
SHRP-P-393

Sensitivity Analyses for
Selected Pavement Distresses

Ms. Amy L. Simpson
Dr. J. Brent Rauhut
Dr. Peter R. Jordahl

Brent Ratthut Engineering Inc.
8240 North Mopac, #220

Austin, Texas 78759

Dr. Emmanuel Owusu-Antwi
Dr. Michael I. Darter

Mr. Riaz Abroad
ERES Consultants, Inc.

8 Dunlap Court
Savoy, Illinois 61874

" Dr. Olga J. Pendleton
Texas Transportation Institute

Texas A&M University
College Station, Texas 77843-3135

Dr. Ying-Haur Lee
University of Illinois

Urbana-Champaign, Illinois 61801-2352

Strategic Highway Research Program
National Research Council

Washington, D.C. 1994



SHRP-P-393
Contract P-020
ISBN 0-309-05771-X
Product No. 5000

Program Manager" Neil F. Hawks
Project Manager: A. Robert Raab

Program Area Secretaries: Cynthia Baker, Francine A. Burgess
Production Editor: Katharyn L. Bine

key words:
data analysis
distress prediction equations
pavement performance models
sensitivity analyses

April 1994

Strategic Highway Research Program
National Research Council
2101 Constitution Avenue N.W.
Washington, DC 20418

(202) 334-3774

The publication of this report does not necessarily indicate approval or endorsement by the National Academy of
Sciences, the United States Government, or the American Association of State Highway and Transportation
Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or
specifically expressed herein.

©1994 National Academy of Sciences

1.5M/IqAP/494



Acknowledgments

The research described herein was supported by the Strategic Highway Research Program
(SHRP). SHRP is a unit of the National Research Council which was authorized by Section
128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987.

We wish to acknowledge the valuable review, discussion, and suggestions by the Expert Task
Group on Experimental Design and Analysis, the Pavement Performance Advisory
Committee, SHRP staff, and SHRP Contract P-001 staff. The many technical memoranda
developed by Contract P-001 staff were also especially valuable.

JJl

111



Contents

Abstract ........................................................... 1

Executive Summary .................................................. 3

1. Introduction ...................................................... 9
LTPP Objectives and Expected Products ............................ 10
Research Tasks ............................................... 11
Data Bases Used in the Analyses .................................. 13
Definition of Sensitivity Analysis .................................. 14
Analytical Limitations Resulting From Data Shortcomings ............... 16

2. Preliminary Selection of Data Elements for Sensitivity Analyses .............. 21
Relative Significance Studies ..................................... 21
Criteria for Selection of Data Elements ............................. 22
Data Elements Selected for Sensitivity Analyses ....................... 24

3. Restructuring of Sensitivity Analysis Plans ............................. 31
Pavements With Asphalt Concrete Surfaces .......................... 31
Pavements With Portland Cement Concrete Surfaces ................... 34

4. Theoretical Variable Clusters and Constraints Imposed by Late and
Missing Data ............................ ....................... 39

5. General Procedures Followed in Developing Predictive Equations for
the Sensitivity Analyses ........................................... 41

General Procedures ............... ............................. 42
Problems Encountered and Modifications to Procedures ................. 45
Procedures Adopted for Developing Distress Models for Sensitivity

• 48Analyses .......... ...........................................
Alternative Procedures Used for Developing Models for PCC Pavement
Distresses ........................ ........................... 48

V



6. General Procedures for Establishing Sensitivities of Predicted Distresses
to Variations in Significant Independent Variables ....................... 51

General Procedures for Establishing Sensitivities of Predicted
Distresses for HMAC Pavements .................................. 52
General Procedures for Establishing Sensitivities of Predicted
Distresses for PCC Pavements .................................... 57

7. Predictive Equations for Distress Types and Results of Sensitivity Analyses for
Asphalt Concrete Pavements ........................................ 61

Data Review and Evaluation ..................................... 61
Rutting of HMAC Pavements on Granular Base ...................... 63
Rutting of Full-Depth HMAC Pavements ............................ 86
Rutting of HMAC Pavements on Portland Cement-Treated Base .......... 93
Summary of Sensitivity Analyses for Rutting in HMAC Pavements ......... 95
Change in Roughness in HMAC Pavements on Granular Base ............ 98
Change in Roughness for Full-Depth HMAC Pavements ............... 104
Change in Roughness of HMAC Pavements on Portland Cement-
Treated Base .... . ........................................... 109
Summary of Sensitivity Analyses for Change in Roughness of
HMAC Pavements ............................................ 110
Transverse Cracking of HMAC Pavements on Granular Base
and Full-Depth HMAC Pavements ................................ 117
Summary of Sensitivity Analyses for Transverse Cracking in
HMAC Pavements ............................................ 126
Summary of Sensitivity Analysis Results for HMAC Pavements .......... 128

8. Predictive Models for Distress Types and Results of Sensitivity Analyses for
Portland Cement Concrete Pavements ................................ 131

Joint Faulting of Doweled Concrete Pavements ...................... 132
Database, Dependent Variables, and Explanatory Variables ........ 132
Data Review and Evaluation ............................... 133
Model Development ..................................... 139

Joint Faulting on Non-Doweled Concrete Pavements .................. 144
Database, Dependent Variables, and Explanatory Variables ........ 144
Data Review and Evaluation ............................... 145
Model Development ..................................... 147

Transverse Cracking of JPCP .................................... 152
Database, Dependent Variables, and Explanatory Variables ........ 152
Data Review and Evaluation ............................... 153
Mechanistic Inputs ...................................... 154
Model Building ......................................... 155

Transverse Cracking of JRCP .................................... 158
Database, Dependent Variables, and Explanatory Variables ........ 160
Data Review and Evaluation ............................... 161
Model Building ......................................... 161

Joint Spalling of JPCP 164
Database, Dependent Variables, and Explanatory Variables ........ 167

vi



Data Review and Evaluation .................................. 168
Model Building .......................................... 168

Joint Spalling of JRCP ....................................... 172
Database, Dependent Variables, and Explanatory Variables ............... 173
Data Review and Evaluation .................................. 173
Model Building .......................................... 174

IRI of Doweled JPCP ....................................... 180
Database, Dependent Variables, and Explanatory Variables ............... 180
Data Review and Evaluation .................................. 181
Model Building .......................................... 181

IRI of Non-Doweled JPCP .................................... 187
Database, Dependent Variables, and Explanatory Variables ............... 187
Data Review and Evaluation .................................. 188
Model Building .......................................... 190

IRI of JRCP ............................................. 195
Database, Dependent Variables, and Explanatory Variables ............... 195
Data Review and Evaluation .................................. 196
Model Building .......................................... 196

IRI of CRCP ............................................. 202
Database, Dependent Variables, and Explanatory Variables ............... 202
Data Review and Evaluation .................................. 203
Model Building .......................................... 205

Summary of Sensitivity Analysis Results for PCC Pavements ............... 207
Related Comments and Observations for JPCP ....................... 210
Related Comments and Observations for JRCP ....................... 212
Related Comments and Observations for CRCP ....................... 212

9. General Discussions of Results From Sensitivity Analyses ................ 213
Limitations of Sensitivity Analyses Imposed by Database Limitations ........... 213
Reliability of Results ........................................ 216
Actions Recommended to Repair Limitations in the LTPP GPS Database ........ 219

10. Summary and Conclusions ................................... 223
Use of Sensitivity Analysis Results by the Highway Community .............. 223
Use of Linear Regression Distress Models for Design
and/or Pavement Management .................................. 224

References ............................................... 225

Appendix A. Preliminary Identification of Data Elements to Be Included
in P-020 Sensitivity Analyses of Pavements With Asphalt Concrete Surfaces ...... 227

Appendix B. Technical Memorandum by Dr. Robert L. Lytton, March 31, 1992,
"Clusters of Terms Relevant to Pavement Performance Prediction" ............ 247

Appendix C. Technical Memorandum by Dr. Michael I. Darter and Dr. Emmanuel
Owusu-Antwi, July 10, 1992, "Identification of Mechanistic Variables
and Clusters for Concrete Pavement Distress Models" .................... 275

Appendix D. Technical Memorandum by Dr. Olga J. Pendleton, April 27, 1992,
"Statistical Methodology for LTPP Data Analysis" ....................... 301

vii



List of Figures

1. Results From Sensitivity Analysis for Rutting in HMAC Over Granular Base .. 6

1.1 General Task Flow Diagram ..................................... 12

1.2 Environmental Zones for SHRP LTPP Studies ........................ 15

1.3 Distribution of Pavement Age, Experiment GPS-1, AC Over Granular Base .. 17

2.1 Procedures for Selecting Data Elements for the Sensitivity Analyses ........ 23

5.1 Flow Chart for Data Studies and Development of Equations to Predict
Sitmificant Distresses ........................................... 43

6.1 Flow Chart for Developing Distress Models and Conducting
Sensitivity Analyses ............................................ 53

6.2 Flow Chart for Developing Distress Models for Rigid Pavements .......... 58

7.1 Scatter Plots of Rut Depth vs. Cumulative KESALs for Complete and
Regional Data Sets, HMAC Over Granular Base ...................... 64

7.2 Scatter Plots of Change in Roughness vs. Cumulative KESALs for
Complete and Regional Data Sets, HMAC Over Granular Base ........... 65

7.3 Scatter Plots of Transverse Crack Spacingvs. Pavement Age for Complete and
Regional Data Sets, HMAC Over Granular Base ...................... 66

7.4 Distributions of KESALs by Environmental Zones for HMAC Over Granular
Base, IRI Data Set ............................................ 67

7.5 Distributions of Rut Depth by Environmental Zones for HMAC Over
Granular Base Data Set ......................................... 68

7.6 Distributions of Change in IRI by Environmental Zones for HMAC
Over Granular Base Data Set .................................... 69

ix



7.7 Distributions of Average Crack Spacing by Environmental Zones for
HMAC Over Granular Base Data Set .............................. 70

7.8 Plots of Predicted vs. Actual Rut Depth for HMAC Over Granular
Base Data Sets ............................................... 79

7.9 Plots of Residuals vs. Predicted Log(Rut Depth) for HMAC Over
Granular Base Data Sets ........................................ 80

7.10 Predicted Rutting vs. KESALs With All Other Independent Variables
at Their Mean Values, HMAC Pavements on Granular Base ............. 81

7.11 Results From Sensitivity Analyses for Rutting in HMAC Pavements on
Granular Base ................................................ 83

7.12 Results From Sensitivity Analyses for Rutting in HMAC Pavements on
Granular Base, by Environmental Zone ............................. 84

7.13 Plots of Predicted vs. Actual Rut Depth for Full-Depth HMAC Pavement
Data Sets .................................................... 90

7.14 Plots of Residuals vs. Predicted Log(Rut Depth) for Full-Depth HMAC Pavement
Data Sets .................................................... 91

7.15 Predicted Rutting vs. KESALs, With All Other Independent Variables at
Their Mean Values, Full-Depth HMAC Pavements .................... 92

7.16 Results From Sensitivity Analysis for Rutting in Full-Depth HMAC
Pavements, Entire Data Set ...................................... 92

7.17 Results From Sensitivity Analyses for Rutting in FuU-Depth HMAC
Pavements, by Environmental Zones ............................... 94

7.18 Plots of Predicted vs. Actual Rut Depth for HMAC Over Portland
Cement-Treated Base Data Set ................................... 96

7.19 Plots of Residual vs. Predicted Log(Rut Depth) for HMAC over
Portland Cement-Treated Base Data Set ............................ 96

7.20 Predicted Rutting vs. KESALs, With All Other Independent Variables
at Their Mean Values, HMAC over Portland Cement-Treated Base ....... 97

7.21 Results From Sensitivity Analyses for Rutting in HMAC Over Portland
Cement-Treated Base .......................................... 97

7.22 Plots of Predicted vs. Actual Change in IRI for HMAC over
Granular Base Data Set ........................................ 101

X



7.23 Plots of Residuals vs. Predicted Log(lRI) for HMAC Over Granular
Base Data Set ............................................... 102

7.24 Predicted Change in IRI vs. KESALs, With All Other Independent
Variables at Their Mean Values, HMAC on Granular Base ............. 103

7.25 Results From Sensitivity Analyses for Change in IRI on HMAC
on Granular Base ............................................ 103

7.26 Results From Sensitivity Analyses for Change in IRI in HMAC on
Granular Base ............................................... 107

7.27 Plots of Predicted vs. Actual Change in IRI for Full-Depth HMAC Pavement
Data Set ................................................... 111

7.28 Plots of Residual vs. Predicted Log(Change in IRI) for Full-Depth
HMAC Pavement Data Set ..................................... 111

7.29 Predicted Change in IRI vs. KESALs, With All Other Independent Variables
at Their Means, Full-Depth HMAC Pavement ................... .... 112

7.30 Results From Sensitivity Analyses for Change in IRI in
Full-Depth HMAC Pavement .................................... 112

7.31 Plots of Predicted vs. Actual Change in IRI for HMAC on Portland
Cement-Treated Base Data Set .................................. 114

7.32 Plots of Residual vs. Predicted Log(Change in IRI) for HMAC on
Portland Cement-Treated Base Data Set ........................... 114

7.33 Predicted Change in IRI vs. KESAI_s, With All Other Independent
Variables at Their Mean Values, HMAC Over Portland Cement-Treated
Base ...................................................... 115

7.34 Sensitivity Analyses of Change in IRI in HMAC Over Portland
Cement-Treated Base ......................................... 115

7.35 Plots of Predicted vs. Actual Transverse Crack Spacing for HMAC
Over Granular Base and Full-Depth HMAC Pavement Data Sets ......... 121

7.36 Plots of Residual vs. Predicted Log(Transverse Crack Spacing) for
HMAC Over Granular Base and Full-Depth HMAC Pavement Data Sets .. 122

7.37 Predicted Transverse Crack Spacing vs. Age for HMAC Pavements
Over Granular Base and Full-Depth HMAC Pavement ................ 123

xi



7.38 Results From Sensitivity Analyses for Transverse Crack Spacing in
HMAC Pavements on Granular Base and Full-Depth HMAC Pavements,
North American Data Set ...................................... 123

7.39 Results From Sensitivity Analyses of Transverse Crack Spacing for
HMAC Pavements on Granular Base and Full-Depth HMAC Pavements ... 124

8.1 Two-Dimensional Plots of Selected Design Variables
for Doweled Joint Faulting ..................................... 135

8.2 Two-Dimensional Plots of Additional Design Variables
for Doweled Joint Faulting ..................................... 136

8.3 Two-Dimensional Plots of Selected Climatic Variables
for Doweled Joint Faulting ..................................... 137

8.4 Three-Dimensional Plot (FAULTD, AGE, CESAL) of
Doweled Joint Faulting ........................................ 138

8.5 Three-Dimensional Plot (FAULTD, JTSPACE, CESAL)
of Doweled Joint Faulting ...................................... 138

8.6 Predicted FAULTD vs. Actual FAULTD ........................... 141

8.7 Plot of Residuals vs. Predicted FAULTD ........................... 141

8.8 Sensitivity Analysis for Doweled Joint Faulting Model ................. 142

8.9 Three-Dimensional Plot (FAULTD, AGE, CESAL) of
Doweled Joint Faulting Model ................................... 143

8.10 Three-Dimensional Plot (FAULTD, JTSPACE, CESAL)
of Doweled Joint Faulting ...................................... 143

8.11 Three-Dimensional Plot (FAULTND, AGE, CESAL) of
Doweled Joint Faulting ........................................ 147

8.12 Predicted vs. Actual FAULTND ................................. 150

8.13 Plot of Residuals vs. Predicted FAULTND .......................... 150

8.14 Sensitivity Analysis for Non-Doweled Joint
Faulting Model .............................................. 151

8.15 Three-Dimensional Plot (FAULTND, AGE, CESAL) of
Non-Doweled Joint Faulting Model ............................... 151

xii



8.16 Percentage of Slabs Cracked vs. Accumulated Fatigue Damage
for JPCP ................................................... 156

