from the quadtree. The remainingobjects are consideredthe best estimateof

the existence of cracking (Figure 5-15 Co)). An alternateapproachto identifying muted cracks would
+.

have executed a pun: intersection operation on raw vision and range information after both were

incorporatedin the multi-layer quadtree. Then camne,cted componentlabeling would be appliedto the.

r_ult of the intersection operation. While this could have been done with kernel functions alone, the

advantage,of.the connectivity of.the ¥ision.data might he lost. ,,..That is, the vision objects that do

correspondto cracks representthem well, andtllei_ is nO'l_Omti_aki_ themup _vithnoisy ranged_t_:'

i

.°

(a) (b) ....

Figure $-15: Quadtree Imagesfor RangeData andConfirmed CrackObjects
of Test Scene I

5.4 Trajectory Processing

To derive a Iraveasalplan of the corroboratedI_uted crack network, it is useful to build a graph

representationof the network. The graphrepresentationprovides an abstractionon which shortestmute

algorithms can operate (Figure5-16). The graphis constructedof generic graphelemems. An ordered

travex_,alof the ue¢ yields one or more linked networks of graphelements that conespond to the muted
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cracks. The networks are _ traversed and the elements classified as edge or node elements.

Associated with each node pair is a linked list of edge elements. The nodes and edgesare cross indexed

in _.._pecdve table su-uctures. Nodes can have one to four edges incident on them. The limit of four is set

by the 4-connecting algorithm applied earlier. This restriction simplifies mauers considerably. The spurs

described earlier can be dealt with at this point in a number of ways including a short branch removal

algorithm or by ignoring very short branches when the waversal plan is generated. A traversal algorithm

is used to plan a path through the network of cracks. It includes a variation on a shortest mute

........ ai'go'rithm[_"_}a]_ _rom'the l_h plan, movement and actuator commands an: compiled and then.

sent as a list of instructions to the xy-table mechanism control subsystem [Peters 90b, Peters 90c].

examplesequencefor
3 nearestneighbour

networktraversal

AB
BC

2 ' BE
BD

F'_,ure S-16: Graph RepresentationforTest Scene2
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6. Test Scene Perception and Processing
Three test scenes were constructed in order to develop and then verify the crack filler perception

subsystem. The scenes were consu-ucted of 2 inch thick polyethylene sheets. The muting groove

dimensions were 2 x 2 an (0.8 x 0.8 in), and cracks averaging 0.5 cal (0.2 in) in width mn along the

center of the grooves. The scenes were painted as realistically as possible with noise and spurious objects

included. The vision scans were taken with the scene oriented perpendicular to the ground which allowed

precise orientation of the video camera with respect to the scenes. A 2 x 2 m (6x6 ft) square work area

was defmed on each Scene. Its bottom left cofne/"i,¢the origin.,for th(_grid coordinate system. The video

frame grabber (High Res Technologies HRT512-8) acquires square pixels in a 512 x 478 array. The

remaining 34 rows of pixels were filled in at the top of each scene. Each video pixel corresponds to an

area on the scene surface of 3.9 x 3.9 ram. (0.2x0.2 in).

The processing results from the first scene were used to explain the perception procedures in the

preceding chapter. The results from the remaining two scenes are illustrated here. The same filter

parameter values were used for each scene, since it is an assumption of the automated crack filling system

that only the threshold value will have to be manually tuned, and tuning should only be necessary as new

pavement subsections are encountered. Figure 6-1 illustrates six of the steps of video data processing for

scene two. The image data is binarized Co). The resulting binary image is filtered twice (c). It is then

skeletonized and four-connected ((1). Then it is converted to the quadtree representation (e) and

components below a size threshold of 50 pixeis are removed (0.-- "........

Figure 6-2 illustrates the range processing steps for the second scene. The second image displays the

results of the Laplacian. The third displays the thresboiding results. The fourth displays the results of

filtering, and the fifth displays the quadtree divisions for the range data after it has been grafted onto the

generalized quadtree.

Figure 6-3 displays the results of combining the range and vision data in the corroboration procedure.

The remaining object corresponds to the routed crack in the test scene. The above results were repeated

for an additional test scene in Figures 6-4, 6-5, and 6-6. The percentage of the verified muted crack

object that exactly intersected the corroborating range data in each of scenes 1 {Figure 5-15), 2 ('Figure
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6-3), and 3 (Figure 6-'6), was 90 %, 60 %, and 60 % respectively. In most cases, the error in these

percentages was due to slight variations in the alignment of the video and range frames. Intersecting over

a wider area would increase these percentages. Alteratively, cracks could be assumed to exist if some

target percentage was met. These experiments used the latter approach.

In summary, the results from each of the three test scenes clearly illustrate the value of combining

range and vision data for deriving the precise layout of routed cracks. The pavement surfaces model was

useful for guiding data.acquisition de¢isions,.it, provided-a standard surface representation in which the

data could be incorporated, and it provided kernel functions with which the perception steps were

implemented. The experiments indicate that detection and selection of unrouted cracks for filling is

feasible with a more sensitive range sensor and some modification to the perception algorithms. The

experiments also suggest the potential value of combining range and vision data for automated pavement

condition assessment. This potential is explored in the following chapter.
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]B'mgure6-1: VideoDataandProcessingResultsforScone2
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•. Figure6-3: CorroborationResultsfor Scene..2...............
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7. Second Generation Design and Field Demonstration

The previous chapters reported on laboratory and simulation effocts during Phase I of the project.

During Phase II (1991/92), the following major activities were undertaken:

• the perception algorithms and software were extended to identify un-muted cracks

• the perception and mapping software were ported to operate on an MS-DOS based PC

computer from the original UNIX implementation

• a second generati0n, field hardened crack sealer prot0typemachine was designed and built

• field demonstrations were performed in Sacramento,CA at the Caltrans Research

Laboratory, and

• refined economic estimates were developed

This chapter describes this Phase IIresearch, with the exception of the economic evaluation which

appears in the following chapter.

7.1 Design Issues .....................

The primaryobjectiveof a designforautomationisto reducetheoverallcostof crackfilling.

Improvingthequalityof the work and workersafetyarealsoobjectives.The finaldesignmust be

evaluatedbasedon theseobjectives..OptimiT..ingthedesign_isa processof balancingseveralcriteria

withinrelevantconstraintsassummarizedinTable7-I.