8.17 Sensitivity Analysis for Slab Cracking of JPCP (PCRACKED) Model ...... 158

8.18 Three-Dimensional Plots of JPCP Transverse Cracking Model ........... 159

8.19 Three-Dimensional Plot (CRACKJR, AGE, CESAL) of Deteriorated JRCP
Transverse Cracks ............................................ 162

8.20 Three-Dimensional Plot (CRACK/R, PSTEEL, CESAL) of
Deteriorated JRCP Transverse Cracks ............................. 162

8.21 Predicted vs. Actual CRACKJR .................................. 165

8.22 Plot of Residuals vs. Predicted CRACKJR .......................... 165

8.23 Sensitivity Analysis for the CRACKJR Model ........................ 166

8.24 Three-Dimensional Plot Showing CRACKJR, CESAL, and PSTEEL ...... 166

8.25 Three-Dimensional Plot (SPALLIP, AGE, FT) for JPCP Joint Spalling .... 169

8.26 Predicted SPALIJP vs. Actual SPAIJ JP for JPCP .................... 170

8.27 Plot of Residuals vs. Predicted SPA!JJP for JPCP. ................... 171

8.28 Sensitivity Analysis for Joint Spalling of JPCP (SPAIJJP) Model ......... 171

8.29 Three-Dimensional Plot of Joint Spalling Model for JPCP .............. 172

8.30 Three-Dimensional Plot (AGE, SPALLJR, TRANGE) for JRCP Joint
Spalllng .................................................... 176

8.31 Predicted vs. Actual SPALLJR ................................... 178

8.32 Plot of Residuals vs. Predicted SPALLJR ........................... 178

8.33 Sensitivity Analysis for Joint Spalling of JRCP (SPALLIR) Model ........ 179

8.34 Three-Dimensional Plot (SPALIJR, TRANGE, AGE) for Joint Spalling
Model for JRCP ............................................. 179

8.35 Three-Dimensional Plot (IRI, JTSPACE, AGE) for JPCP .............. 183

8.36 Predicted vs. Actual IRI for Doweled JPCP ......................... 185

oot

XlU



8.37 Plot of Residuals vs. Predicted IRI for Doweled JPCP ................. 185

8.38 Sensitivity Analysis for IRI Model for Doweled JPCP .................. 186

8.39 Three-Dimensional Plot of IRI Model for Doweled JPCP ............... 186

8.40 Three-Dimensional Plot (IRI, PRECIP, CESAL) for Non-Doweled JPCP ... 191

8.41 Predicted vs. Actual IRI for Non-Doweled JPCP Model ................ 193

8.42 Plot of Residuals vs. Predicted IRI for Non-Doweled JPCP Model ........ 193

8.43 Sensitivity Analysis for IRI Model for Non-Doweled JPCP .............. 194

8.44 Three-Dimensional Plot of IRI Model for Non-Doweled JPCP ........... 194

8.45 Three-Dimensional Plot (IRI, PRECIP, AGE) for JRCP ............... 198

8.46 Predicted vs. Actual IRI for JRCP ................................ 200

8.47 Plot of Residuals vs. Predicted IRI for JPCP ........................ 200

8.48 Sensitivity Analysis for IRI Model for JRCP ......................... 201

8.49 Three-Dimensional Plot of IRI Model for JRCP ...................... 201

8.50 Three-Dimensional Plot (IRI, PSTEEL, AGE) for CRCP ............... 206

8.51 Predicted vs. Actual IRI for CRCP ................................ 208

8.52 Plot of Residuals vs. Predicted IRI for CRCP ........................ 208

8.53 Sensitivity Analysis for IRI Model for CRCP ........................ 209

8.54 Three-Dimensional Plot of IRI Model for CRCP ..................... 209

xiv



List of Tables

1. Coefficients for Regression Equations Developed to Predict Rutting
in HMAC Over Granular Base for the Wet-Freeze Data Set .............. 6

1.1 Listing of SHRP LTPP General Pavement Studies Experiments ........... 13

2.1 Significant Data Elements for Predicting Distresses in Pavements With
Asphalt Concrete Surfaces ....................................... 25

2.2 Significant Data Elements for Predicting Distresses in Pavements With
Portland Cement Concrete Surfaces ........... ..................... 27

3.1 Categories of Pavement Structures in GPS-1/GPS-2 Data Pool and Number
of Test Sections for Which Data Are Available ....................... 32

3.2 Potential Analysis Combinations, GPS-1/GPS-2 Data Pool ............... 33

3.3 Proposed Steps in Separate Analyses for Alligator Cracking, Rutting, and
Roughness in Pavements With Asphalt Concrete Surfaces ............... 35

3.4 Proposed Steps in Sensitivity Analyses for Transverse Cracking in
Pavements With Asphalt Concrete Surfaces .......................... 36

3.5 Proposed Steps in Separate Analyses for Friction Loss and Raveling/
Weathering in Pavements with Asphalt Concrete Surfaces ............... 37

7.1 Correlation Matrix for Change in Roughness, HMAC Over Granular
Base Data Set ................................................ 71

7.2 Coefficients for Regression Equations Developed to Predict Rutting
in HMAC Pavements Over Granular Base ........................... 75

7.3 Calculated Rut Depths for Various Combinations of Independent
Variable Magnitudes, Wet-No Freeze Equation ....................... 85

7.4 Coefficients for Regression Equations Developed to Predict Rutting
in Full-Depth HMAC Pavements, Entire Data Set ..................... 87

XV



7.5 Coefficients for Regression Equations Developed to Predict Rutting
in Full-Depth HMAC Pavements, Wet and Dry Data Sets ............... 88

7.6 Coefficients for Regression Equations Developed to Predict Rutting
in Full-Depth HMAC Pavements, No Freeze and Freeze Data Sets ........ 89

7.7 Coefficients for Regression Equations Developed to Predict Rutting
in HMAC Pavements on Portland Cement-Treated Base ................ 95

7.8 Orders of Significance for Independent Variables, All Models for
Rutting of HMAC Pavements .................................... 99

7.9 Coefficients for Regression Equations Developed to Predict Change
in Roughness in HMAC on Granular Base .......................... 104

7.10 Calculated Changes in IRI for Various Combinations of Independent
Variable Magnitudes, Wet-Freeze Equation ......................... 108

7.11 Coefficients for Regression Equations Developed to Predict Change
in Roughness in Full-Depth HMAC Pavement, Entire Data Set .......... 110

7.12 Coefficients for Regression Equations Developed to Predict Change
in Roughness in HMAC Pavement on Portland Cement-Treated Base, Entire
Data Set ................................................... 113

7.13 Orders of Significance for Independent Variables, All Models for
Change in Roughness of HMAC Pavement ......................... 116

7.14 Coefficients for Regression Equations Developed to Predict
Transverse Crack Spacing in HMAC on Granular Base and Full-Depth
HMAC Pavement ............................................ 118

7.15 Calculated Crack Spacing for Various Combinations of Independent
Variable Magnitudes, Dry-Freeze Equation ......................... 125

7.16 Orders of Significance for Independent Variables, All Models for
Transverse Cracking in HMAC Pavements .......................... 127

8.1 Correlation Matrix for Selected Variables for Doweled Joint Faulting ...... 134

8.2 Correlation Matrix for Selected Variables for Non-Doweled Joint Faulting .. 146

8.3 Correlation Matrix for Selected Variables for JPCP Transverse Cracking ... 153

8.4 Correlation Matrix for Selected Variables for Transverse Crack
Deterioration for JRCP ........................................ 161

xvi



8.5 Correlation Matrix for Selected Variables for JPCP Joint Spalling ........ 168

8.6 Correlation Matrix for Selected Variables for JRCP Joint Spalling ........ 175

8.7 Correlation Matrix for Selected Variables for Doweled JPCP IRI ......... 182

8.8 Correlation Matrix for Selected Variables for Non-Doweled JPCP IRI ..... 189

8.9 Correlation Matrix for Selected Variables for IRI for JRCP ............. 197

8.10 Correlation Matrix for Selected Variables for IRI for CRCP ............. 204

8.11 Significance Rankings for Explanatory Variables, by Distress Type
and Pavement Type, for PCC Pavements ........................... 211

9.1 HMAC Pavement Test Sections With Clay Subgrade Within Databases
Used for the Analyses ......................................... 215

9.2 Statistics for Predictive Equations for Rutting and AlP-d,Developed
for Sensitivity Analyses for HMAC Pavements Over Granular Base ....... 217

9.3 Statistics for Predictive Equations for Rutting and AIRI, Developed
for Sensitivity Analyses for Full-Depth HMAC Pavements .............. 217

9.4 Statistics for Predictive Equations for Rutting and AIRI,Developed
for Sensitivity Analyses of HMAC Over Portland Cement-Treated Base .... 218

9.5 Statistics for Predictive Equations for Transverse Cracking, Developed
for Sensitivity Analyses of HMAC Over Granular Base and Full-Depth
HMAC Pavements (Combined Data Set) ........................... 218

9.6 Statistics for Predictive Equations for PCC Pavement Distress,
Developed for Sensitivity Analyses ................................ 219

xvii



Abstract

One of the Long-Term Pavement Performance (LTPP) objectives is "to determine the

effects of (a) loading, (b) environment, (c) material properties and variability, (dl
construction quality, and (e) maintenance levels on pavement distress and performance.
This volume reports the results of early sensitivity analyses on the National Information
Management System to determine the effects of loading, pavement structure, environment,
and material properties on pavement performance. In order to conduct the sensitivity
analyses, it was first necessary to develop statistically linear regression equations to predict
the occurrence of distresses. Once a predictive equation was available, the effects of
variations in significant independent variables were quantified by calculating the change in
the predicted distress as each significant variable was varied from one standard deviation
above its mean to one standard deviation below its mean, with all other variables held at
their mean values. The sensitivities of the distress predictions to the individual variations
in the significant variables were then plotted to display the relative significance of the
independent variables in the equation to the prediction of the distress. The primary
products of these studies are increased understanding of the relative effects of these
parameters on the occurrence of distress and the predictive equations themselves. While
it is believed that these products will prove useful in the interim_ the reliability of the results
are limited at this point in time. The products are expected to be greatly improved through
later analyses when more time sequence data are available.



Executive Summary

The original planners for the Long-Term Pavement Performance (LTPP) studies established
six objectives. The fourth objective follows:

4. Determine the effects of (a) loading, (b) environment, (c) material properties
and variability, (d) construction quality, and (e) maintenance levels on
pavement distress and performance.

The research, described in this report concerned the effects of loading, the environment,
pavement structure, and material properties on pavement distress and performance. Data
were not available for a meaningful study of the effects of material variability, construction
quality, or maintenance levels on pavement distress and performance. In addition, these
studies served as pilot studies for developing procedures for conducting the sensitivity
analyses, gaining insight into the nature of the database, gaining experience with conducting
such studies with this database, and developing recommendations for use by future analysts
when the database is enhanced by time sequence data.

It was fully recognized by those planning and those conducting this research that the
analyses at this point in forming the database would be limited. However, it was expected
that the products of the research would have considerable interim value, and that the
trailblazing aspects of this effort would prove valuable to future analysts. It was also
expected that deficiencies in the data would be discovered, so that these deficiencies could
be repaired before the next major analytical effort is undertaken.

This project began with the development of a tentative analysis plan, in coordination with
a StrategicHighway Research Program(SHRP) Expert Task Group on Experimental Design
and Analysis and with input from the highway community at large during a SHRP data
analysis workshop. The work effort was then unfortunately delayed 1 1/2 years because of
delays in data availability. Some important data, such as layer elastic moduli, were still not
available in time for use in the studies. However, the research staff was able to maximize
the value of the results, considering the time constraint and the quality of the data available.
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"Sensitivityanalysis"is not a common descriptor for either research engineers or statisticians,
but it has come to have a specific meaning to some individuals from both disciplines. The
definition as applied to this research follows:

Sensitivity analyses are statistical studies to determine the sensitivity of a dependent
variable to variations in independent variables (sometimes called explanatory
variables) over reasonable ranges.

An example could be a study of the sensitivity of rutting in hot-mix asphalt concrete
(HMAC) pavements to variations in layer thicknesses, traffic, material properties, or other
variables siotmificantto the occurrence of rutting. Such studies are generally conducted by
first developing predictive equations for the distresses of interest and then studying the
effects of varying individual explanatory variables across reasonable ranges. The
development of suitable predictive equations for use in the sensitivity analyses required
thousands of multiple regressions before the best equations suitable for sensitivity analyses
were produced. Because of the nature of sensitivity analyses, the regression equations had
to be statistically linear, which means that the coefficients must be linear and that nonlinear
regression techniques could not be used.

Some limitations of the database that constrained the sensitivity analyses are as follows:

• The values of cumulative equivalent single axle loads (ESALs) were simply
estimates from the state highway agencies and are not believed to be very
reliable.

• Initial roughness in terms of International Roughness Index (IRI) had to be
estimated.

• There generally was only one measurement of distress for each test section,
plus an estimated or assumed initial value (e.g., rutting, faulting, and such
were assumed to be zero when the pavement was opened to traffic). Two
values are generally not enough to explain the curvature in a relationship, but
the ages of the pavements were distributed reasonably well over 20 years, so
that the curvatures were partially explained.

• A number of test sections were missing data which precluded their use in
these early analyses.

• There was relatively little distress in the test sections at this early point in the
20 year studies. Many test sections with adequate data had to be omitted
because they had not experienced distress.

Because there were over 100 data elements in each of the databases for flexible and rigid
pavements, it was necessary to materially reduce the number of data elements to be
considered in the analyses. It was also important to avoid strong correlations between
independent variables that were included in the studies. The approach taken to eliminating
less significant data elements was to obtain relative significance rankings from experts in

4



pavement performance modeling. This approach offered a means for brino_ng expert
knowledge into the analysis at an early stage, as well as offering insight in the selection of
variables considered in the analyses. These selections required balancing relative
significance, data availability, and correlations with other variables.

Because the selection instructions for the General Pavement Studies (GPS)-I and GPS-2
experiments allowed considerable overlap in pavement structure for test sections, it was
decided to view these two data sets as resources and then to recombine them into more

specific data sets such as HMAC on granular base, full-depth HMAC, HMAC over portland
cement-treated base, and so on. These latter databases were those finally used in the
analyses, and the data sometimes had to be combined to get enough test sections with
distress for analysis.

The data sets for the GPS-3 and GPS-4 experiments were also combined for a number of
rigid pavement studies (e.g., studies of joint spalling and faulting), where the presence of or
lack of reinforcement was not believed to be important.

The development of the procedures for producing the required predictive equations and for
conducting the sensitivity analyses after the equations were available were highly interactive
and time consuming. These are discussed in detail in Chapters 5 and 6 of this report.

It became apparent early in the analyses of HMAC pavements that predictive models
developed from the entire database, whose inference space included all of the United States
and parts of Canada, would generally not result in reliable models. Consequently, databases
were formed for each of the four environmental zones and separate predictive models were
developed. These models have values of the adjusted coefficient of determination R2
ranging from 0.65 to 0.93. For example, the model developed for prediction of rutting in
the wet-freeze environmental zone appears as Table 1. The form of the equation appears
at the top of the table, with the explanatory variables or interactions appearing in the table,
along with the coefficients that provide the details of the equation. The exponents B and
C are calculated by multiplying the explanatory variables or interactions in the left column
by the regression coefficients bi and ci and adding the results.

The results of the sensitivity analyses conducted with this predictive equation appear as
Figure la. This figure shows that the strongest impact on the occurrence of rutting in the
wet-freeze zone may be expected to be the cumulative number of KESALs (1000 ESALs).
The dashed lines and arrow pointing to the left indicate that reductions in KESALs decrease
rutting, but the standard deviation for KESALs is greater than the mean, and negative
KESAI__ are not possible. Freeze index is the next most important, followed by the
percentage of the HMAC aggregate passing a #4 sieve, air voids, and so on. It can also be
seen from the directions of the arrows that increasing KESAI.s and freeze index may be
expected to increase rut depths, while increasing amounts of aggregate passing the #4 sieve,
air voids, and asphalt thickness may be expected to decrease rutting. It should be
remembered that the relative sensitivities depend on the model form selected for the
predictive equation, so some differences would be expected if a different equation was used
for the sensitivity analyses.
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Table 1. Coefficients for Regression Equations Developed to Predict Rutting in
HMAC Over Granular Base for the Wet-Freeze Data Set

Rut Depth = N B 10c Where N = Number of Cumulative KESALs

(In.) B = b 1 + b 2x 1 + b3x 2 + ... + bn__l
C = c1 + c2x 1 + c3x 2 +... + cnxn_1

ExplanatoryVariable or Interaction Coefficients for Terms In
(_0 Units

bi q

Constant Term -- 0.183 0.0289
Log (Air Voids in HMAC) % by Volume 0 -0.189
Log (HMAC Thickness) Inches 0 -0.181
Log (HMAC Aggregate #4 Sieve) % by Weight 0 -0,592
Asphalt Viscosity at 140"F(60"C) Poise 0 1.80 x 105
Log (Base Thickness) Inches 0 -0.0436
(Annual Precipitation • Inches 0

Freeze Index) Degree-Days 0 3,23 x 10_

R2 = 0.73 Adjusted R 2 = 0.68 RMSE in Log,0 (Rut Depth) = 0.19

<--{-.... r----_ KESALs 6- [ _-_ KESALs

{ { -_ Freeze Index HMAC Air Voids {<- {{
{ Days > 90°F { -_

_- I HMAC Aggr.<#4 {

F _ HMAC Air Voids Annual Prec. { } -_
_[_-----] HMAC Thick. HMAC Aggr.<#4 I<- {

I
Subgrade < #200 {[-----_ Annual Prec.

[_-7 Base Thick. HMAC Thick. /

[_ Viscosity @ 140°F Base Thick.?
1

I I I I I I I I I I

.15 .20 .25 .30 .35 .40 .15 .20 .25 .30 .35 .40

Rut Depth, In. Rut Depth, In.

a. Wet-Freeze Data Set b. Dry-No Freeze Data Set

Figure 1. Results From Sensitivity Analysis for Rutting in HMAC Over Granular Base
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To illustrate how different the sensitivities may be from one environmental zone to another,
the sensitivity analysis results for the dry-no freeze environmental zone are included as
Figure lb. Most of the variables are the same as for the wet-freeze zone, but there are
some differences and the relative levels of sensitivities vary between environmental zones.

Unfortunately, the number of test sections for specific combinations of distress type and
pavement type was not sufficient for the portland cement concrete (PCC) pavement studies
to allow development of regional models. Consequently, the reliabilities of these equations
are generally somewhat lower than those for the I-IMAC regional equations.

While the sensitivity analyses offer useful insight, it must be remembered that most of these
pavements are in very good shape, so the interactive effects of water seeping through cracks
and expediting deterioration in lower layers really is not represented here.

The twelve most significant variables from the sensitivity analyses for HMAC pavements are
listed below by distress type in order of relative ranking, with the most significant variable
at the top and the least at the bottom:

Rutting Change in Roughness Transverse Craekim,

KESALs KESALs Age
Air Voids in HMAC Asphalt Viscosity Annual Precipitation
HMAC Thickness Days With Temp. >9(IF (32"C) HMAC Thickness
Base Thickness HMAC Thickness Base Thickness

Subgrade < #200 Sieve Base Thickness Asphalt Viscosity
Days With Temp. > 9dF (32"C) Freeze Index Base Compaction
HMAC Aggregate < #4 Sieve Subgrade < #200 Sieve Freeze Index

Asphalt Viscosity Air Voids in HMAC Days With Temp.>90"F (32"C)
Annual Precipitation Base Compaction Subgrade < #200 Sieve
Freeze Index Annual Precipitation Annual KESALs

Base Compaction Daily Temp. Range Annual Freeze-Thaw Cycles
Average Annual Min. Temp. Annual Freeze-Thaw Cycles HMAC Aggregate <#4 Sieve

The assignment of rankings for PCC pavements is more complex because of the strong
impacts of dowels and reinforcement on performance. The general significance rankings for
all ten PCC models combined follow:

1. Age 7. Percentage of Steel
2. CESALs 8. Tied Shoulders

3. Slab Thickness 9. Annual Freeze-Thaw Cycles
4. Static k-Value 10. Type of Subgrade
5. Precipitation 11. PCC Flexural Strength
6. Joint Spacing 12. Monthly Temperature Range
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Other useful results follow:

• For joint faulting of jointed concrete pavements (JCP) and roughness in jointed plain
concrete pavements, the analyses indicate that environment becomes important only
if the joints are not doweled. Therefore, the use of dowels is especially important
in wet or cold climates and for high traffic.

• Joint spalling is generally dependent on age and the environment.

• The use of shorter slabs for JCP tends to reduce joint faulting and transverse
cracking, which results in less roughness.

• The use of a widened traffic lane appears to reduce roughness in continuously
reinforced concrete pavement.

• It is important not to overcompaet HMAC, because this will reduce the air flow
through the mix. In mixes of moderately high air voids (5 to 9%), early hardening
occurs, which stiffens the mix and substantially reduces the rate of compaction under
traffic. (It is also important to get sufficient compaction so that the early compaction
under traffic is not excessive.)

• The HMAC aggregate passing a #4 sieve was selected to represent the effects of
gradation. Within its inference spaces in the separate data sets, increasing amounts
of aggregate passing a #4 sieve appeared beneficial in reducing rutting.
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Introduction

Because of the diversity of the research activities and the bulk of the text required to
describe them, this report has been produced in five reports, which include an Executive
Summary. The overall title is Early Analyses of LTPP General Pavement Studi¢8 Dat,a,
but each separate report has an additional title as follows:

• SHRP-P-392, Executive Summary

• SHRP-P-684, Data Processing and Evaluation

• SHRP-P-393, Sensitivity Analyses for Selected Pavement Distresses

• SHRP-P-394, Evaluation of the AASHTO Desi_maEquatiom and
Recommended Improvements

• SHRP-P-680, Lessom Learned and Recommendations for Future Analyses
of LTPP Data

Each report is written as a stand-alone document, but it may be useful to refer to other
reports for additional detail.

This is a report on the results from data evaluations and sensitivity analyses for Strategic
Highway Research Program (SHRP) Contract P-020, "Data Analysis," which served as
the primary vehicle for harvesting the results from the first 5 years of the SHRP Long-
Term Pavement Performance (LTPP) studies and transforming this new information into
implementable products supporting the LTPP goal and objectives. The research was
conducted by Brent Rauhut Engineering Inc. and ERES Consultants, Inc.



The goal for the LTPP studies, as stated in the Strategic Highway Research Program
Research Plans, (1986) 1, is

To increase pavement life by investigation of various designs of pavement
structures and rehabilitated pavement structures, using different materials and
under different loads, environments, subgrade soil, and maintenance practices.

LTPP Objectives and Expected Products

The following six objectives were established by the SHRP Pavement Performance
Advisory Committee in 1985 to accomplish the overall goal:

• evaluate existing design methods;

• develop improved design methods and strategies for pavement rehabilita-
tion;

• develop improved design equations for new and reconstructed pavements;

• determine the effects of (1) loading, (2) environment, (3) material proper-
ties and variability, (4) construction quality, and (5) maintenance levels on
pavement distress and performance;

• determine the effects of specific design features on pavement performance;
and

• establish a national long-term pavement data base to support other SHRP
objectives and future needs.

This research was the first to use the National Pavement Data Base (later renamed the
National Information Management System [NIMS]) to pursue these objectives. The
early products that were expected from this data analysis are listed below and related to
project tasks (to be described later):

• A better understanding of the effects of a broad range of loading, design,
environmental, materials, construction, and maintenance variables on
pavement performance (Task 2);

• Evaluation of and improvements to the models included in the 1986
American Association of State Highway and Transportation Officials
(AASHTO) Pavement Design Guide (Tasks 3 and 4);

• Evaluation and improvement of AASHTO overlay design procedures using
data from the General Pavement Studies (GPS) (Task 5); and
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• Data analysis plans for future analyses as GPS time sequence data and
Specific Pavement Studies (SPS) data enter the NIMS and the LTPP
Traffic Data Base and offer opportunities for further insight and design
improvements (Task 6).

This project began with development of tentative analysis plans for this initial analytical
effort. These plans were presented July 31, 1990, to the SHRP Expert Task Group on
Experimental Design and Analysis and on August 2, 1990, to the highway community in
a SHRP data analysis workshop. A detailed work plan was developed from the initial
plans, and from the comments and guidance received from these and subsequent
meetings. Guidance was furnished to the contractors throughout the research by a Data
Analysis Working Group (composed of SHRP staff and SHRP contractors), the Expert
Task Group on Experimental Design and Analysis, and the Pavement Performance
Advisory Committee.

Research Tasks

The specified tasks for SHRP Contract P-020a were

• Task 1-- Develop data evaluation procedure and hold workshop,

• Task 1A-- Process and evaluate data,

• Task 2-- Perform sensitivity analysis of explanatory variables in
the National Pavement Performance Data Base,

• Task 3-- Evaluate the AASHTO design equations,

• Task 4-- Improve the AASHTO design equations,

• Task 5-- Evaluate and improve AASHTO overlay
procedures using GPS data, and

• Task 6-- Develop future LTPP data analysis plans.

The relationships between the tasks and the general flow of the research appear in
Figure 1.1. This report documents Task 2. As can be seen, this task provided the data
and information needed for Tasks 3, 4, 5, and 6.
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Data Bases Used in the Analyses

The NIMS will eventually include data for both the GPS and SPS, but only the GPS data
were even marginally adequate for these early analyses. In May 1993, the SPS data were
only beginning to be entered into the NIMS for projects recently constructed, and many
of the projects are not yet constructed. It should be noted that all data collected for
LTPP studies are for test sections 500 feet (152.4 meters) in length and include only the
outside traffic lane.

The GPS experiments are identified and briefly described in Table 1.1. The sensitivity
analyses were conducted only for the five data sets for pavements that had not yet been
rehabilitated, i.e., were in their first service period before being overlaid or otherwise
rehabilitated (GPS-1 through GPS-5). The limited data bases available for the pave-
ments with overlays were used for Task 5, Evaluate and Improve AASHTO Overlay
Procedures Using GPS Data (see Volume 4 of this report). There were not sufficient
test sections in GPS-6, GPS-7, and GPS-9, for which condition prior to overlay was
known, to support development of reasonable predictive models for conducting sensitivity
analyses.

Table 1.1. Listing of SHRP LTPP General Pavement Studies Experiments

GPS Experiment Brief Description No. of Projects in
Number the Database

1 Asphalt Concrete Pavement on Granular Base 253

2 Asphalt Concrete Pavement on Bound Base 133

3 Jointed Plain Concrete Pavement (JPCP) 126

4 Jointed Reinforced Concrete Pavement (JRCP) 71

5 Continuously Reinforced Concrete Pavement (CRCP) 85

6A AC Overlay of AC Pavement (Prior Condition
Unknown) 61

6B AC Overlay of AC Pavement (Prior Condition Known) 31

7A AC Overlay of Concrete Pavement (Prior Condition
Unknown) 34

7B AC Overlay of Concrete Pavement (Prior Condition
Known) 15

9 Unbonded PCC Overlays of Concrete Pavement 28
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Some statisticians prefer to call the GPS experimental factorials "sampling templates"
rather than experimental factorials, because existing in-service pavements were used
instead of test sections that were constructed to satisfy rigorous experimental designs. In
fact, the factorials were established to encourage reasonable distributions of the
parameters expected to be significant, and test sections were sought to meet the factorial
requirements. The SPS will follow the requirements of designed experiments.

The environmental factors considered in the sampling templates were freeze, no freeze,
wet, and dry. These broad factors were applied to encourage selection of test sections
with distributions of environmental variables. The four environmental zones (or regions)
considered for the selection of test sections appear in Figure 1.2. Where feasible, data
sets for the individual distress types were further divided into four separate data bases by
environmental zones, and separate analyses were conducted on each.

Definition of Sensitivity Analysis

"Sensitivity analysis" is not a common descriptor for either research engineers or
statisticians, but it has come to have a specific meaning to some individuals from both
disciplines. The definition as applied to this research follows:

Sensitivity analyses are statistical studies to determine the sensitivity of a
dependent variable to variations in independent variables (sometimes called
explanatory variables) over reasonable ranges.

An example is the study of the sensitivity of rutting in hot mix asphalt concrete (HMAC)
pavements to variations in layer thicknesses, traffic, material properties, or other
variables significant to the occurrence of rutting. Such studies are generally conducted
by first developing predictive equations for the distresses of interest and then studying
the effects of varying individual explanatory variables across reasonable ranges.

There is no single method of conducting sensitivity analyses. Some involve standardizing
the values of the independent variables so that the coefficients in the equations indicate
directly the relative sensitivity of the distress of interest to the explanatory variable the
coefficient multiplies. The procedure used for the studies reported involved setting all
explanatory variables in a predictive equation at their means and then varying each one
independently from one standard deviation below the mean to one standard deviation
above the mean. The relative sensitivity of the distress prediction for that variable is the
change in the predicted distress across the range of two standard deviations, compared to
the changes when other explanatory variables were varied in the same manner. Because
the relative sensitivities depend on the predictive equations selected, they would be
expected to change somewhat if other equations were used.
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No matter what procedure is used to establish the sensitivities, most of the work is spent
on statistical evaluations of the data that identify the independent variables significant to
the occurrence of the pavement distress of interest and the development of suitable
predictive equations by using the significant independent variables that were identified.

Analytical Limitations Resulting From Data Shortcomings

This project involves the analysis of data gleaned from in-service pavements, and none of
the early results may be expected to exceed in quality the adequacy of the database from
which they are developed. Therefore, it is important to discuss the data resources
available to the research team. There are certain limitations to the studies that are an
unavoidable consequence of the timing of the early data analyses. For instance, excellent
traffic data will be available to future data analysts from the recently installed monitoring
equipment but this early data analysis must rely on estimates of past equivalent single
axle loads (ESALs) of limited accuracy. While years of time sequence monitoring data
will be available later, these studies have distress measurements for only one or at most
two points in time. For most distresses, an additional data point may be inferred for
conditions just after construction; e.g., rutting, cracking, faulting of joints, and so on were
generally determined as zero initially. Analyses for roughness increases depend for most
test sections on educated estimates for initial roughness (derived from State Highway
Agencies [SHAs] estimates of initial Pavement Serviceability Index [PSI]).

The distribution in ages of the test sections offered some assistance in overcoming the
lack of time sequence data. As an example, Figure 1.2 shows the distribution of
pavement age for the GPS-1 experiment, Asphalt Concrete Over Granular Base. A
number of test sections are represented in all time intervals through 20 years of age.

Another shortcoming of the databases that influenced the results were missing items of
inventory data, collected from SHAs that concern the design and construction of the
pavements. Inventory data include such elements as date of construction, pavement
structure, and mix design. Some data elements were available for all the test sections,
while others such as asphalt viscosity were not known for some test sections and could
not be found. Unfortunately, it will generally not be possible to obtain these missing
inventory data so they will be missing for future analyses as well.