Therearea varietyoffunctionalapproachesthatcanbe consideredforcrackfilling.Alternativesmay

havevaryingdegreesofmanualsupervision.Forexample,multiplenozzlescanbe usedforblowingand

fillingratherthanindividualeffectors.Arraysof nozzleeffectorswould be costly,and thenecessary

switchingpatternswould beextremelydifficulttoimplement.Inparticular,theviscosityofconventional

sealant material makes short frequent bursts difficult. In contrast, use of individual effectors requires that

each effector will somehow be drawn precisely along the length of the cracks to be filled. A multiple-

degree of freedom manipulator is necessary to control the path of the individual effectors. Options

include: (a) having the truck driver tele-operate the manipulator while the truck is stopped, (b) having the
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Table 7-I: Criteria to Evaluate Automated Crack Filling Systems

System Consn'ah_ts

• the ability to endure extremes of environmental conditions

• work quality that is equal to or greater than average manual quality

• nearly continuous up-time

• abilitytoendureaty_calimpactfromamoving'vehicle.............

• abilitytomaintainproductivityequaltoorgreaterthanmanualroadcrews(inlanemilesper

hour)

• automaticshut-offstoavoidinjuries

Design criteriato be maximized:

• reliability

• transportability

• power to weight ratio

• speed of operation

• autonomy (ability to work without manual supervision)

• maintainability (simplicity of design and modular componentscontribute)

• consistency and quality of work

Design criteria to be minimized include:

• operating costs

• expected down time

• noise

• production of debris

• use of sealant material

• weight of equipment
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truck driver check or add crack location informationto a partially automated system in which the

manipulator would be controlled automatically, and (c) having the operator simply monitor with interrupt

control a largely autonomous crack filling operation. In what follows, we shall consider the design of

manipulators for option (c) to meet the criteria in Table 7-I.

A device that first suggests itself as a manipulator is a robot arm cantilevered out from behind the lead

truck. Two constraints are imposed in this case. All parts of the arm must remain within the work space

defined by a section of the pavement, and the ann must have at least two degrees of freedom. Within

these constraints, numerous configurations are possible, such as the'two degree of freedom boom or a

backhoe-like configuration shown in Figure 7-I.

Most cracks describe irregular paths. Following such paths requires that the arm's conlroller calculate

control sequence solutions for many small incremental movements. Heuristics might also be required to

keep the arm within its workspace. As a result, computational requirements for arm conU'ol are severe. A

robot arm may be made to satisfy the design constraints, but its resistance to an impact would he

questionable given the potential moments about its joints. Concerning design criteria, an arm may be

portable, but the combined weight of two effectors may exceed the load specifications for commercial

robot arms. A commercial ann measures well against the remaining design criteria, however purchase and

operating costs can be very high.

A simpler solution for manipulation is a an xy-.table..Such a device worksmuch like a large scale

plotter with a gantry and mounted cart implementing x and y motions respectively (Figure 7-2). Control is

much simpler than a robot arm. With a frame-work constructed of I-beams, a table is more impact

resistant and stable than an arm in that reactions are always within the framework and distances to points

of support are minimized. The effectors are easily kept perpendicular to the pavement surface. All the

design constraints can conceivably be met. As for the design criteria, the device may he simply

constructed and therefore maintainable, but its transportability is an issue of concern. It measures well

with respect to the remaining design criteria.

In the following sections, requirements and options for automating the actions of the crew members

who blow and fill the cracks are described. The crews' actions include identifying the cracks to he filled

and then, in effect, tracing the cracks with the torch and the wand.
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Figure 7-1: Two Manipulator Options
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Figure 7-2: XY-Table ConceptualDesign

7.2 Surface Perception and Modeling

Identifying cracks in the ro_. st,'face automatically is not an easy problem[Haas 84,Fukuhara

90, Ballard82]. Mapping the layout of the cracks in detail andselecting those to be filled increases the

difficulty. Only in the case of routed cracks is theproblemsimplified by distinctvisual patternsof debris

andby consistent groove dimensions.To identify_ cracks, characteristicsurface datais required.

Surfacedatacan be acquiredat a suspendeddistance above the surface or nearthe surface by locating a

sensor with the effectors. It can be acquiredin rasterscan or arbitrarypatterns. It can also be acquired

with noncontactor with contactsensors.Contaa sensors such as a pin cushiontype rolleror a linear array

of brushsensors are not feasible because of their cost and their probableinsensitivity to narrowcracks.

Noncontact sensors include vision, range, and forward looking infrareddevices. Video cameras can

acquire a rasterpanem of digitized surface grey level values very efficiently. Range sensors such as

ultra-sonicand infrared laser devices can be drawn over the surface in any acquisition p_nem by the

effector equipment.In practice, all these sensors experience noise because of the variedtopological and

color conditions of the pavement surface, and because of environmental factors such as wind and

sunlight.
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The range of potential pavement surface characteristics that may be encountered in any particular crack

filling operation requires a powerful general surface modeling tool. The model should include a

perception element which acquires characteristic surface data with sensors and then processes the data to

extract useful features. The model should also include a surface representation from which useful

descriptions such as muted crack layouts can be derived. Even with good d_m; a single sensor perception

system can be fooled. Analysis of a video image alone shows that it is almost impossible to automatically

detect the difference between a muted crack, a filled crack, and a strip of dark oil. With the corroboration

of range information however;the'_muted"crack"can be distingu.ished from the imposters. Combining

information from multiple sources in a common surface representation can increase the accuracy of crack

perception.

7.3 Crack Filling Control

Control of the crack filling process is exercised at several levels. Control of a system that moves

continuously down the road at a constant speed introduces complexities in terms of perception, planning,

and especially manipulator control that are simplified by operating the system in a stop-start manner.

Assuming a stop-start strategy, the highest level of system control implements the following steps

repetitively as the system moves down the road:

1. acquire sensor data and develop a representation of the pavement surface

2. map the cracks to be..filled ....

3. develop a work plan

4. execute the blowing and filling operations

5. repeat the above four steps

In the process of developing the surface representation for the current area to be worked, the system

may compile a list of commands to the equipment to enact scanning patterns and acquire data. Once the

surface representation is complete, the system must also choose the order and direction of the cracks to be

traversed. This plan must then be compiled into a list of commands to the manipulator and to actuators

such as the open and close valve on the sealant wand.
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The movement commandsto the equipmentand the actuatorcommandsresult in machine level conu_i

problems that are more or less complex dependingon the equipment configuration.In the case of an

xy-table a command to move from point (xl,yl) to (x2,y2) can be translateddirectly to a numberof

revolutions for each one of an X and Y drive motor. Servo-conm31motors allow additional control of

accelerationand velocity. Higherlevel feedback may be requiredforat least two purposes:

• confirmingprogressandaccuracyof the effectormechanisms

• registeringchanges in position of thexy tablewith respect to the pavementsurface
, .," . .. . ........ -. ., .