The plans developed for these analyses were well accepted, but during the processing
and evaluation of the data, it became apparent that all the plans could not be carded
out. Reflecting a tendency for SHAs to offer only pavements in reasonable condition,
many test sections had not experienced distresses as yet, and those that had generally
had only one or two distress types. The only type of distress that was generally available
for all test sections was roughness, and it was necessary to estimate the initial roughness
to study increases in roughness. For flexible pavements, rutting information was also
available for all these test sections. It was not possible to study alligator cracking in
flexible pavements, because only eighteen test sections were reported to have any of this
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Figure 1.3. Distribution of Pavement Age, Experiment GPS-1, AC Over Granular Base

cracking. Similarly, raveling and weathering could not be studied because only three test
sections had experienced this distress. The only three distress types for flexible
pavements for which sufficient data were available to support the studies were rutting,
change in roughness (measured as International Roughness Index [IRI]), and transverse
(or thermal) cracking.

Friction loss was also eliminated from the studies because there were only three data
elements in addition to ESALs, to use for independent variables and none of them
would be expected to relate closely to the polishing of aggregates. Also, initial friction
values were not available and would have to be estimated to study friction loss.

The study of overlaid pavements was to have been of high priority, but it was generally
agreed that pavement condition prior to overlay was an important variable and this
information was not available for pavements that were overlaid prior to entering the
GPS. It was decided early in the implementation of the LTPP studies that test sections
would be sought for pavements for which overlays were imminent, so that the condition
prior to overlay would be available. A number of such test sections have been
implemented, but none of these are old enough to have appreciable distress. The total
number of overlaid pavements was limited, and for the reasons discussed above only a
few had sufficient information for successful analyses. Consequently, analyses for the
overlaid pavements have been limited to the studies in Task 5, i.e., used only to evaluate
the AASHTO overlay design equations.
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It should be noted that the roughness reported for a test section is an average for that
test section. Software called PROQUAL2 was applied to the profile data to check it for
anomalies. Values of IRI were calculated for each of the five 100 foot intervals in a test
section. In some cases, there were significant differences in roughness among the 100
foot intervals, which may contribute to the unexplained error in the equations developed
to predict roughness or change in roughness.

It was also proposed that current knowledge be integrated into the analyses by use of
mechanistic clusters of variables in the regression equations to predict distresses, which
would then be used to conduct the sensitivity analyses. This plan to use mechanistic
clusters of variables, based on theory, was thwarted by a lack of layer stiffness data,
which only started to become available in fall 1992, and were still not all available as this
report was being written. Because the mechanistic theory required layer moduli of
elasticity, use of mechanistic clusters was limited to providing guidance for organizing
interaction terms to try in the multiple regressions used to develop the predictive
equations for distresses.

As with any data analysis, the analysis staff had to be concerned about potential biases in
the databases. Several areas of concern identified by Paul Benson, a member of the
Expert Task Group for Experimental Design and Analysis, were (1) imbalances in the
number of sections provided by different states, leading to possible undue influence from
one state's design, construction, and maintenance practices; (2) the possibility of
systematic differences in the interpretation of SHRP guidelines for test section selection
by the states and the four SHRP regional offices and their engineers; (3) uneven
distribution of test sections in experimental factorials; (4) the possibility that the older
non overlaid pavements selected represent survivors,which are not typical of pavements
in general; and (5) in a similar vein, the possibility that by basing much of our analysis
on older pavements we may not be reflecting changes already made in modern
construction and design practices. The following recommendations by Mr. Benson were
followed in the analyses:

• Limit the inference space of a model where the data are limited or grossly
unbalanced, and consider regional models where the data do not warrant a
national model.

• Combine experiments (where distress mechanisms may be similar) to achieve a
better balance (specifically GPS experiments 1 and 2).

• Examine the distributions of independent and dependent variables for non
normality, bi-modulism, and extreme values; where such are found, attempt to
determine their source.

• Conduct a thorough residual examination as soon as preliminary models are
available, comparing residuals to project age, state, season tested, and other
variables to determine possible sources of bias.
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Sets of distress types to be studied were separately selected for pavements with asphalt
concrete (AC) and portland cement concrete (PCC) surfaces, in coordination with the
Expert Task Group on Experimental Design and Analysis, SHRP staff, and other
interested parties. Once these distress types were selected, separate tables for flexible
and rigid pavements, with the distress types as columns and all the data elements as
rows, were furnished to a set of experts. These experts were asked to indicate on a scale
of 1 to 3 how significant they believed a particular data element would be to the
occurrence of each of the distresses. The results from these surveys were then combined,
and studies were conducted to consider the expected availability of the individual data
elements and possibility of substituting other correlated data elements when important
data elements were not available. These studies identified data sets for the

sensitivity studies to be used for the combinations of distress types and pavement types,
and are described in more detail in Chapter 2.
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2

Preliminary Selection of Data Elements for Sensitivity
Analyses

The National Information Management System (NIMS) has "bins"for 117 data elements
for pavements with asphalt concrete surfaces, 128 data elements for jointed concrete
pavements (JCP), and 120 data elements for continuously reinforced concrete pavements
(CRCP). Because it clearly would not be practical to attempt to model pavement
performance with so many independent variables and literally hundreds of potential
interactions, it was necessary to considerably reduce the number of variables (data
elements) to develop meaningful performance prediction equations and reasonable
estimates of the relative significance of the independent variables to the occurrence of
specific distresses (dependent variables).

Relative Significance Studies

The approach adopted for preliminary elimination of less significant variables was to
obtain relative significance rankings from experts in pavement performance modeling.
This offered a means for bringing expert knowledge into the analysis at an early stage, as
well as offering insight for selecting the variables to be considered in the analyses.
These selections require balancing relative significance, data availability, and correlations
with other variables. Tables were developed for the three pavement types that listed the
data elements as rows and the significant distresses selected for study as columns. These
significance tables were distributed to various experts who had agreed to participate.

Three levels of significance were considered. The assignment of a "l"indieated that the
rater considered the data element to be clearly significant in predicting the distress of
interest. Assignment of a "2"indicated moderate significance, and a "3"indicated little or
no significance. Space was also included in the tables for listing other data elements that
were believed to be correlated with the one identified on that line.
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When the significance rating forms were returned, the entries for each block were
averaged. If the average score for a data element and distress combination was less than
2, that data element was considered to be significant for prediction of that distress. If
the average score was exactly 2, it was retained in the significance studies in some cases
but not in others on the basis of the research team's judgment. Data elements with
scores greater than 2 were not considered further.

Criteria for Selection of Data Elements

Upon completion of the relative significance studies discussed above, sets of independent
variables had been developed that individually were believed to be significant to the
prediction of specific distresses. However, significant independent variables to be
included in the studies needed also to be available in the database. Therefore, the
percentage of data expected to be available had to be considered in selection of the data
elements to be included in the sensitivity analyses.

It was soon apparent that many of the data elements considered to be individually
significant would not be available in sufficient numbers to support the analyses.
However, a great many of these variables were correlated to various degrees with other
independent variables that were represented in greater percentages of the test sections
involved. These correlations were considered, and it became apparent that the "explana-
tion" of variations in the distresses (dependent variables) could for the most part be
offered by other data elements with which they were correlated. That is, by omitting
many of the variables the growth in the error pool would be manageable because of the
inelnsion of other correlated variables.

It was possible through consideration of correlations as discussed above to replace most
of the significant explanatory variables. However, a few of the significant data elements
remained that were not replaceable with other correlated data elements. The level of
the effect on the results was evaluated, as well as the probability of finding values for
them, which resulted in a very small group of data elements for which the Strategic
Highway Research Program (SHRP) regional offices were asked to seek values. As an
example, the database includes bins for grade, penetration, and viscosity of the original
asphalt cement for flexible pavements. Because these data cannot be obtained by testing
the hardened asphalt taken from the in-service pavements, there was no source other
than the inventory data from the files of the State and Provincial Highway Agencies. It
was concluded that approximate values of the other two could be obtained if any one of
the three was known. Therefore, values were sought in the few cases where none of the
three values were furnished.

Appendix A provides a document developed in March 1991 to record the results from
the studies described briefly above for pavements with AC surfaces. The general
procedure applied is illustrated in Figure 2.1.
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In summary, the criteria for selecting the data elements to be included in the sensitivity
analyses were (1) the data element must have been rated by the experts as significant,
(2) the data must be available for a sufficient number of the test sections, and (3) the
data element should not be highly correlated to other data elements considered to be
more significant or to have data for more test sections.

Data Elements Selected for Sensitivity Analyses

The data elements that survived the preliminary selection process described above are
listed in Tables 2.1 and 2.2. For Table 2.1,an "X"in a box representing a specific data
element and specific distress indicates that the data element would be included in the
development of predictive equations for the specific distress, and would be further
considered in the sensitivity analyses if the statistical studies support the opinions of the
experts as to its importance. As discussed previously, data elements with average
significance rating scores greater than 2 were not considered further. However, those
that were considered very significant by at least one rater have been identified by a "#"
in Table 2.1 and may be considered further in future analyses when more data and time
are available.

Table 2.2 provides combined information for both JCP and CRCP. An "X"indicates
selection for a JCP distress, whereas an "O" indicates selection for the CRCP studies. As
an example, portland cement concrete (PCC) surface thickness is considered significant
for transverse cracking, longitudinal cracking, pumping, roughness, and joint faulting for
JCP, but is only considered significant for localized failures, pumping, and roughness for
CRCP. As for flexible pavements, data elements that one rater considered to be very
significant have been identified in Table 2.2 by a "#" symbol for JCP and a "+"symbol
for CRCP.

It can be readily seen that a number of data elements are available for some distress
types, while there are only a few for others.

There are no surprises in the data elements selected as significant. Thicknesses and
stiffnesses of layers control strains in the pavement structure, while other data elements
reflecting material properties (e.g., asphalt viscosity, percentage of air voids, gradations
of aggregates and base materials, and strengths) affect layer stiffnesses and durability
under the impacts of loads and the environment. Plasticity indices of the subgrades
affect roughness through differential volume change by interacting with moisture content.
Drainage can affect moisture content in base, subbase, and subgrade, which in turn
affects layer stiffnesses and loss of fines. Performance of JCP depends heavily on joint
efficiency from deflection measurements, which indicate movements in joints under
loads.

24



Table 2.1. Significant Data Elements for Predicting Distresses in
Pavements With Asphalt Concrete Surfaces

Significant Distress Types
Data

Elements Alligator Transverse Friction Raveling/
Cracking Cracking Rutting Roughness Loss Weathering

Surface Thickness X X X X

Base/Subbase Thickness X X X

Surface Stiffness X X X

Unbound Base/Subbase X X
Stiffness

Bound Base/Subbase X # X
Stiffness

Subgrade Stiffness X X X

Age of Pavement X X X X X X

Cumulative ESALs X X X X X X

Asphalt Viscosity X X X #

Asphalt Content X X X # X

Percentage of Air Voids X X X # X

HMAC Aggregate X X # #
Gradation

Percentage of X X

Compaction of
Base/Subbase

Subgrade Soil # X #
Classification

In Situ Moisture Content # X

of Subgrade

Subsurface Drainage # X X
Yes/No

Geological Classification X
of Course Aggregate in
HMAC

% of Subgrade Soil # X
Passing #200 Sieve
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Table 2.1(continued). Significant Data Elements for Predicting Distresses in
Pavements With Asphalt Concrete Surfaces

Significant Distress Types
Data

Elements Alligator Transverse Friction Raveling/
Cracking Cracking Rutting Roughness Loss Weathering

Plasticity Index of # # X
Subgrade Soil

Liquid Limit # # #

Percent of Subgrade Soil # X
Finer Than 0.02ram

Type of Environment # # X X X X

Average Maximum Daily # # X # #
Temperature by Month

Average Minimum Daily # # # # X
Temperature by Month

Thornthwaite Index # # X

Freeze Index # X # X

No. of Days Minimum X X # X
Temperature < 32"F
(0"c)

No. of Days Maximum X # X X #
Temperature > 90"F
(32"c)

Number of Air Freeze- X X # X X

Thaw Cycles

Annual Precipitation X X X X X

Notes: X -- data element was selected for analyses.

# = average score greater than 2, but considered very significant by at least one rater.
ESAI_ = equivalent single axle loads; HMAC = hot mix asphalt concrete.
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Table 2.2. Significant Data Elements for Predicting Distresses in
Pavements With Portland Cement Concrete Surfaces

Significant Distress Types
Data

Elements Longitudinal
Cracking

Transverse (JCP)/ Pumping Roughness Friction Joint Joint/
Cracking Localized Loss Faulting Crack

Failures Spailing
(CRCP)

PCC Surface X X X X X #
Thickness 0 0 0 +

Base Thickness # # X X X +
O O O

PCC Surface X X X # # #
Stiffness 0 0 + O

Base Stiffness X X X X X
O O O

Subgradc Stiffness X X X X X +
O O O

Age of Pavement X X X X X X
O + O O O

Cumulative 18 kip X X X X X X X
ESAL 0 0 0 0 0

Type of Coarse X X X X # X
Aggr. for PCC O + O O

Gradation of Coarse # # # # # X X
Aggr. for PCC 0 + + 0

PCC Compressive X X X X
Strength O O O

AASHTO Soil Class 0 X X X #
Basc/Subbasc 0 0 0

% Compact. of # # x X X
Base/Subbasc 0 0

Coarse Aggregate # 0 X # X #
Gradation of O
Base/Subbase
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Table 2.2(continued). Significant Data Elements for Predicting Distresses in
Pavements With Portland Cement Concrete Surfaces

SiLmificant Distress Types
Data

Elements Longitudinal
Cracking

Transverse (JCP)/ Pumping Roughness Friction Joint Joint/
Cracking Locali7ed Loss Faulting Crack

Failures Spalling

(CRCP)

Fine Aggr. # # X #
Gradation of + O

Base/Subbasc

AASHTO Soil X X X X
Classification of O O O

Subgrade

Subgrade % Passing + X #
#200 Sieve O +

Moisture Content of # # X #

Subgrade +

Joint Efficiency # X X X X

Thornthwaite Index # # X X # X #
0 0 0

Annum Precipitation X 0 X # X X
0 0

Precipitation Days 0 X # X
by Year 0 0

Shoulder Type X # # # # +
0 0 0

Subsurface Drainage X # # # X X
Type 0 0 0 0

Avg. Max. Daily X X X X X X
Temperature by O O O O
Month
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Table 2.2(continued). SiotmificantData Elements for Predicting Distresses in
Pavements With Portland Cement Concrete Surfaces

Significant Distress Types
Data

Elements Longitudinal
Cracking

Transverse (JCP)/ Pumping Roughness Friction Joint Joint/

Cracking Localized Loss Faulting Crack

Failures Spalling
(CRCP)

Avg. Min. Daily X X X X X X
Temp. by Month O O O O

No. of Days Min. X X O O O
Temp. < 32"F (0"C) O

No. of Days Max. O X X X
Temp. > 90"F
(32"C)

Air Freeze-Thaw X X X X X X
Cycle,s

Notes: X = data dement was selected for JCP studies
O ---- data element was selected for CRCP studies

# - average score greater than 2, but considered very significant by at least one rater.
PCC = portland cement concrete

ESAL = equivalent single axle load

AASHTO= American Association of State Highway and Transportation Officials
JCP = jointed concrete pavement

CRCP = continuously reinforced concrete pavement
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Large sets of deflection measurements are available for each test section, but these were
not included in the sensitivity analyses. Although it is logical to include deflections in a
predictive equation to be used for overlay design or other purposes, it is not appropriate
to include them in models built for sensitivity analyses, because the responses to load are
already explained by other data elements that represent the pavement structure.
Including the deflection responses would account twice for the same effects.