It might also be possible to alter this process by changing the type of material being used. Low

viscosity sealant could be used to flow into cracks while excess sealant material could be scrapedfrom

the surface. However, identifying new materials with the proper amount of suength and low cost is

difficult,

7.4 A Second Generation Design

A schematic illusu'ationof the prototype final system design appears in Figure 7-3. A lead vehicle

would tow an xy-table assembly and the sealant and propane tanks. The lead vehicle would carry the

power source for the manipulatorand the necessarycomputing equipment.A camera is mounted on an

extendableboom so that it can be suspended abovethe work surface duringoperation.A video monitoris

located next to the driver for monitoring and manual over-ride.The monitor could also be used in an

interactiveconfiguration in which thedriverwouldentersome sortof roughdirectionSto the system via a

joy stick in the form of graphics overlaid on the scene on the monitor. Three tools are mounted on the

xy-manipulator.They include the heated air torch, the sealant wand, and an infraredlaser rangesensor.

The table structure may be steel l-beams verticallyorientedwith the top flange being used as a guide rail

for the gantry. In turn the gantry may be constructed in a similar fashion with its two main members

serving as rails for a carton which the tools aremounted.

CarnegieMellonUniversity 68 Crack-FillingRobot



Figure 7-3: A SchematicIllustrationof theCrackFillingRobotSystem
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7.5 Field Demonstration

Field demonstrations of the prototype system were made in August, :1991, in the parking lot of a

Caltrans research facility in Sacramento, CA. Figure 7-3 illustrates the field apparatus. The perception

and control example of the field system is summarized here.

In the automatic crack detection and mapping process (Figure 7-4) a video image of the work area is

acquired first (in this description, data from a field trial is used). It is digitized and stored in computer

memory as a 512 x 512 array of pixels. The image is then segmented using a grey level thresholding

operation which is manually tuned. More sophisfi_ and autonomous segmentation procedures are

unnecessary because of the slow moving equipment train and the availability of the driver for tuning. The

image is divided into cells of 8 x 8 pixels and each cell is classified as occupied or unoccupied by what

looks like a crack. The result is a cell occupancy arrayof 64 x 64 cells. The cell occupancy array is then

filtered to remove stray cells. Clumped strings of cells correspond to cracks on the road. These clumps

are thinned into singly connected strings of cells using a skeletonizing algorithm, so that the strings can

he convened into an ordered set of work area coordinates that can be used to generate instructions for the

manipulator (Figure 7-5). The occupancy array is then converted to the multi-layer quadtree data

structure. The strings _ identifi_l_ Connected groups of cells using a connected component labeling

algorithm, and very small strings are removed automatically (Figure 7-6). The remaining strings may still

represent marks of filled cracks, so range information is required to corroborate or dismiss each string, as

in Figure 7-7. _ ., ........
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Figure 7-4: Raw Video Data
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Figure 7-5: Occupancy Array of Video Data
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Figure 7-6: Median Filter of Video Data
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Figure %7: Raw Range Data
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7.6 Areas for Improvement in Further Research

Improvements in the hardware and software remain to be made before the crack filler is ready for

production. Hardware improvements include enlarging the frame of the crack filler to achieve a larger

scan area and hence reduce the number of l_nes the flame must be moved to cover a given area, as well as

refining camera mounts, upgrading several components to achieve higher speeds, and adding brakes.

Software improvements center around integration and generalization of existing software components.

In the next generation of hardwarer-improvements would be made-which would lead to a larger scan.- o ..

area with a shorter scan time. The following would increase the size of the scan area:

• The frame could be widened such that the available scan width is at least one lane width.

Since the frame is not permitted to extend into the adjoining lane, provisions would have to

be made to permit the sensors and effectors to extend to the very edge of or beyond the frame

so that the complete land width could be repaired in one pass.

• The length of the frame could be increased to the limits imposed by deflection and stability to

permit more area to be scanned and repaired before movement of the frame is required.

• The size of motors and placement of sideway bracing interfere with the movement of the cart

and gantry. Smaller motors and improved bracing design would permit the cart and gantry to

move.over a wider area.

Second, the hardware could be improved to permit faster movement of the effectors for crack

verification and filling. Currently, the can and gantry require about 2 minutes to complete the range scan

of the framed area. This speed limitation is primarily due to lack of stability, requiring that acceleration

of the can and gantry be minimized to prevent movement of the frame out of position during sensing.

While software improvements will vastly improve the robusmess of the system in accommodating

variations in precise orientations, improvements in hardware can also solve the problem of vibration.

Proposed improvements include:

• Adding brakes to the frame will stabilize the system against movement.Improvedbracing of

the flame, especially if the frame is enlarged, is essential.
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• A complete structural analysis of the frame should be undertaken to determine the optimal

bracing configuration and size of structuralmembers.

• An integrated z-y controller would permit more exact curve-following, eliminating the

separate x and y movements currently required to move the cart and gantry along a nonlinear

path.

Finally, the fieldwonhiness of the crack filler must be addressed in future generations of hardware:

.............. *_S_u_iicr'wh_is'wo_d" pe_rmitthecr_ filler;tObe towed at highway speeds behind a vehicle

insteadof limitingspeedsto fivemilesperhourand hencerequiringtrucktransportand

additionalassemblyanddisassembly,

• Improvedcablemanagementwouldpermitmore freedomofmovement ofthecartandgantry

andwould reducethepossibilityofdamagetothesysteminthefield.

• A new cameramount shouldbe designedwhichwillpermitrapidassemblyand alignmentin

thefieldandwilldiminishcameramovementduetovibration.

.- . . ...... -..

• At leasttwo camerasshouldbe utilizedinfuturegenerationsofthecrackfiller,toimprove

scan timeand reducespatialdistortion.

• A study of effectors for sealant should be undertaken to determine what limitations are

imposed by them, as well as optimalconfigurationsof the hardware and softwa_ with

sealanteffectors included.