From the significance ratings and studies described above the data elements (or
independent variables) were selected that were included in the sensitivity analyses for
each distress type. Separate analyses are planned for each of the distress types that
appear in Tables 2.1 and 2.2 and for each of the applicable GPS experiments. Data
limitations and logic led to combinations of data into studies that were not strictly along
the GPS experiment lines. These revised data sets (or studies) are described in the next
chapter.
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3

Restructuring of Sensitivity Analysis Plans

In the original experimental design for the General Pavement Studies (GPS) each
experiment was to be analyzed separately. However, subsequent changes in the experi-
mental designs (possibly more reasonably called sampling plans as the test sections were
acquired from in-service highways rather than being test sections rigidly controlled as to
construction details) and other database limitations led to logical groupings of the data
sets to obtain as many test sections with a distress type of interest as possible. This led
to combining data sets from GPS-1 and GPS-2 that really fit either experiment, and in
combining data sets from GPS-3 and GPS-4, where the presence or lack of reinforce-
ment would have a limited effect on the occurrence of distress. The restructuring of the
data sets is discussed separately below for pavements with asphalt concrete surfaces and
those with portland cement concrete (PCC) surfaces.

Pavements With Asphalt Concrete Surfaces

Studies were conducted on the combined GPS-1 and GPS-2 data in early 1991 with only
the inventory data available at that time. Twelve different categories of pavement
structures were identified (Column 1 of Table 3.1), and the number of test sections for
each were determined (Column 2 of Table 3.1). It can be seen that an ample database
appeared to be available for hot-mix asphalt concrete (HMAC) on granular base, and
that reasonable numbers were available for full-depth HMAC without stabilized
subgrade and for HMAC on a cement aggregate mixture base. In general, there were
not enough test sections of the other types for meaningful individual analysis. Therefore,
a study was conducted to identify potential analysis combinations, which appear in Table
3.2.

Table 3.2 indicates pavements with bases that are not subject to vertical shrinkage cracks
and those with bases that are subject to vertical shrinkage cracks. This differentiation
was made because of its anticipated importance to the modeling of transverse cracking.
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Study of the data that appeared to be available (Column 2, Table 3.1) and the potential
analysis combinations (Table 3.2) led to the proposed steps in the analyses for the
distresses indicated in Tables 3.3 and 3.4. The general objective was to start with large
data sets and learn as much as possible about suitable equation forms and variable
clusters. This experience would then be brought to bear as other combinations were
studied and comparisons carded out.

All test sections were assumed to be included in the analyses; however, when only a few
test sections were available for a structure type, these test sections would only be used
for trials of equations that had been developed from larger databases to see if they might
be adequate for somewhat different pavement structures as well. As discussed
previously, these plans were developed from inventory data and prior to the availability
of data from actual monitoring and material testing. Although friction loss and
raveling/weathering were not studied, Table 3.5 has been included because of its
potential use to future analysts.

The research team studied the data to see what test sections had experienced the
distresses of interest and had the data required for use in the analyses. Table 3.1 also
indicates results from these later studies as follows: (1) the numbers of test sections by
pavement structure category that generally had sufficient data available for use in
analyses (Column 3) and (2) the number of these test sections that had experienced each
of the three types of distresses to be studied (Columns 4, 5, and 6). The actual numbers
of test sections that could be used in analyses for a particular distress were generally
much smaller than originally expected. It became apparent that data limitations would
considerably reduce the opportunities for analysis, and some test sections were moved to
other categories when materials data from sampling and testing became available. As
discussed previously, the only distress types for which the data would support the planned
analyses were rutting, roughness, and transverse cracking. There were only eighteen test
sections for which fatigue cracking data were available. Future analyses may possibly
include those test sections that have not as yet experienced the distresses of interest.
These techniques are identified for future consideration in SHRP-P-680, Early Analyses
of LTPP General Pavement Stu i D Le me R ommen "ons f r

Future Analyses of LTPP Data.

Pavements With Portland Cement Concrete Surfaces

The categories of PCC pavements that were available for the analyses were the jointed
plain concrete pavements (JPCP) of GPS-3, the jointed reinforced concrete pavements
(JRCP) of GPS-4, and the continuously reinforced concrete pavements (CRCP) of GPS-
5. As for the HMAC pavements, there was an investigation to determine whether it
would be possible to combine the data available into more logical data sets that would
be amenable to the development of the required predictive models.

Unlike HMAC pavements, however, most types of distress that occur on PCC pavements
are directly related to the surface type (JCPC, JRCP, or CRCP). In fact, the
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mechanisms of distress for PCC pavements almost always relate to the surface type. For
example, the distress mechanisms for CRCP are generally different from those for
jointed concrete pavements (JCP), and different models are often required for JPCP and
JRCP to adequately predict the same type of distress.

Consequently, it was not feasible to combine data sets, other than to combine JPCP and
JRCP for faulting and roughness. Even then, because of the strong effects of dowels on
the occurrence of joint-related distresses, it was necessary to separate the data sets into
one for test sections with dowels and one for those without dowels.

Table 3.3. Proposed Steps in Separate Analyses for Alligator Cracking, Rutting,
and Roughness in Pavements With Asphalt Concrete Surfaces

1. Develop regression equations by using the Statistical Analysis System (SAS®)3 PROC REG
procedure and the data for HMAC over granular base (218 test sections).

2. If the data elements found to be significant are available for the 11 HMAC/ATB/granular base
sections, use their data to see if their performance varies appreciably from that of sections with
HMAC on granular base. (Do equations from Step 1 provide reasonable predictions for the 11
HMAC/ATB/granular base sections?)

Note: If the equations from Step 1 are adequate for the 11 HMAC/ATB/granular base
sections, the resultant predictive equations may be recommended for such pavements
that include ATB.

3. Apply experience from Step 1 on equation forms and dusters in the development of regression
equations with data for the 52 full-depth HMAC sections without stabilized subgrade. If Step 2
indicates that pavements that include an ATB layer do not perform si£mificanfly different from
sections whose bituminous layers are all HMAC, then include the 18 HMAC over ATB without

stabilized subgrade for a total of 70.

4. If the 18 HMAC over ATB sections are not included in Step 3, use the equations from Step 3
and the data from the 18 HMAC over ATB sections to see if their performance varies apprecia-

bly from that of sections with full-depth HMAC.

5. Apply experience from previous steps on equation forms and clusters in the development of
regression equations with data for the 60 test sections with I-IMAC over soil cement base (20) or
cement-aggregate mixture base (40).

6. Use the equations from Step 5 and data for the 4 sections with lean concrete base and the 2

sections with pozzolanic-aggregate mixture base to determine whether the equations developed
in Step 5 provide reasonable predictions for these types of nonbituminous base.

7. Review the results from the previous steps to see if better equations could be developed by

revising clusters or equation forms. If significant improvements appear possible, pursue the
improved equations.

8. Conduct sensitivity analyses on the predictive equations developed.

9. Develop graphs and/or other means of presenting the results of the sensitivity analyses.

35



Table 3.4. Proposed Steps in Sensitivity Analyses for Transverse Cracking in
Pavements With Asphalt Concrete Surfaces

1. Develop regression equations using SASe3 PROC REG and the data for all HMAC sections
without nonbituminons bound base or stabilized subgrade. These will include 218 HMAC over
granular base, 11 HMAC over ATB over granular base, 52 full-depth HMAC without stabilized
subgrade, and 18 full-depth HMAC overATB without stabilized subgrade.

2. From the experience from Step 1 concerning equation forms and clusters, develop regression
equations for all full-depth I-IMACsections with stabilized subgrade (10), HMAC over ATB
with stabilized subgrade (4), and HMAC with nonbituminons bound base (66). These includes
thefollowing:

a. 10 test sections with full-depth HMAC (or HMAC/ATB) over lime-stabilized
subgrade.

b. 4 test sections with fidl-depth HMAC (or HMAC/ATB) over lime- or cement-
stabilized subgrade.

c. 20 test sections with HMAC over soil-cement base.

d. _4HMAC test sections over lean concrete base.

e. 40 HMAC test sections with cement-aK_regate mixture base.

f. 2 HMAC test sections with pozzolanic-aggregate mixture base.

3. Compare the two resulting equations from Steps 1 and 2 by applying the equation from Step 1
to the data used in Step 2, and vice versa. Study residuals in each case to learn what can be
done about the effects of differences in base materials on the prediction of transverse cracking.

4. If there do not appear to be serious differences attributable to whether base materials were

subject to initial vertical fractures because of shrinkage cracking, regress again_ with all data.
Study the residuals from each of the equations developed and decide which is to be used for the
sensitivity analyses.

5. Conduct sensitivity analyses on the predictive equations developed.

6. Develop graphs and/or other means of presenting the results of the sensitivity analyses.
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Table 3.5. Proposed Steps in Separate Analyses for Friction Loss and Ravel-
ing/Weathering in Pavements With Asphalt Concrete Surfaces

It appears reasonable to assume that the effects from characteristics of layers below the surface layer will
be minor, especially in view of the limited data available that are considered sltmificant to the occurrence
of these distresses. Consequently, data from all 379 test sections will be used in the analyses when these
data are available. Friction measurements and initial estimates will not be available for all test sections.

It is obvious that the presence of a seal coat, friction course, and such surface treatments will affect the
occurrences of these distresses, so identification of the type of surface treatment (if any) and its
characteristics (when available) will also be considered in the analysis. However, no testing of thin
non-HMAC layers is conducted in the SHRP laboratories, other than measurements of thickness and
designation as a seal coat, porous friction course, or surface treatment. The other possibilities for data
are from the inventory data or maintenance data. The inventory data only include a code that identifies

what type of seal it is (chip, slurry, fog, sand, or chip with modified binder) and the layer thickness.
There are virtually no maintenance data currently in the database, but future maintenance activities will
be recorded in great detail for future analyses.

The only three available data elements considered to be siL_nificantfor predictin_ friction loss are (1) age
of pavement, (2) cumulative ESALs, and (3) geological classification of course aggregate. As the latter
data element will only be available for HMAC surfaces, there is really no hope for developing equations
to predict friction loss for pavements with thin layers of seal coat, porous friction course, or other surface
treatments. Consequently, test sections with such surface layers will be omitted from the analyses.
Similarly, materials information will also not be available for raveling/weathering of such thl, surface
layers, so these test sections will be omitted from studies of this distress as well.

The proposed steps follow:.

1. Develop regression equations using SAS® PROC REG 3 and data for all 379 test
sections, except those with a thin surface layer other than HMAC and those for which
distress data are not available.

2. Conduct sensitivity analyses on the predictive equations developed.

3. Develop graphs and/or other means of presenti,_ the results of the sensitivity analyses.
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4

Theoretical Variable Clusters and Constraints Imposed by
Late and Missing Data

The research staff had hoped to use theoretical clusters of variables to impose current
knowledge into the predictive models and to decrease the number of variables to be
regressed. The intent was to apply partial differentiation to segregate the relative
sensitivities for the individual explanatory variables, In support of this intention, Dr.
Robert L. Lytton, consultant to the project, applied mechanistic theory to develop such
clusters of variables for use in the studies of pavements with asphalt concrete surfaces.
This technical memorandum appears as Appendix B.

Similarly, Drs. Michael I. Darter and Emmanuel Owusu-Antwi developed clusters of
variables for use in the studies of pavements with portland cement concrete surfaces.
This technical memorandum appears as Appendix C.

Because the use of these theoretical clusters of variables depends on knowing the elastic
modulus of the various layers, it was not possible to use these as intended in the
regressions. Resilient modulus testing in the laboratories to gain the elastic moduli of
the layers did not reach the production testing stage until mid-1992, because of problems
in resolving issues in testing protocols and procedures and conducting the round robin
tests between laboratories to ensure uniformity. Results from laboratory testing were
still not available at the time writing began on this report. Similarly, the capabilities for
conducting backcalculations on deflection data were delayed while software was devel-
oped to interface with the Regional Information Management Systems, and this software
was not available until the analyses were in an advanced stage. As a result, the research
staff could use the technical developments only as guidelines in structuring interactive
terms within the regression equations.

The technical memoranda discussed above are included in this report; they will have
direct applicability for future analyses when the necessary data are available.
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5

General Procedures Followed in Developing Predictive
Equations for the Sensitivity Analyses

To conduct successful sensitivity analyses of the type considered here, it is necessary to
develop equations that are both statistically linear and contain a minimum of collinearity
between the independent variables to predict the distresses of interest. Predictive
equations linear in the coefficients are required for sensitivity analyses for the following
reasons:

• The magnitudes of the effects from varying the individual independent
variables would not be directly comparable, otherwise.

• Nonlinear regression techniques are deficient in the diagnostics needed to
identify collineafity and influential observations. Because collinearity must
be minimized if the relative sensitivities are to be meaningful, use of
nonlinear regressions could seriously limit confidence in the results.

• The research staff, including Dr. Olga J. Pendleton, the statistical
consultant, are not aware of any existing procedures for conducting
sensitivity analyses on nonlinear models; therefore, it would have been
necessary to develop a complex computer program which would have been
far out of the scope and funding for these studies.

Because it became obvious early in the contract period that there would be delays in
delivery of the required data, it was decided to develop a practice data base that Dr.
Pendleton could use to demonstrate the appropriate statistical procedures. A practice
database was developed for the General Pavement Studies (GPS)-I experiment by the
research staff, who used a combination of data from a variety of sources, some of which
were necessarily estimated on the basis of engineering judgment, and by using other
available data. These data and sources are indicated below:
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• Inventory data that describe the pavement structure, its materials, and
some construction information.

• Distress data from early visual surveys during initial acceptance visits to the
test sections.

• Equivalent singl axle loads (ESALs) per year from early State Highway
Agencies (SHAs) estimates during candidate test section recruitment.

• Environmental data from climatic isobar maps.

• Stiffness data for asphalt concrete (AC) and base, estimated through
consideration of materials types, classification data from state records, and
other inventory data.

• Subgrade stiffness calculated from Sensor 6 deflections.

• AC layers combined and base and subbase combined to restrict data to
three-layer structures.

This practice database was used to study the nature of the data and develop the
procedures to be used. Because the Statistical Analysis Systems (SAS°) software3 was
selected for conducting the studies, the procedures developed were based on that
software and identification of subroutines all refer to the SAS® software.

A tutorial was conducted for the research staff from both Brent Rauhut Engineering Inc.
(BRE) and ERES Consultants, Inc. (ERES) at Texas A&M University. The technical
manager for the Strategic Highway Research Program (SHRP), Dr. Robert Raab, also
attended. Amy Simpson, BRE's staff engineer, who was later trained, conducted the
sensitivity analyses. A detailed technical memorandum was written to explain these
procedures in detail and gives examples. This technical memorandum appears in
Appendix D. While this chapter will provide a brief discussion of these procedures, the
technical memorandum provides additional detail.

General Procedures

A flow chart for the general procedures to be applied appears in Figure 5.1. The
selections of independent variables to be included in the studies are described in Chapter
2, and the development of theoretical clusters of variables was discussed briefly in
Chapter 4. The selections of transformations of the variable (e.g.,in logarithmic form
rather than arithmetic) and interactions were primarily carried out as part of the
multiple regressions themselves, which were part of the multivariate analyses indicated in
Figure 5.1.