Improvements in the software which operate the crack filler are essential in future generations of the

project. In fact, significant improvement could be achieved in the existing system by improving the

software and utilizing existing hardware. Hence, further research should focus on software improvement

before hardware modification is undertaken. Software improvements should include the ability to

calibratevideo and infraredimagesafter perception,pathplanning for cracktransversal after video

imaging, and development of a robust, integrated software package with a user interface for non

programmers.
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First, sensor calibration is most efficiently actueved by software calibration of video and infrared

images. Currently, adjustments must be made iteratively to the video camera in order to align the images

prior to sensing the image processing. This is a lengthy and arduous process which requires several

persons and several days to complete. Moreover, if movement of the camera occurs from vibration

during sensing, the system must be recalibrated. An algorithm should be created to allow the range

sensor m be calibraw_ to video images. Related software must be generalized to accommodate variations

in image size caused by this calibration.

Second, path planning should occur after video imaging. Currently, path planning occurs after infrared

imaging. An infrared scan is undertaken for the complete scan area, in addition to a complete video scan.

The video scan is currently completely redundanL The software should be modified to allow path

planning after video scanning. This would reduce the amount of infrared scanning to only verification of

video images.

Finally, all software should be evaluated and integrated into a turnkey package. In order to operate the

crack filler at present, several programs must be run independently, and files transferred between

programs. Software must be used. interfaced, generalized, and thoroughly documented in order to be

widely useful. With these software improvements, the robot pavement crack filler will evolve into a

usable product with only minor hardware modifications.

A field prototype system for testing is currently under-development by a team involving Caltrans,

University of California at Davis and Bechtel Corporation.
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8. Evaluation of Automated Crack Filling

8.1 Introduction

A field prototype of a robotic pavement crack sealer has been developed at Carnegie Mellon

University. The system identifies pavement cracks using video imaging and verifies that the cracks

actually have depth using a laser range sensor. The system then devek)ps a map of the pavement cracks

and can be extended to proceed automatically to clean and fill the aacks. The system is intended to

reduce labor costs;,improve-worker safety-due to _,duced exp?._o waffic and improve the quality of

the crack sealing operation. A preliminary analysis of the costs and benefits of automated crack sealing

indicated that the system is economically feasible [McNeil 90]. This analysis was based on a limited

survey of current practice. To obtain better estimates of the costs and benefits of automation, a more

comprehensive survey was administered to determine

• current crack sealing practice,

• the expected extent to which an automated system would be adopted, and

• the expected labor savings due to automation.

Thisreportsummarizesthesurveyresponsesandanalysisof theeconomicsof automationbasedon the

survey responses.

8.2 Data Sources ..... . ....... •.......

A two page survey was developed to obtain information on current crack sealing practice including

materials, crew organization,costsandsafetyrecord. The limited survey used in 1990 served as a test for

the range of responses and wording of the questions. The survey in 1991 was more comprehensive in

terms of the questions asked and its distribution. The survey was mailed to the deparunent of

transportation or public works in:

• 50 states

• 19 tumpike and toll authorities

• 14 cities and townships
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• 12 countries

• 12 provinces

The survey form is included in Appendix I.

Responses were received from:

• 42 states representing an 84% response rate. (Alabama, Alaska, Arizona, Arkansas,

Califomia,.Colora_, .Connecticutr.Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kansas,

Kentucky, Louisiana, Maine, Maryland, Michigan, Minnesota, Mississippi, Missouri,

Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North

Dakota, Oklahoma, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, Utah,

Vermont, Washington, West Virginia, Wisconsin, Wyoming) For some states multiple

responses were received as different regions have different procedures.

*4 turnpikes and toll authorities representing a 21% response rate. (Indiana, Maine,

Massachusetts, Texas)
.......... _.... , . ._ ,

• ? cities and towns representing a 50% response rate. (Charlotte, NC, Dallas, TX, Kansas

City, MO, Napierville, IL, Omaha, NE, Oklahoma City, OK, Pittsburgh, PA)

• 5 counties (42% responserate "- Jefferson CountY, :C0, Lalce County, I_ Montgomery

County, IVlD,Oakland County, MI, Prince Georges County, MD)

• 6 provinces (50% response rate - Alberta, British Columbia, Manitoba, New Brunswick,

Nova Scotia, Saskatchewan)

.Complete mailing lists and responses are included in[McNeil. 91]. Tbe data were entered into a

spreadsheet to facilitate s_immarizing and analysis.
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8.3 Current Practice for Crack Sealing

The survey responses indicate tremendous variability in crack sealing practice from organization to

organization in terms of both the extent of crack sealing and the methc_ls used. Tables, figures and

descriptive statistics (maximum, minimum value, mean and standard deviation) are included to

summarize the survey responses. Where possible the responses have been extrapolated to provide national

estimates. Table 8-1 summarizes the responses for several questions. The minimum and maximum value,

the mean and standard deviation for the responses by individual states are reported. Where appropriate

totals'are als0' i/gluded. The follb_ing _bse_ons provide more detail on expenditures, method of,

accomplishment, crack preparation, crew size and organization, labor costs, materials, crack sealing

periods, safety and expected usage of an automated sys_m. This summary focuses on the responses by

the state transportation departments. The small samples for the other government units make it more

difficulttodraw conclusionsor characterize the response in termsof average values.

8.3.1 Expenditures

Survey respondents were asked for crack sealing expenditures and their total maintenance budget. The

proportion of the maintenance budget used for crack sealing is used to indicate the importance of crack
l- .4.. ".,_ - .i., . - ,.- -

sealing for a state. Three states - Alaska, Louisiana, and Wisconsin reported that in general they did not

do crackfilling. Others. such as lllinois, indicated that it varied from district to district. Figure 8-1 shows

the variability in the importance of crack filling for the states responding to the survey. Of the 42 states

responding, 26 states spend less that l%-oftheir malnten_ bhdget 0n craclc se_ing, compared with 8

states that spend more than 6% of their maintenance budget.

The surveys indicated that an average percentage of maintenance budgets spent on crack filling is 2.8%

with a high of 13.3% and a low of 0% for the agencies surveyed. Table 8-2 provides similar descriptive

statistics for each agency type. An estimate of the percentage of budget spent on crack filling for each

type of agency is also given in Table 8-21. The former quantity provides an indication of importance of

IThe averageof the percentageexpenditureis the meanof the ratiosfor each agencywherethe estimatedpercentage

expencfitureis the ratioof themeanexpenditureon crscksealingdividedbythemeanmamumancebudget[Cochran77].
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crack sealing in states where the latter can be used to estimate national expendituresas follows. Total

expendituresfor crackfilling are computedby agencytype by determining

1. the percentage of maintenance expendituresused for crack filling based on survey responses

(Table 8-2), and

2. total maintenanceexpendituresby agency(Table 8-3).

............. Table 8-1: SurveyResponses
Min Max Mean StdDev Total

NumberMonths O 12 5.98 3.35
CrackSealing
Conducted

% Time Crews (reported) 1 100 14.7 25.3
Involved in Crack (calculated) 1 97 28 28
Sealing

No of Crews 1 345 67 72 1802
Involved in
CrackSealing

Crew Size 3 14 7.16 1.95

AnnualAccidents (forall maintenanceactivities):
Fatalities 0 2 0.1 0.4 4
Injuries 0 975 131 250 368
Property Damage2....... 0 ........ 550" " 85 145. 2294

Using this method, roughly $53 million per year is spent by states on crack filling. The survey

responses indicatedthat in 1990 $48 million was spenton crackfilling in 38 stateswhich is comparable.

The total value of expenditures in Table 8-3 is approximately $190 million representing national

expenditures on crack sealing, but excluding expenditures by private organizations, the military and

airports=

2Fewer pmpellty damage ac_dents are reported than injury accidents due to unreported accide:ats and inc,onsistencies in

reporting requirements.
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Table 8-2: Percentageof Budget Spenton CrackfillingBased on SurveyResponses
Agency Min Max Std Dev Meanof Estimated%

% Expenditure Expenditure

States 0 6.00 1.45 1.22 0.69

Provinces 0 5.71 2.55 1.93 1.23

Cities 0.62 13.33 5.96 4.44 1.50

Counties 0 8.33 4.40 3.35 0.83

Turnpikes 0.18 0.18 0 .......... 0.18 0.18
(1 observation)

Table 8-3: MaintenanceExpendituresby Agency

Source: Highway Statistics, 1989

Agency Total O&M Amtfor CrackFilling
million $ million $

States 7,761 53.3

Municipalities 5,707 85.9

Counties& Townships 5,529 46.1

Toll Facilities 13.12 2.2

Total 187.5
....... i" ." • ". • .-.: ,.._ ......... .... . .. .

..,. . . . , *, ."

8.3.2 Method Of Accomplishment

Crack sealing may be undertakenby agency forces or by contractorsor both. Figure8-2 summarizes

the method of accomplishment (contract,agency forces or both) for each of the st_,'_. The majorityof

st_te-suse their own laborforces to seal crac.J_.
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Figure 8-1: %of MaintenanceBudget Used for CrackSealing

% of Maintenance Budget Used for Crack Sealing
...................,............•....... _ Low 0-1%

Q Medium 1-2%

High>20
Unknown

7" ';

/
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Figure 8-2: How Cracks are Sealed by State

How Cracks are Sealed by State
" _] Agency

m Contract
Both
Unknown
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8.3.3 Crack Preparation

States preparecracks for sealing using a variety of procedures,either individually or in combination.

The proceduresinclude hot air lance, routing,sweeping, compressedair and sandblasting.The numberof

states using each procedure is shown in Figure 8-3. All st_r_-srespondingused compressedair to clean

cracksbut only 16 mutedcracks priorto sealing.

8.3.4 Crew Size and Organization

-The proceduresuse_!for cr_k_sealing differby st:_ in termsOfthe activities involved in cracksealing.

For example, some states rout cracks and some states use contractratherthan direct laborforces. As a

result crew size and organizationvaries. Forthe statesusing agency forces,crack filling appearsto be an

activity undertakenby multi-functionalmaintenancecrews on an as required basis.The surveyresponses

(Table 8-1) indicate that on average crews are involved in crack sealing almost 10% of the time.

However, the reported crew utilization showed some inconsistencies. For example, it was not clear if

reported utilization rates were over a whole year or just the season during which crack sealing was

undertaken.Therefore, crew utilizationwas also calculatedas follows:

$ sprat m crack se_iin_
% Utilization = Sm(_cmu).*..#u_.* 2a_o_h *#c_m

The summary statistics for the calculated utilization are included in Table 8-1. The surveys also

provided details of crew compositions. Crew compositions for representativestates are shown in Table

8-4.. The averagecrew size is seven with a maximum of.14 anda mipimuj[ll-of3,-:.-.......

8.3.$ Labor Costs

Laborcosts vary from $5.1 l/hr to $23.04/hr with an averageof $13.26/hr for a laborer,not necessarily

including overhead and profit. These values are significantlylower than Means [Means 89] which gives

$26.05/hr for a highway laborerincluding overhead and profit. Cracksealing is relatively laborintensive

with labor costs representingover 61% of costs on a perlane mile basis.
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Figure 8-3: Number of States Using Crack Preparation Procedure

Safety MeasuresUsed in Crack Filling
Responses from 39 States

Note: SomestatesuUlizemorethanone safetymeasure.

e

___ ,_r_ ' ' : ' '
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! °
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Number of St_t_ U._ng Measure
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Table 8.4: CrewCompositionfor Crackfilling (1990 $)

California Connecticut Pennsylvania
Composition Cost Composition Cost Composition Cost

Traffic Control KettleOperator $11.33/hr Foreman $12.27/hr
Clean. Fill, Squeegee CompressorOperator $11.33/hr Driver $10.23/hr
Coverwith Sand, $15.00/hr 2 TruckDrivers $10.97/hr 3-5 Non-Operators $8.18/hr
Sweep each 4 Laborers $10.63/hr 2 Flaggers $8.18/hr

...... (6-10members)---- ........ ........ 2Fiaggers........... $10.63/hr-

Illinois Missouri
Composition Cost Composition Cost

2 Flaggers 8 @ 1 Supervisor $9.82/hr
2 Laborers $15.35/hr 2 TruckOperators $8.74/hr
(compressed air) 3 Maintenance each
2 Laborers Workers
(routers)
1 WandOperator
1 Squeegee Operator
IDriver $16.13/hr.......
ISupervisor $16.42/hr

8.3.6 Materials

A varietyof materialsare used includingAC Cement;AsphaltRubber,-PolymerizedAsphaltRubber,

FiberizedAsphaiLEmulsified Asphalt, and AsphaltCutback.The numberof statesusing each materialis

shown in Figure 8-4. Some states use differentmateriaisfor different appficationsor in differentareasso

the total number of users exceeds thenumberof survey respondents.