42



I
IdentifyandCreateNewVariables ]

(ClusterVariables,Transformations,etc.)[
,L

UNIVARIATEANALYSES

BIVARIATEANALYSES

MULTIVARIATEANALYSES

Figure 5.1. Flow Chart for Data Studies and Development of Equations to Predict
Significant Distresses

The univariate analyses examine the data to determine potential distributional problems
and anomalies. (Results from similar studies appear in SHRP-P-684, Early Analyses of
LTPP General Pavement Studies Data, Data Processing and Evaluation for each GPS
experiment.) The purposes were to examine marginal distributions, identify gaps in the
data, identify any unusual observations, and identify functional forms. The procedures
included studies of continuous data descriptive statistics and frequency distributions by
using PROC UNIVARIATE, and partitioning continuous variables by categorical ones,
by using PROC UNIVARIATE with BY option.
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The bivariate analyses were used to study pairs of data elements, which may turn out to
be unusual although each variable by itself is not unusual. The specific expectations
from the bivariate analyses are to identify two-variable relationships, bivariate unusual
points, bivariate collinearities, data gaps, functional forms, and data clusters. The
procedures are as follows:

• Study two-variable scatter plots produced from PROC PLOT.

• Study correlations produced by PROC CORR.

• Study categorical data contingency tables obtained by PROC FREQ.

• Study partitioned correlations or plots by categorical data levels, produced
by PROC CORR and PROC PLOT with BY option.

The final step in the development of the predictive equations is collectively termed
"multivariate analyses." These analyses included studies to identify multivariate collinear-
ities and the development of the pavement distress models. The procedures planned
included the following:

• Discriminant analysis to identify distressed and nondistressed pavements,
using PROC REG with transformed variables.

• Development of regression analysis models for distressed pavements, using
PROC REG.

• Analysis of variance, comparing the means of independent variables for
distressed and nondistressed pavements, using PROC GLM.

The procedures described above were carded out as indicated, but it became apparent
during the analyses that revisions and additions would be required. These are discussed
in the next section of this chapter.

Principal component analysis was used to detect collinearity and influential observations.
This method uses plots of eigenvector pairs to identify collinearities that may be masked
by outliers.4

In addition to the use of the univariate and principal component analysis procedures to
detect outliers and influential observations, a procedure was used that is very similar to
the principal component analysis. Once the model had been completely developed, the
observations were examined in n-dimensional space to determine which were the farthest
from the center of the data set. The center was found by determining the average of
each data element. The five observations found to be the farthest from the center of the
data set were deleted from each regression. It was not determined whether these five
observations were significant influential observations. In the future, contours can be
drawn around the data sets at specific significance levels. Any points lying outside the
95% contour should be considered significant influential observations.
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It should be noted that the measured distresses for the in-service pavements do not
include the period just after the lane was opened to traffic. Consequently, early
compaction from Waffle is not directly represented. As a boundary condition, the log of
cumulative KF__ALs (1,000 ESALs) was included in each equation as a separate term to
enforce zero rutting with zero ESALs. Mathematically, the equations are undefined at
zero ESALs; however, for practical purposes it is assumed that zero to some power is
zero. The same boundary condition was enforced to ensure zero change in International
Roughness Index (IRI) with zero cumulative ESALs, and age was used to enforce zero
transverse cracking at the time of construction. Consequently, the predicted progression
of distresses very early in a pavement's life is not reliable (and not especially important
either as will be seen later).

Problems Encountered and Modifications to Procedures

Once the procedures were developed, work began with the complete database. The first
distress type considered was rutting of hot mix asphalt concrete (HMAC) pavements over
granular base. As problems were encountered, this data set was used as a "test bed" for
identifying problems and working out solutions before continuing with data sets for other
distresses and pavement types.

As required for the sensitivity analyses, modeling was conducted using the least squares
linear regression technique which minimizes random error. This technique also assumes
that the dependent variable is normally distributed about the regression line and that the
independent variables are fixed and without error. It is believed that the distresses have
approximately log-normal distributions about the regression line; therefore, the
regressions were conducted to predict the common logarithm of the distress.

The first step was to analyze the individual independent variables with the SAS®all
possible subset selection procedure. This procedure allows the user to offer a list of
independent variables, and the system will select which of these variables, singly and in
combination, best predict the dependent variable. This procedure was not expected to
give the final model; however, it was expected to aid in determining which variables were
the most influential to prediction of the dependent variable.

The second step was similar to the first, except that all possible two- and three-way
interactions were tried in the regressions. The interactive terms were selected through
consideration of the theoretical variable clusters discussed in Chapter 4, terms appearing
in prior distress equations, and engineering experience and judgment. When the
sensitivity analyses were conducted on the resulting model, it became apparent that each
independent variable needed to be in either log form or nonlog form, but not in both.
This model did not meet that criterion. For example, asphalt thickness was present both
as asphalt thickness and log asphalt thickness. Although both an independent variable
and its logarithm might be found to contribute to the explanation of the variance in the
dependent variable, only one or the other was considered for subsequent models.
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The third step was to raise variables within the model to some power. The power was
determined through an iterative process that found the models with the best root mean
square error (RMSE), coefficient of determination (R2), and P value on the individual
variable. The P value is used to determine whether the independent variable is
significant to the prediction of the dependent variable. However, the sensitivity analysis
on the resulting equation did not produce logical or believable results. These results led
to serious discussions and experimentation, which then led to the conclusion that three-
way interactions (containing three independent variables in a single term) and the
powers of the variables were confounding the sensitivity analyses. It was decided to limit
the models to main effects (single independent variables) and two-way interactions.
While the fit of the resultant models was slightly (though not significantly) worse, the
sensitivity results appeared much more logical.

As an additional trial, it was decided to try producing a predictive model for rutting by
using only test sections with two rutting measurements taken at different points in time.
Two measurements (other than the zero at construction) were available for 121 sections,
and those sections with only one measurement were deleted for this trial only. The
analyses were rerun, but the model statistics were no better than before. The two points
were no more (and generally less) than 2 years apart; it is likely that more time series
data will be required to improve the fit.

To determine the stability of the model, regression analyses were completed on five
different sets of 80% of the complete data set (a different 20% deleted each time), by
using the same equation form. The coefficients for each independent variable for each
run were compared and found to be quite variable. If the equation had been stable, the
coefficients would have been very similar.

Correlation among independent variables can lead to estimates of model coefficients that
are illogical in sign. For example, when the variables "average monthly maximum
temperature" and "annual number of days greater than 90°F (32°C)" were used in the
equation for rutting, they had opposite signs. Although these nonintuitive model
estimates do not generally mar the model's predictive ability, they are somewhat
disconcerting to the practitioner and are difficult to explain. At this point it was decided
to try the technique of ridge regression,5 a statistical method that adjusts for collinearity
(correlated independent variables) and produces more stable and logical model
estimates. One may visualize the procedure as adding m dummy equations of condition
to the n real equations of condition, where m is the number of independent variables in
the regression, and n is the number of observations. (An equation of condition is an
equation in the form of the desired regression between the dependent variable for a
given observation and the independent variables for that same observation.) The
parameter estimates in many cases change dramatically when the ridge regression
procedure is used. At some point during the iterative model developments the change in
the parameter estimates becomes much smaller, and this equation is the final one that is
used.
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The terms in the equations previously checked by using five different sets of 80% of the
data set had been primarily interactions between the independent variables. Thus, some
of the main effects (individual independent variables) were added to the equation form,
and the regressions were repeated, with a different 80% of the data set for each model.
The comparisons of the five sets of coefficients proved to be much more consistent,
which indicated that the revised equation form fit the data better.

The model was found to contain certain highly correlated variables such as age and
KESALs and subgrade moisture and annual precipitation. These pairs were identified
and the variables in each pair with relatively low sensitivities were replaced by the
variables with which they were correlated. The sensitivity analysis results for this
equation were much more reasonable. The equation was then changed so that the other
half of the pair was used in the interactions. The model created by using the variables
with higher sensitivities produced much more logical results.

All the models produced to this point and their resulting statistics were established from
a data set that involved the entire data set. In an effort to improve model statistics, the
data were separated according to the four environmental zones used in the sampling
templates, and each data set was regressed using the equation form that contained the
better half of the pair. The results from some of the sensitivity analyses were not always
reasonable. To try to remedy the problems encountered in the sensitivity analyses,
models were (as described above) found using main effects alone. The R2s decreased
and RMSEs increased somewhat; however, the results from the sensitivity analyses were
more reasonable. Next, interactions that had previously been found to work well
(including some of the three-way interactions) were added to the equations with just
main effects. Values of R 2 and RMSE were improved, but the results from the
sensitivity analyses were not all reasonable. The above interactions were dropped from
the equations, and only two-way interactions were added. The values of R 2 and RMSE
were not as good as those that included the three-way interactions but were better than
the equations with just main effects. The results from the sensitivity analyses were more
logical but still problematic, particularly for the wet-no freeze and dry-no freeze zones.

For the wet-no freeze and dry-no freeze zones, log(KESALs) was replaced with age in
the equations. Problems still existed for the sensitivity analyses for these zones. Age
was then replaced by log(KESALs) in these two equations, and new two-way interactions
were introduced. Sensitivity analysis results for the dry-freeze zone were somewhat
improved.

Coordination with the statistical consultant indicated that sufficient collinearity had not
been expelled from the equation, so eigenanalysis (see Appendix D) was used to identify
additional variables to delete from the models. The ridge regressions mentioned
previously were then used to develop new models. In each of the models, KF__AI_sand
structural thicknesses were forced into the equations. That is, the variables were placed
in the models even if they did not improve the statistics.
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It was concluded, at this point, that the five models--one for the entire data set and one
each for each of the four environmental zones-- were as good as could reasonably be
expected within the constraints imposed by the requirements for sensitivity analyses and
by limitations in the data sets available (primarily lack of adequate time sequence data
for these early analyses). The techniques finally used for the rutting model were then
adopted for other distresses and pavement types.

Procedures Adopted for Developing Distress Models for
Sensitivity Analyses

The procedure, arrived at by the experimentation described above for developing distress
models to be used for sensitivity analyses, is described in the next chapter. The
modeling and sensitivity analyses are best combined as one process, so judgment can be
applied to iterate toward the optimum models for use. The analyst must carefully reach
a balance between (1) expectations and knowledge from past research and (2)
maintaining opportunity for the data to communicate new knowledge.

This procedure does not offer the best models for predicting pavement distress. It is
likely that nonlinear regression techniques would result in better models. However,
these models would not have been practical for the sensitivity analyses, because
sensitivity analyses for nonlinear models are much more complex, and there are no
computer programs (such as SAS® for linear models) to use in conducting them.
However, this does not preclude common transformations, such as the use of logarithms
or powers of the independent variables, as long as the equations are linear in the
coefficients.

Alternative Procedures Used for Developing Models for
PCC Pavement Distresses

The procedures used by ERES research staff for developing the portland cement
concrete (PCC) pavement models were essentially those discussed above, except that the
staff decided to take advantage of some graphical capabilities in the S-Plus statistical
software while the studies were in progress6. This allowed them to easily view scatter
plots and three-dimensional plots of the data, which indicated relationships between all
the dependent and independent variables being considered. From observations of the
two- and three-dimensional plots, the explanatory variables that were not linearly related
to the dependent variables were noted. Such variables were linearized by determining
the best exponents for these variables, which was done by use of the Alternating
Conditional Expectations (ACE) algorithm introduced by Breiman and Friedman, along
with the Box-Cox transformation. Detailed descriptions of these techniques are provided
in "Design of Joints in Concrete Pavements" by R.D. Bradbury7.
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These procedures were used to develop the final models used in the sensitivity analyses.
In several cases, this general procedure had to be modified to meet the specific demands
for the model to be developed.
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6

General Procedures for Establishing Sensitivities of
Predicted Distresses to Variations in Significant
Independent Variables

The original intent was to standardize all independent variables in a distress model so
that the coefficients on each term would represent the impact of that term. This step
would be done by subtractingeach observation from the mean for that variable (to
calculate deviation from the mean) and dividing by the standard deviation. The model
would then be regressed again with these standardizedobservations and using the same
equation form. The sensitivity of the distress to an independent variable would then be
determined by varying each variable in the standardizedequation individually from one
standard deviation above its mean to one standard deviation below its mean. The
resulting change in predicted distress would then represent the relative sensitivity of the
distress type to that independent variable.

Depending on the types of independent variables, short-cut mathematical transformations
can at times be used to facilitate computations. In the days of hand calculations,
independent variables that were evenly spaced could be recoded with an orthogonal
coding scheme to make such hand calculations easier. This is not an issue in today's
world of computers and is mentioned here only to relate to previous sensitivity analyses
that were able to take advantage of this simplification. In reality, x-variables are seldom,
if ever equally spaced, especially with observational, noncontrolled experimental
situations. All that is necessary is to subtract the mean and divide by the standard
deviation of each x-variable (standardization). In analyses where a single x-variable is
actually a cluster of more than one independent variable, and the sensitivity of the
individual components of the cluster is of interest, this standardization is slightly
modified. The cluster is standardized in the usual fashion. To determine the sensitivity
of a given component of the cluster, all other components in the cluster are set to their
mean and the component of interest is varied.
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General Procedures for Establishing Sensitivities of
Predicted Distresses for HMAC Pavements

All the previously discussed trials were run on the data set for rutting in hot mix asphalt
concrete (HMAC) pavements on granular base. These procedures led to an algorithm
that has been consistently used to determine all the models. The algorithm appears in
Figure 6.1 as a flow chart and is also described below:

1. Starting with log traffic, each single variable of the set of variables considered and
its transformations are tried in the model. If a variable is found to improve the
coefficient of determination (R2), adjusted R2, and root mean square error
(RMSE) without adding collinearity, it is allowed to stay. After all the individual
independent variables have been tried once, any that are not in the model at that
point are tried again. For consistency's sake the first set of variables tried after
log traffic are those dealing with the HMAC layers. Next, the variables
identifying the base layers are tried, followed by the subgrade variables, and
finally the environmental variables.

2. Once an  uation_th the main effects (variables identified as significan0 has
been established, other equations are tried that include two-way interactions of
the main effects. If a trial interaction improves the R2, the adjusted R2, and the
RMSE, but does not add collinearity, it is allowed to stay in the model. This
process is repeated until all possible two-way interactions have been tried.
Although techniques previously described were used to identify outliers, the
analyst should be alert for other outliers that may be revealed as the analysis
continues. It should be noted that the main effects in some cases were replaced
by interactions.

3. The ridge regression technique is then applied to stabiliTe the model, using the
main effects and interactions that survived Step 2.

4. The sensitivity analysis on the final model is conducted as discussed above.

It should be understood that the calculated sensitivities that are assigned for the
individual independent variables very much depend on the predictive equation itself.
The values will vary, depending on the form of the equation and the set of independent
variables included. As will be seen in the next chapter, models for different
environmental zones can vary considerably in form and in variables that are significant to
the prediction of a distress. Therefore, the relative sensitivities of the independent
variables should be considered indicative of their relative significance, rather than as
absolute measures of the relative importance of the variables in terms of magnitude. As
obvious examples, it can be concluded that traffic, HMAC thickness, and precipitation
merit consideration in design and pavement management, but one may not be exactly
twice as important or a half as important than another.
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While future predictive equations may be more precise and consequently offer higher
confidence in the relative importance of individual variables, it is likely that truly precise
evaluations may never be reached. However, the present equations should suffice if the
significant variables here continue to be found significant in future analyses and are
found to have more or less the same relative importance in relation to each other.

General Procedures for Establishing Sensitivities of
Predicted Distresses for PCC Pavements

The only differences between the procedures used for the sensitivity analyses for HMAC
and portland cement concrete (PCC) pavements were in the modeling process, as
discussed in Chapter 5. The use by the ERES staff of the S-Plus" plotting capabilities
and their linearization of the independent variables replaced the use of ridge regression
and some of the iterations in the HMAC procedures discussed above. Figure 6.2 shows
the procedures that were used to develop distress/International Roughness Index (IRI)
models for PCC pavements.