8.3.7 Crack Sealing Periods ....

The months of the year in which states undertakecrack sealing vary significantly depending on the

iocation,-thetemperatureandprecipitationof the areaand the deteriorationof the pavementto be sealed.

Figure 8-5 shows the number of states undertakingcrack sealing in each month of the year. The most

commontimes for crack sealing are Springand Fall, butsome agencies seal all year (or in all butthe very
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Figure 8-4: Numberof StatesUsing Material

MaterialsUsedin CrackFilling
. Responses from 39 States ............

Note: Some states use more than one material to fill cracks.
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Number of States Using Material

cold months). As shown in Table 8-1, states undertakecrack sealing six months of the year, on average.

The surveys also indicated that approximafley70% of states use payment condition to detemine when

cracksealing is required.
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Figure 8-$: Number of States Crack Sealing in Each Month

Crack Fillingby Month
......................-.............Responsesfrom-39States .... .,

•4....... t ....... !....... I
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8.3.8 Safety

All states reportedthat they close a lane to do crack sealing and most (33) states use flagmen. The

numberof states using various safety measures is shown in Figure 8-6. However, despite routinesafety

practices, a significant number of accidents involving maintenance workers were reported as shown in

Table 8-1. With a total of 3681 reported injury accidents involving maintenance workers a slight

reduction can have a significant impact.

8.3.9 Expected Usage of Automated System' .......

The survey responsesindicatedthat35 of the42 stote-swould adopt the automatedmethod if it was cost

effective. That is, of the states sealing cracks,90%wouldadopt the automatedsystem.

8.4 Analysis of the Costs and Benefits of Automation

In orderto analyze the costs and benefits of automation,estimates for the number of cracksealing units

to be used, theexpecled costs and the expectedsavings need m be developed.

8.4.1 Estimate of the Market for Automated Crack Sealing Units

To develop anestimate of tl_ humor of cracl_sealing units likely to be used by states, the analysis

focussed on crack sealing by agency forces. The 35 states indicating thatthey would use an automated

crack sealing system represent 1800 crews. Based on the survey responses, a crew is involved in crack

sealing 25% of the lime on average. Therefore, it is assumedth_a crack sealing system could be sha_l

between 4 crews. Therefore, it is expected that 450 units (1800 crews/4 crews per unit) are required

nationallyby states intendingto used automatedcracksealing for work performedby agency forces.

8.5 Reduced Labor Costs due to Automation

An importantbenefit of automationis the _luced laborcosts. The datapresented in Table 8-4 indicate

that three (3) laborerscould be elimin_ttPdfrom the process while still maintainingadequate supervision

of the-equipmenLThese three laborerswould normally be involved in cleaning the crack, andusing the

filling wands. Using the automated system, a crew would then consist of a Supervisor,a driverand two

flagmen.The expected laborsavings arcestimatedto be:
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Figure 8-6: Number of States Using Various Safety Measures

SafetyMeasuresUsedin Crack Filling
Responsesfrom 39 States

............... •.......Note.Some states.ulilize more"_an one safety measure.---

!
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* •

lane _ " : : : -' !: ; ; t = ;

,'_ ,-' ( e' _' _' (
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Numberof States UsingMeasure

3 _ts 6 Months
c_w x $12/hr * 0.25 * 2000hts/yr * 12M_ = $9.000 per year per crew.

This is based on the following assumptions:

• The crew uses the equipment 25% of the time for 6 months of the year.
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• Average labor rate is $12/hr.

• Available work time is 2000 hours per year.

8.6 Life Cycle Costs for Automated System

Life cycle costs for the system include acquisition costs, and annual operating and maintenance costs

[McNeil 90]. The system acquisition costs are estimated to be $100,000 per unit based on the breakdown

of costs given in Table 8-5.

• . . • ...... ...., ......

Item Cost
($ 0o0s)

Computing 10
Generator and UPS 8
Controllers and Motors 5
Camera and Boom IO
x-y table and nailer I0
Other 17
Engineering, Assembly and Manufacturing 40

Total Capital Cost 100

Table 8-S: Capital CoSt Breakdown

Annual maintenance and operating costs of $10,000 per unit per year are based on the following

assuml_JOrlS: ....

• Software maintenance - $2.500/year

. Energy expenditures - $2,500/year

• Set-up and dismantling costs - $500/year

• Transportation costs between job sites - $1.000/year

• Maintenance and repair - $3.500/year

The system life is assumed to be 6 years based on 6 months operation per year and regular maintenance.
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8.7 Net Benefits due to Reduced Labor

Using these cost estimates for the automatedsystem andestimatesfor the laborsavings, the difference

in expendituresusing the automatedratherthan the manualmethod can be developed.Using a discount

rateof 5%, a system life of 6 years (with the equipmentonly being utilizedfor 6 monthsin any one year),

and productivity rates comparableto existing procedures,the net present value of the additionalcost

(acquisition,maintenanceand operating)of the automatedsystem is $150,7603. When sublractedfrom

the laborsavings over the life of the system of $182,7364the net laborsavings ate $31,976 per unitover

• .. the. life..of the,,system.or.$6,3130.per..unit.per.year_ Annualcrackfilling expenditures by states were

estimated to be $53.3 million per yearandit is expected that 450 unitswill operatenationally. This gives

a national saving of approximately$14.4 million over the 6 yearlife of the equipmentor $2.84 million

peryear, or 5.3% of estimatedexpendituresby statesfor cracksealing.

8.8 Other Benefits of Automation

8.8.1 Improved Safety

By substituting robotic systems for manual work in the field, the exposure of workers in unsafe

roadwayconditions is greatly reduced."With_typicalinjuryaccidentcosts of $1,100 formedicalcases and

$21.100 for for restricted activity/lost work day cases [Hinze 91]5 assuming a 1% reductionin reported

injury accidents in each year represents a savings of $180,700 based on thirty(30) medical cost injury

accident andseven (7) restrictedactivity/lost workday accident.

3($100.000 + (PIA5%, 6) * 10.000) where (PlA, 5%, 6) is thepresentvalue of an annualamountover • 6 yearperiodat a 5%

discountrateand is equal to 5.076.

4(9,000• 4 * (PIA.5%,6))

5Basedon reportedcosts for 249 medicalcases and 65 resu'ictedactivity/lostworkdaycases, includingindirectcosts as 118%

andand 206% of direcxcosts respectively.
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In addition to exposure to unconm_lledvehicular u'af'fic,roadway workers applying crack tilling

materialare exposed to volatile organics that can cause dermatoses and respiratory problems, and the

equipmentandu'afficnoise may lead to impairedhearing.Furthermo_it appearsthat this procedurecan

be extendedto joint sealing where workersroutinelyused sandblastingequipmentforcleaning.