Once modeling had been completed, the ERES research staff used the same procedures
to determine the sensitivities of the dependent variable to variations in the independent
variables as were used for the HMAC data. These procedures are also shown in Figure
6.2.
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7

Predictive Equations for Distress Types and Results of
Sensitivity Analyses for Asphalt Concrete Pavements

Previous chapters have dealt with the methodology applied to select significant data
elements that impact the occurrence of pavement distresses, to sort the data into data
sets for analysis, to develop predictive distress models, and to conduct sensitivity
analyses. This chapter presents the results in terms of predictive equations and relative
sensitivity analysis results for hot mix asphalt concrete fflMAC) pavements. The results
for the various combinations of distress and pavement types are discussed separately
below.

Data Review and Evaluation

Detailed statistical evaluations of the data were conducted for each specific combination
of distress and pavement types as described in Chapter 5. Products from these
evaluations that were used in the development of predictive equations included the
following:

• Two-variable scatter plots
• Variable frequency distributions for the entire database and by

enviromental zones
• Correlation matrices for the separate data sets individually
• Complete eigenanalysis for each data set individually
• Residual plots for trial equations
• Plots of predicted versus actual distresses

Traffic data were also reviewed for individual test sections as to their reasonability while
they were being processed into each data set.

61



These _roducts are far too voluminous to include in this report. The Statistical Analysis
Systems (SAS®) correlation analyses alone filled a stack of paper 3/4-in. (19 ram) thick.
Most of these data appear in SHRP-P-684, Early Analyses of LTPP General Pavement
Studies Data. Data Processing and Evaluation. except they are recorded by General
Pavement Studies (GPS) experiment rather than by the databases used in these analyses.
Some examples are included in this section, and plots of predicted versus actual
distresses and residuals versus predicted distresses appear in subsequent sections for the
equations selected.

Figures 7.1, 7.2, and 7.3 show scatter plots for rut depth, change in roughness, and
transverse crackingversus cumulative KESAI_s(1,0000 equivalent single axle loads),
o]mulative KESALs, and age, respectively, for the HMAC over granular base data set.
While the scatter when plotting a single variable versus another single variable is always
broad, these plots do provide some insight as to what type of function would fit the data.

Figure 7.4 shows the frequency distribution of cumulative KESALs by environmental
zone for the HMAC over granular base data set for change in roughness. Because these
distributions appear to be more log normal than normal, this fact influenced the research
staff to conduct the regressions on log(KESALs). The general equation forms selected
also provided for zero distress when KESALs were zero.

Figures 7.5, 7.6, and 7.7 show distributions of rut depth, change in International
Roughness Index (IRI), and transverse crack spacing, respectively, for the HMAC over
granular base data sets. It should be remembered that the test sections represented by
each data set are not the same for the different distresses. The tendency toward log
normal distributions illustrated in these figures contributed to the research staff's
decision to develop the regression equations for the logarithm of distress as the
dependent variable in each case.

Table 7.1 shows the correlation matrix (as it is printed out with the SAS®software) for
change in roughness (DIRI) of HMAC over granular base. The top line for a variable
identified in the left-hand column reports the correlation between that variable and a
specific variable of those identified along the top row. The bottom line reports the
probability that the variables identified in a column and row are not correlated. If the
probability indicated in the bottom llne is less than 0.05, significant correlation may be
assumed. As can be seen, the first two pages in the table are required to include all
variables identified in the rows, and the third and fourth pages add additional col-runs.
This was necessary to include all twenty-two variables in the analysis. Items found to
have significant correlation have been shaded.

Although some of the variables in the correlation matrix can be easily identified, others
cannot, and so they are identified below:

DIRI = change in roughness measured as IRI
BOTHIRI = measured IRI
INITIRI3 = estimated initial IRI
A THICK = thickness of HMAC layers combined
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ASPHALT = asphalt content
AIR VOID = air voids in HMAC layer in place
NO POUR = percentage of HMAC aggregate passing a #4 sieve
VIS'-C140 = viscosity of asphalt at 140°F (60°C)
B_TI-fiCK = thickness of granular base and subbase layers

combined
COMPACTI = base compaction
PI = Plasticity Index of subgrade soft
#200 - percentage of subgrade soil passing a #200 sieve
YEARS = age of pavement
KESALs = cumulative equivalent single axle loads in thousands
TOTPREC_ = total precipitation
AVG90 = average days per year when air temperature exceeds

90°F (32°C)
AVGFRZTH = average number of air freeze-thaw cycles per year
AVGMAX = average of maximum daily temperatures for each

month

AVGMIN = average of minimum daily temperatures for each
month

TEMPDIF = average daily temperature range
MAXTEMP = average maximum temperature for June, July, and

August
MINTEMP = average minimum temperature for December, January,

and February

It can be seen from Table 7.1 that DIRI is apparently only directly correlated with
asphalt viscosity. The correlation matrix was used primarily to identify independent
variables that were correlated with other independent variables. If two variables were
highly correlated, only one would be included in a trial equation. In some cases where
the correlations were more limited, the two variables were sometimes combined in an
interaction and were included in a trial equation.

It can also be seen from Table 7.1 that most of the climatic variables are highly
correlated, so one variable could often explain the effects of several others.

The eigenanalysis is described in Appendix D.

Rutting of HMAC Pavements on Granular Base

The predictive equations for the entire data set and those for the four environmental
zones appear in Table 7.2. As discussed previously, the actual regressions were
conducted to predict logl0(rut depth), which led to the equation form indicated at the top
of the table, which applies for all five predictive equations. The statistics for the
equations also appear below each equation box, as well as the number (n) of
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Table 7.2. Coefficients for Regression Equations Developed to Predict Rutting in HMAC
Pavements Over Granular Base

Rut Depth = NB 10c Where N -- Number of Cumulative KESALs
(In.) B =b 0 +b ix l+b 2x 2+...+b nx.

C -_ C0-{-C1XI-{-C2X2-{-...-I- CnX n
a. Entire Data Set

Explanatory Variable or Interaction Coefficients for Terms In
(x_ Units

bi c,

Constant Term - 0.151 -0.00475

Log (HMAC Aggregate < #4 Sieve) % by Weight 0 -0.596

Log (Air Voids in HMAC) % by Volume -0.0726 0

LOg (Base Thickness) Inches 0 0.190

Subgrade < #200 Sieve % by Weight 0 0.00582

Freeze Index Degree-Days 8.49 X 10"_ 0

(Log (HMAC Thickness)* Inches

Log (BaseThickness)) Inches 0 -0.161

n = 152 /ta = 0.45 Adjusted R2 - 0.41 RMSE in Log10(Rut Depth) = 0.18

b. Wet-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In

(x_ units
bi c_

Constant Term 0.0739 0.00998

LOg (HMAC Aggregate < #4 Sieve) _ by Weight 0 -0.373

Log (Air Voids in HMAC) _ by Volume 0 -0.215

Subgrade < #200 Sieve 9_ by Weight -0.00056 0

Annual Number of Days > 90"F Number 0 -0.00022

Log (Annual Freeze-Thaw Cycles + 1) Number 0 0.0337

(Log (I-IMACThickness)* Inches

LOg (Base Thickness)) Inches 0 -0.135

n = 41 /_ -- 0.72 Adjusted/_ - 0.66 RMSE in Logl0(Rut Depth) - 0.18
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Table 7.2(continued). Coemcients for Regression Equations Developed to Predict
Rutting in HMC Pavements Over Granular Base

Rut Depth - NB 10c Where N = Number of Cumulative KESALs
(In.) B =b 0 +b Ix 1+b 2x 2+...+b nxn

C --c0 + ¢xxl + c2 x2 + ...+ c_ x_
c. Wet-Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In
(_) Umts

bi ci

Constant Term - 0.183 0.0289

Log (Air Voids in HMAC) % by Volume 0 -0.189

Log (HMAC Thickness) Inches 0 -0.181

Log (HMAC Aggregate < #4 Sieve) % by Weight 0 -0.592

Asphalt Viscosity at 140"F Poise 0 1.80X 10.5

Log (Base Thickness) Inches 0 -0.0436

(Annual Precipitation * Inches
Freeze Index) Degree-Days 0 3'.23 X 10_s

n = 41 R2 = 0.73 Adjusted R 2 = 0.68 RMSE in Log:0 (Rut Depth) = 0.19

d. Dry-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In
(x,) Units

bi ci

Constant Term - 0.156 -0.00163

LOg (HMAC Aggregate </14 Sieve) _ by Weight 0 -0.628

Log (HMAC Thickness) Inches 0 0.0918

Log (Air Voids in HMAC) % by Volume -0.0988 0

Base Thickness Inches 0 0.00257

Subgrade < #200 Sieve % by Weight 0 0.00153

(Annual Precipitation * Inches
Annual Number of Days > 90"F) Numbers 0 6.588X l0 s

n = 36 R 2 = 0.75 Adjusted R 2 = 0.70 RMSE in Log10 (Rut Depth) = 0.16
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Table 7.2(continued). Coefficients for Regression Equations Developed to Predict
Rutting in HMAC Pavements Over Granular Base

Rut Depth - NB 10c Where N = Number of Cumulative KESALs

(In.) B = b 0 + b I x1 + b2 x2 + ... + b n xn
C = co + clxx + c2x 2 + ... + cnx_

e. Dry-Freeze Data Set

ExplanatoryVariableor Interaction CoefficientsforTermsn
(0 units

bi [

ConstantTerm - 0.0394 0.00451

Log (HMACThidmcss) Inches 0 0.0600

Mod.AASHTOBase Compaction %of Max.Density 0 -0.00849

(Base Thickness* Inches
Log (HMACThickness)) Inches 0 0.00875

(Log (Subgrade< #200 Sieve)* %by Weight
Log (FreezeIndex +1)) Degree-Days 0 0.0107

(Log (Subgrade< #200 Sieve)* %by Weight
Log (AirVoidsin HMAC)) %by Volume 0 -0.00567

n = 34 R2 = 0.85 AdjustedR2 = 0.81 RMSE in Loglo(Rut Depth) = 0.11

observations (test sections) upon which the equation was based. It can be seen that only
152 of the 218 available test sections survived the data evaluations.

It should be noted that the quoted root mean square error (RMSE) is in log10 of rut
depth. The meaning of a standard error of regression, or RMSE on a logarithmic
variable, in terms of the effect on the variable itself, can be explained as follows, by
using arbitrary yet convenient values for an example. Assume that the RMSE of fit for a
regression on log y is 0.3. This means that 68% of the values of log y for a specific set of
x i lie between w - 0.3 and w + 0.3, where w is the value of log y predicted by the
regression. Assume w is 1.0 (i.e., y = 10), then 68% of the values of log y lie between
0.7 and 1.3. This means that 68% of the values ofy lie between 5 and 20, or stated
another way, they lie within a factor of approximately 2 (antilog 0.30 - 1.995) of 10.

Thus, we see that an RMSE of e in log y may be expressed as precision of prediction to
within a factor of (antilog e) in the value ofy itself.

Some typical values of e and the corresponding factor (antilog e) are

_e Antilo_ e
v

0.05 1.122
0.10 1.259
0.15 1.412
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0.20 1.585
0.25 1.778
0.30 1.995

The values of adjusted R 2 look quite reasonable for the data available as of May 1993,
but the RMSEs indicate that the equations are of limited reliability. As an example, the
equation for predicting rutting in the wet-freeze environmental zone appears in Table
7.2.c. For simplicity, assume that all values of independent variables are at their means
so we can use the plots in Figure 7.10. A rut depth of approximately 0.16 in. (4 ram) is
predicted for 100 KESALs and about 0.21 in. (5 ram) for 500 KF__AI._. The RMSE for
this case in log(rut depth) is 0.19 and the antilog is 1.55. If this is applied as a factor
value, then

Predicted (Predicted Rut (Predicted Rut
Rut Depth Depth) + 1.55 Depth ) x 1.55

KESAts (In.) (In.)
100 0.16 0.10 0.25
500 0.21 0.14 0.33

At a 68% confidence level in the log of rut depth, the upper and lower confidence levels
for rut depth after 100 KESAI.s have been applied are 0.25 and 0.10 in. (6 and 3 ram),

respectively. Those for 500 KESAI__ are 0.33 and 0.14 in. (8 and 4 ram), respectively.
Thus, the preeisions for these equations are poor, even though the values of R z look
quite good.

Figure 7.8 shows plots of predicted versus actual rut depths for the four environmental
zones, each with its own predictive equation. Figure 7.9 shows plots of the residuals
versus predicted rut depths.

Figure 7.10 shows the predicted rut depths versus KESALs for each environmental zone
when the independent variables appearing in the five separate predictive equations are
held at their meam for their respective data sets. From these graphs the following may
be determined:

s A substantial portion of rutting may be expected to occur very early in the life
of a pavement.

• After the rapid densifieation early in a pavement's life, the rate of rutting
decreases rapidly, approaching a much reduced rate for the rest of the
pavement's life. While the rate appears to be constant in the plots, it does
continue to decrease slightly but might be expected to increase again when
cracking starts and moisture increases occur in the base/subbase and subgrade
(However, pavements are generally repaired well before rapid acceleration of
rutting begins.)
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Figure 7.10. Predicted Rutting vs. KESALs With All Other Independent
Variables at Their Mean Values, HMC Pavements on Granular Base

• On a cursory basis, it might be decided that typical pavements in the dry
zones rut more than those in wet zones; however, this finding could be a
consequence of the particular test sections selected. It should be noted that
the mean values for rutting in all the zones are relatively low, which probably
indicates a bias resulting from the better highways being offered by State
Highway Agencies (SHAs).

• The graph for the wet-no freeze zone appears to indicate virtually no increase
in rutting after a very few KESALs. It is probable that this result is from a
bias caused by the presence of some older highways, with very high traffic but
very little rutting, in that particular data set.

It is critical to remember that plots of predicted distress in terms of one independent
variable are useful but can be very misleading. Figures 7.1, 7.2, and 7.3 and the scatter
plots in SHRP-P-684, Earl_vAnalyses of LTPP General Pavement Studies Data, Data
Processing and Evaluation, illustrate the actual variances when the independent variables
are not held at their mean values.

There are several causes of rutting, including densification of the HMAC mixtures,
horizontal displacement of the HMAC mixture, densification and/or horizontal
displacement of unbound materials, combinations of these, and probably others. The
mechanisms for rutting are not considered directly in the predictive equations, but may
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be partially explained implicitly through such independent variables as air voids, layer
thicknesses, asphalt viscosity, climatic variables, and the interactions between variables.

The results from the sensitivity analyses conducted on the equations appearing in Table
7.2 appear in Figures 7.11 and 7.12. The vertical lines through the boxes are located at
the predicted mean values of rut depth for each data set. For Figure 7.11, this mean is
between 0.25 and 0.26 in. (6 and 7 rnm). The boxes begin and end at the rut depths
calculated when that independent variable is varied from one standard deviation above
to one standard deviation below the mean value, with all other independent variables at
their mean values. The arrows within the boxes indicate whether an increase in that

variable increases or decreases predicted rut depth. As an example, increasing KESALs
in Figure 7.11 increases rut depth and increasing HMAC thickness decreases rut depth.

The dashed boxes with arrows pointing to the left that appear to the left of the mean rut
depths for KESALs in Figures 7.11, 7.12b, and 7.12e, simply indicate that the standard
deviations for KESAI_s in these cases exceeded the mean, and that negative values of
KESALs have no physical meaning. This phenomenon was caused by a number of test
sections that had very high levels of KESALs.

The relative sensitivities for specific independent variables are indicated by the
horizontal widths of the boxes in the figures, and the relative sensitivity levels decrease
from top to bottom. For example, the occurrence of rut depth for the entire data set
represented in Figure 7.11 is most sensitive to KESALs and least sensitive to the
percentage of the subgrade soils passing a #200 sieve. For each of these two variables,
increases in the independent variables result in increases in predicted rut depth.