8.8.2 Improved Quality

While the automatedsystem is not expected to increasecrew productivity,the consistency of the crack

tilling operationcan be improved as cracks areaccuratelyidentified,uniformly cleaned and potentially,
- , _ ...... . , ". I.,-.. , .... _--- • •

"material delivered at a rate appropriateto the depthand width of.the crack. Benefits will be derivedfrom

improveddurabilityof the pavementdue to propersealing of the crack,longerpavementlife and reduced

usercosts due to delays for resealing pavementcracksor undertakingother maintenanceactivities.

To illustratethe potential benefits of improvedconsistency the following example is based on datafrom

[Chong 8S]. Consider a crack sealing operation that is to be undertaken2 yeats after the pavementis

rehabilitated.This extends the pavement life from 12 years to 16 years at which point rehabilitation is

required. Assume that more consistentcrackfilling using the automated method extends the pavementlife

an additional year. If rehabilitation costs includinguserdelay during rehabilitationare $40,000 per lane
...o... ,,, ,. -... .

kin, savings are achieved from the time value of money when the rehabilitation is deferredone year and

from the additional year of life the pavementhas gained. Over the pavementlife this is equivalentto a

savings of $145 per lane km6. Based on the survey response approximately77,000 lane kln of cracked

road are sealed annually. Conservatively, assuming that only 50%of sealed Cracksextend the life of the

pavement by an additional year (or that the automated system is only used to seal 50% of the cracks)

gives a saving of $5.6 m per year. This representsan additionalsavings of approximately10%of thecost

of cracksealing.

This analysis indicates thatsignificant savings may be realizedfrom improvedconsistency.

6Based on a savings of (AIP,5%,IT)*40,000/(I.05)lT-(AIP_q_,I6)*40,000/(1.05) 16 where (ALP./. n) is the anntal equivalent

over n years at inte=est rate i.
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8.9 Limitations of this Analysis

As this analysis is based on survey responses, the limitations should be noted:

• The survey responses may not represent a random sample due to biases introduced by non-

responses.

• Actual labor costs may be higher, as reported labor cost are significantly less than Means

figures including overhead. Therefore, larger savings may be realized.

• -Analysis focuses, owcraek sealing -by-.slate- public- world, or department of transportation

crews that work on crack sealing as just one of many maintenance operations. Additional

crack sealing units and ultimately labor savings will be realized as contractors adopt

automated crack sealing. Additional savings may also be realized if organizationalchanges

occur and specialized crack sealing crews are used to ensure more effective utilization of the

equipment.

To determine the sensitivity of the results to changes in parameters and costs, a sensitivity analysis was

performed. The base case with 5% interest rate, 6 year life of system, $100,00(3 system acquisition costs,

$10,000 annual operating and maintenance costs, $12 per hour wage rates was used. The net present value

of costs, labor savings and benefits were determined with combinations of the following parameters and

the base case:

• Interest rate 3% and 8%

• Expected system life 4 years and 8 years

• Acquisition cost $250.000

• Annual operating and maintenance costs of $8,000 and $12,000

• Hourly wage rate $20 per hour.

The restflts of the analysis are included in Appendix II. Review of the results indicates that it is important

to minimize costs and maximize the life of the equipment.
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8.10 Conclusions

The analysis shows that automated crack sealing is economically feasible and desirable. Assuming the

elimination of three laborers,the labor savings of $9,000 per year per crew represents5.3% of annual

crack sealing costs. The analysis is based on crack sealing by agency forces and assumes crack sealing is

undertaken 6 months of the years and a crack sealing system (one piece of equipment) is shared between

4 crews. Automation of this process is expected to require about 450 crack filling units nationwide.

Furthermore,the economic impactsof improvedconsistency may be significant.
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I. Survey Form -1991

Survey of Current Crack Sealing Practice

Please fdlin as completely lind cormcW
as possibleand returnby July I Io: l:l_nt InfemultloR
Sue McNeil Name: .
Associale Professor _: . .,
Deparb'nsnt of Civil Engineering Organiza_3n: . , ,
Carnegie Mellon University A00resl: ....
PitlsOu_h PA 15213 .
FAX: 412 268 7813 Telel_one .
If you have arty questions call (412) 268 5675. FAX

• m( - 1'," I m ,, n

MAINTENANCE " .... ""'_: _ " "....EXPENDITURES

YEW:.
Annual Maintenance Expenditures:
Miles of Paved Surface Covered by Mmnlenance Bt_get: , '

CRACK SEAUNG EXPENDITURES

Amount of Crack Sealing. k_,'_':___mplished'. Unim: lane miles linear INI gadol
(C_rc_eOne) Omer:

Annual Expenditures for CrackSealin_.'.

CRACK SEAUNG PRACTICE

Method (circJe one) comr_ " .. Agency Fomos

Crack Preparation? Hot air lance I:_ Sweeping
(erie allap_ica_e) Sand _ Compressed a_

Crew composition and taskS (Please contpletll N folOWillglal_e):
Crew Member Ti1¢¢1 Unit Cosls

• - -- .... " i • • ,: . c •

Equtxnem used (P_m com_w _e _ tam):
EClU_nint Type Tuks Unit COtll(Ior example, S/dly)

Factors included in unit costs: DirocZcost only Supervision All ovemead
(_e mmapl_:a_) insurance Beneres A4_ Oan_r:.

Prnduc_,: Un_: lane_ OaUaW
(arc_eOne) k.mr leeuoW omer:. ,,

Monfls of b"mYear Crack Sealing is Undeftakim:
%ofTmTe' Cmvs e.pusedtarGramSea,re:
Total NumOer of Crews:
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MATERIALS USED FOR CRACK Sealing

Crac_SeBBinqMolenalsUsed: ACcement ASprk_rubber PotymonzedA._hBBtnJolDer
(Cirae _J0Ao_mle) Rbenzed_ EmuL_r,KIAspna_

AsphaltoJt_ck Omor:

Cosuun._: Unit: gill liter Ib
(Circleone)

UblizationRotes: Uni_: gal/lanemile gaVlinearfoot
(Circleone) I/lanemile Mlinearfoot

USAGE AND EFFECTIVENESS

1. ArecracKSealingdec_iorw basedonconditionsun_oy_?i. Yes No .
(CircJeOne)

2. If yes,whatIre theindicatorsforallcK SOBBing(e.g. rangeofcrackwldlhssuo_as 5-20ram)?

3. Isthe offeclJvenessofcrackSoBBingmeasured'/
4. If yes,hOW'/,
5. Whatisthe expectedimpactofct-.icKlolling on pavomentlifo?
6. Over_o lifoofa typicalpavoment,howmay'times andat
whatinlervBBs is crackooBBingal:_lled'/

SAFETY

Pmceoures
WhatsafetyWoceduresare usedforcalcksoBBingcrows? LanecJesum Ragmen

(Circlealla_)licable) OUler."

Aretheseproceduresaignificarm'ydifforentfromo_or mBBmenanceoperBBmns? Yes No
(Circloone}

If.yesdescnl)ehowh'leydiffer'/

SafetyReoord

iTotalMaintenanceForces: ornployeeson roaOs crewsonroads

Annualnumberof accidents Propertydamageonly Yo__ ,_
Inj,xy
Fatality

EXPECTED USAGE

Wouldyourorganiz_on ¢ormdarucJngan aummeted¢n¢_ soBBingmm muming it followed.,;talepractice
anclsavingsexceeaedcostof IMXlUialUon_ maintenance?

COMMENTS

Pleaseuse _ spacefor anycormner_ oreddiUonalrelevantinfo_.
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IL Sensitivity Analysis

)
EC(:NOlaC AIGLLYSZS
BRF.AX EVEN

MARR 0.1 Maint a Op 25000
Life

Savings 3 5
$104,000 $196,000 $299,000

$60,000 $87,000 $133,000
I r d 't

MARR 0.05 Maint.- a' Op "'- 25000
Life

Savings 3 5
$104,000 $215,000 $342,000

860,000 $95,000 $152,000

MARR 0.1 Naint & Op 15000
Life

Savings 3 5
$104,000 $221,000 $337,000

$60,000 $112,000 $171,000

o.os , op 15000

Savings 3 5
$104,000 $242,000 $385,000

$60,000 $123,000 $195,000

MARR 0.1 Maint SOp 35000
•' Life

Savings 3 5
$104,000 $172,000 $262,000

860,000 $62,000 $95,000

NARR 0.05 Ma_t & Op 35000
Life

Savings 3 5
$104,000 $188,000 $299,000

860,000 868,000 $108,000

COST BENEFZT
MARR 0.1

Maint & 0 $25,000
Acq cost $100,000
:La3bo: say $104,000
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3 4 5
Savings 896,000 8150, 000 $199,000
Aa=u_l Sav_gs $39,000 860,000 $80,000
Natlonal $15,500,000 $24,000,000 $32,000,000
4 Igat SaT 12 19 26

0.05
Nai_t _;0 $25,000
_=q :ost $100,000
_: say $104,000

3 4 5
m m

Savi_s $115,000 $180,000 ... $242,000
Ann Sav $42,000 $66,000 $89,000
National $16,912,000 $26,458,000 $35,550,000
q Bat Say 14 21 28

NA_& 0.1
Na._t s 0 $15,000
Acq cost $100,000
_: say $104,000

3 4 5
Savings $121,000 $182,000 $237,000
Ann Say $49,000 $73,000 $95,000
Nationa_ $19,515,000 $29,293,000 $38,182,000
• Nat Say 16 23 31

.. ,-_.

0.05
Nai=t _;0 $15,000
Acq cost $100,000
Z_bo= say $104,000

3 4 .... 5
Savings $142,000 _" $216; 000" $285,000 ........
Ann Say $52,000 $79,000 $105,000
Naticmal $20,912,000 $31,667,000 $41,909,000
• Nat Say 17 25 34

NA_& 0.1
Na3_t 8 0 $35,000
A_; cost $100,000
Z_bo: say $104,000

3 4 5
Savings $72,000 $119,000 $162,000
_-- Say $29,000 $48,000 $65,000
National $11,515,000 $19,096,000 $25,987,000
• Nat _v 9 15 21

0.05
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Na_r_t 6 0 $35,000
J_=q cost: 8100, 000
:L_bo: say $104,000

3 4 5
SavLngs $88,000 $145,000 $199,000
Ann Say 832,000 853,000 873,000
_atlonal $12,912,000 821,250,000 $29,191,000
• Nat Say 10 17 23

0.1
Na_nt _ O $25,000
Acq cost: 8100, 000

................ Z_bo: •sat ................ $60,000 ..................
3 ......... • 5

SavL=zgs ($13,000) 811,000 $33,000
Ann _sv ($5,000) $4,000 $13,000
Hati_al ($2,085,000) $1,761,000 85,256,000
• Hat Say -2 1 4

0.05
Nalnt _ O 825,000
Acq cost 8100, 000
Z_bo: say SGO, 000

3 4 5
Savings (85,000) $24,000 852,000
Ann Say ($2,000) $9,000 $19,000
National " ($688,O00) $3,541,000 87,569,000
• Nat Say -1 3 6

0.1
Nai=t S 0 815,000

cost 8100, 000
Z_bo: sat $60,000 .........

3 4 5
Sa_Lngs 812,000 843,000 $71,000
Ann Say 85,000 817,000 828,000
Natio=al $1,915,000 $6,85g, 000 811,353,000
• Bat Say 2 5 g

NAn 0.05
N_b:t _ O $15,000
Ac:q cost $100,000
Zabo: say $60,000

- 3 4 5
Savings $23,000 $60,000 $95,000
Ann Say $8,000 $22,000 $35,000
_;atlo_al $3,312,000 $8,750,000 $13,928,000
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• Nat Say 3 7 11

0.1
NaA_t S 0 $35,000
Acq cost $100,000
:babo: say $GO, 000

3 4 5
Savings ($38,000) ($21,000) ($5,000)
Jknn Say ($15,000) ($8,000) ($2,000)
Nat£onal ($6,085,000) ($3,338,000) ($841,000)
• Hat Say -S -3 -1

...... _ ......... -.................. O. 05 .............
liar• I_ 0 $35,000 ........
xoq cost $100,000
:rabo= say $60,000

3 4 5
SavJ_gs ($32,000) ($11,000) $8,000
Ann Say ($12,000) ($4,000) $3,000
Nat£ona_ ($4,688,000) ($1, 66?, 000) $1,210,000
• Nat Say -4 -1 1

, .. . .
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