By comparing the sensitivity plots (Figure 7.12) for the four environmental zones, it can
be seen that predicted rut depths for three zones are most sensitive to KESALs, while
predicted rut depths for the dry-freeze zone are more sensitive to four other variables
than to KF__ALs. In the latter case, rut depth appears to be most sensitive to base
compaction. Although we can theorize about the relative sensitivities and their causes,
the causes are not always obvious. One might speculate that, in general for the test
sections in the dry-freeze data set, compaction was not quite adequate and that much of
the densification was in the base. This theory is supported by the fact that base
thickness is the next variable in level of sensitivity.

Also, air voids in the HMAC appear to be si_ificant for all four zones, and higher air
voids (within the ranges in the data sets) tend to decrease rutting. At first glance, this
scenario appears questionable but has been found to be the case by other researchers.
The hypothesis for this phenomenon is that increased air flow through the HMAC results
in earlier a_ng and stiffness, which in turn decreases rutting.

The independent variables found to be significant to rut depth predictions are not always
the same between zones, and the relative significance of specific variables also varies
between zones. As an example, base thickness is not very important in three zones and
increases in it tend to decrease rutting, while it is quite significant in the dry-freeze zone
and tends to increase rutting as it increases. This finding seems to be consistent with the
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Figure 7.11. Results From Sensitivity Analyses for Rutting in
HMAC Pavements on Granular Base

hypothesis offered above that base compaction is generally not adequate and that
substantial densification occurs in the base.

It can also be seen that the percentage of the HMAC aggregate passing a #4 sieve
appears to be moderately significant for three of the four zones, and that rutting tends to
decrease in mixes with more material passing a #4 sieve (within the ranges existing in
the data sets).

Different environmental variables were found to be significant for the different
environmental zones. This is not surprising, but it should be remembered that many (if
not most) of the environmental variables are correlated. One would expect correlations
among freeze index, annual air freeze-thaw cycles, and number of days per year
experiencing temperatures greater than 90"F (32°C). Consequently, one data element
may represent one or more other data elements in the predictive equations.

As the graphs in Figure 7.10 represent predicted rut depths when all variables are at
their mean values in the separate data sets, they do not represent directly the poor
pavements that will experience considerable rutting or the good pavements that will
experience very little. To provide some insight, fourteen cases were examined for the
wet-no freeze environmental zone, as indicated in Table 7.3, by using three levels for
each variable. Because it would have required 6561 case studies to consider the entire
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factorial at three levels, the 14 were selected to include the worst case (Case 4) and to
illustrate the effects of variations in the most significant independent variables.

Cases 1, 2, and 3 show the effects of KESALs. Note that the majority of the rutting is
expected early in the life of a pavement, with the rest occurring at a rate decreasing with
cumulative ESALs. The other cases represent various combinations of variable
m_agnitudes. Case 12 represents a pavement with a heavy structure, heavy traffic, and a
mix with 70% of its aggregate passing a #4 sieve and compacted to 5% air voids. The
predicted rut depth was 0.11 in. (3 ram), whereas the prediction for Case 3 (same traffic
but less structure) was 0.21 in. (5 mm).

Because the predicted rut depths for fidl-depth HMAC pavements and those with
portland cement treated-base would be expected to vary similarly with variations in their
independent variables, similar examples have subsequently not been provided for those
types of pavements.

The discussion of the meaning of RMSE in terms of a dependent variable when RMSE
is expressed in the log of that dependent variable applies to all the other results reported
in this chapter, so this discussion will not be repeated.

Rutting of Full-Depth HMAC Pavements

Only forty-two of the fifty-two full-depth HMAC pavements with unstabilized subgrade
survived the data evaluations. Because the number of test sections was quite small,
models were developed for the entire data set, a data set of the two dry zones, a data set
of the two wet zones, a data set of the two no freeze zones, and a data set of the two
freeze zones. The predictive equation for the entire data set appears in Table 7.4, the
prediction equations for the wet and dry data sets in Table 7.5, and the equations for the
no freeze and freeze data sets in Table 7.6. As with the HMAC over granular base, the
multiple regressions were conducted to predict log(rut depth), which led to the same
equation form appearing at the top of each table. The statistics for the equations for
full-depth HMAC are essentially comparable to those developed for HMAC over
granular base, even though the numbers of observations were much lower.

Figure 7.13 shows plots of predicted versus actual rut depths for the four fuU-depth
HMAC models for the different environmental zones, and Figure 7.14 shows plots of the
residuals versus predicted log(rut depth).

Figure 7.15 shows the predicted rut depths versus KESALs when the other independent
variables in the five separate predictive equations are held at their means for their
respective data sets. It can be seen that the forms of the equations are similar to those
for HMAC on granular base.
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Table 7.4. Coefficients for Regression Equations Developed to Predict Rutting in
Full-Depth HMAC Pavements, Entire Data Set

Rut Depth = NB 10c Where N = Number of Cumulative KESALs
(In.) B =b 0+b ix l+b 2x2+...+b nx.

C = Co+ c_x_ + c2x2 + ... + cnx.

r

ExplanatoryVariable or Interaction Coefficients for Terms In
(_0 U_its b_

Constant Term - 0.0280 -0.0149

Log(HMACThickness) Inches 0.0184 0

Log (Subgrade < #200) % by Weight 0.0810 0

Log (Daily Temperature Range) °F 0 -0.715

(Log (Air Voids in HMAC) • % by Volume
Log (Subgrade < #200)) % by Weight 0 -0.129

(Annual Precipitation * Inches
Log (Daily Temperature Range)) °F 0 0.00094

n = 42 R2 = 0.60 Adjusted R 2 = 0.54 R]V[SEin Log10(Rut Depth) = 02.0

Also, the magnitudes of the predicted rut depths for the equation from the dry data set
are much higher than those for the equation from the wet data set. The actual mean rut
depths are 0.38 and 0.28 in. (10 and 7 mm), respectively. The broad implication is that
more rutting may be expected in the dry areas of western North America than in the wet
areas of eastern North America. However, this theory is far too simplistic. Traffic rates
are generally higher in the wet zones, so the pavement structures should generally be
more substantial. However, the thirteen test sections for the dry zones included five test
sections in Arizona that had experienced an estimated 4000 to 23,000 KESALs (mean of
12,000 KESALs), which had resulted in rutting from 0.16 to 0.99 in. (4 to 25 ram), with a
mean of 0.43 in. (11 mm). One must be very careful about generalizing on the basis of
predictions from these equations when distress is plotted against one or even two
independent variables. The scatter plots in Figure 7.1 and those in SHRP-P-684, Early
Analyses of LTPP General Pavement Studies Data. Data Processing and Evaluation,
dearly indicate the variance that actually occurs when the distresses are considered as
functions of only one independent variable. The difference in rutting between the no
freeze and freeze zones, based on these predictions, appear to be rather minor.

The results from the sensitivity analysis on the equation appearing in Table 7.4 appear in
Figure 7.16. As for the HMAC on granular base, number of KESAI.s was the most
significant independent variable. However, as the amount of fines in the subgrade soil
took on more significance, HMAC thickness dropped in relative importance, and daily
temperature range and annual precipitation replaced freeze index in representing the
environment. In assessing the importance of these comparisons, it should be
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Table 7.5. Coefficients for Regression Equations Developed to Predict Rutting in
Full-Depth HMAC Pavements, Wet and Dry Data Sets

Rut Depth -- NB 10c Where N -- Number of Cumulative KESALs
(In.) B--b 0+blxx+bzx2+...+bnx n

C =c0+cxx_+c2x2+...+CnX_

a. Wet Data Set

Explanatory Variable or Interaction Coefficients for Terms n
(_ Units

bi ¢i

Constant Term - 0.242 -0.0160

Log (HMAC Thickness) Inches 0 -0.615

Log (Air Voids in HMAC) % by Volume -0.0740 0

Log (Annual No. of Days > 90"F) Number 0 -0.363

(Log (Sebgrade <//200 )) * _ by Weight
(Asphalt Viscosity at 140"F) Poise 0 0.000119

(Log (Viscosity at 140OF) * Poise

Log (HMAC Aggregate <//4 Sieve)) _ by Weight 0 -8.60 X 10"5

n = 27 R 2 = 0.79 Adjusted/_ -- 0.73 RMSE in Logxo (Rut Depth) = 0.17

b. Dry Data Set

Explanatory Variable or Interaction Coefficients for Terms n
(x.,) Units

bi ci

Constant Term 0.0111 0.558

HMAC Thickness Inches 0.00222 0

Average Annual Minimum Temperature °F 0 -0.0412

(Log (Subgrade <//200) * _ by Weight
Annual Number of Days > 90"F) OF 0 0.00650

n = 13 Ka -- 0.87 Adjusted R 2 = 0.79 RMSE in Log10 (Rut Depth) = 0.10
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Table 7.6. Coefficients for Regression Equations Developed to Predict Rutting in
Full-Depth HMAC Pavements, No Freeze and Freeze Data Sets

Rut Depth = NB 10c Where N = Number of Cumulative KF__ALs
(In.) B = b0 + b 1 x 1 4- b2 x 2 4- ... 4- bn x n

C =c o+c ix 1+c2x 2+...+cnx n
a. No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms n
(x_ Units

bi ci

Constant Term - -0.0717 -1.053

Log (HMAC Thickness) Inches -0.0458 0

Log (Subgrade < Y200) % by Weight 0.0446 0

Log (Annual Precipitation) Inches 0 0.00532

Annual Number of Days > 90"F Number 0.00168 0

(Log (HMAC Thickness) * Inches
Daily Temperature Range) °F 0 0.0128

(Annual Number of Days > 90"F • Number
Asphalt Viscosity at 140"F) Poise 0 -1.618X 104

n = 22 R2 = 0.70 Adjusted Ra -- 0.55 RMSE in Log10 (Rut Depth) = O.14

b. Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms n
(x_ Units

bi c_

Constant Term - 0.149 -0.0159

Asphalt Content % by Weight 0 -0.115

HMAC Thickness Inches -0.00443 0

LOg (Air Voids in HMAC) % by Volume -0.121 0

LOg (Subgrade < 6'200 Sieve) _ by Weight 0.0687 0

Annual Number of Days > 90"F Number 0 -0.292

n = 18 R2 = 0.84 Adjusted R2 = 0.78 RMSE in Log10 (Rut Depth) = 0.15
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remembered that neither the equation for the HMAC on granular base or full-depth
HMAC was considered very acceptable, which was the reason for developing models for
different environmental zones.

The sensitivities developed from the four environmental models appear in Figure 7.17.
It can be seen that KESALs were found to be most significant for the data sets from the
wet, no freeze, and freeze zones. The environmental variables appear to be more
si£nificant for the data set from the dry zones. The HMAC thickness was retained in
each equation, even though it was found to be marginally significant for most of them.
The amount of fines in the subgrade soil also appeared in all four equations. Number of
days per year experiencing temperatures greater than 90*F (32"C) also appeared in all
four equations and was found to be quite si_ificant.

Rutting of HMAC Pavements on Portland Cement-Treated
Base

This data set is identified as Combinations 9, 10, 11, and 12 in Table 3.2, and the specific
types of base materials and numbers of each appear in Table 3.1. Of the sixty-six test
sections, only forty-nine survived the data evaluations for use in the analyses. These test
sections were distributed as follows by environmental zones:

• Wet-no freeze -- 22
• Wet freeze -- 8

• Dry-no freeze -- 11
• Dry freeze -- 8

Because only one environmental zone had sufficient test sections for modeling, the entire
data set had to be used to develop predictive equations. The resulting equation appears
in Table 7.7. It can be seen from the statistics that the equation should not be
considered very reliable.

Figure 7.18 shows plots of predicted versus actual rut depths for HMAC over Portland
cement-treated base, and Figure 7.19 shows plots of the residuals versus predicted
log(rut depth).

A plot of rut depths, predicted by the equation in Table 7.7, versus KESALs appears in
Figure 7.20. The primary thing to be noted is that the equation appears to predict that
most of the rutting will occur very early in the pavement's life (at least with other
independent variables at their means).

The results from the sensitivity analysis appear in Figure 7.21. It may be noted that
these results are similar to those obtained for HMAC pavements over granular base and
full-depth HMAC pavements.
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Figure 7.17. Results From Sensitivity Analyses for Rutting in Full-Depth
HMAC Pavements, by Environmental Zones
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Table 7.7. Coellicients for Regression Equations Developed to Predict Rutting in HMAC
Pavements on Portland Cement-Treated Base

Rut Depth = NB 10c Where N = Nnmber of Cumulative KF,SALs
(In.) B =b 0+b ix l+b 2x 2+...+b nx n

C = c0 + czxl + czx2 + ... + cnx_

ExplanatoryVariableor Interaction Coefficientsfor TermsIn
(_) U_its bt

ConstantTerm - -0.218 -0.126

HMACAggregate< #4 Sieve %by Weight 0.00412 0

Log (Base Thickness) Inches 0 -0.474

(Log (HIVlACThickness)• Inches
Log (Air Voids in HMAC)) % by Volume 0 -0.401

(Log (HMACThickness)• Inches
(Asphalt Viscosity at 140"F)) Poise 0 0.000104

(HMAC Ag%_egate < #4 Sieve * % by Weight
Log (Annual Minimum Temperature)) °F 0 -0.00198

n = 49 R 2 = 0.57 Adjusted R 2 -- 0.51 RMSE in Loglo (Rut Depth) = 02.1

Summary of Sensitivity Analyses for Rutting in HMAC
Pavements

The data base limitations for developing predictive models for HMAC have been
previously discussed and will be discussed again later. In general, these restrictions apply
to individual models, but some statistical advantage should be gained by comparing
results from the eleven models and their sensitivity analyses.

Table 7.8 lists the rankings for the individual independent variables, in terms of relative
sensitivities, for each of the eleven separate models and sensitivity analyses. One column
indicates the number of models for which a specific independent variable was found to
be significant. The far fight column gives average rankings, with a ranking of 10
arbitrarily assigned for cases when the variable was not found to be significant and is not
included in the model. The numbers of independent variables varied from 5 to 8 per
model, with a mean of 6.7, so the assigned priority when not si_iflcant had to be greater
than 8. Because there could be other nonsignificant variables having more sensitivity,
the value of 10 appeared logical.

The independent variables are listed below in order of combined rankings. One list is
based on average rankings and one is based on the number of models in which the
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variable was included (in the case of a "tie", the other ranking basis was used to order
the two variables):

Ranking Ranking by Number
of Models Found Sigrdficant

KESALs KESALs
Air Voids in HMAC HMAC Thickness
HMAC Thickness Base Thickness
Base Thickness Air Voids in HMAC

Subgrade < #200 Sieve Subgrade < #200 Sieve
Days With Temp. > 90°F Days With Temp. > 90°F
HMAC Aggregate < #4 Sieve HMAC Aggregate < #4 Sieve
Asphalt Viscosity Asphalt Viscosity
Annual Precipitation Annual Precipitation
Freeze Index Freeze Index

Base Compaction Average Annual Minimum Temp.
Average Annual Minimum Temp. Daily Temp. Range
Daily Temp. Range Base Compaction
Asphalt Content Asphalt Content
Annual Freeze-Thaw Cycles Annual Freeze-Thaw Cycles

It can be seen that nine of the fifteen independent variables have the same rankings for
both bases, and the others never vary more than two positions. The rankings generally
appear to be logical.

Change in Roughness in HMAC Pavements on Granular
Base

The IRI was used to study changes in roughness. The values of IRI were available from
profile monitoring data, while estimates of initial IRI were obtained from State Highway
Agencies (SHAs) estimates of initial Present Serviceability Index (PSI) by using the
following equationS:

Initial IRI = 347 In (5/Initial PSI)

The change in IRI was taken to be the difference between the monitored value and the
estimated initial value.

The multiple regressions were conducted with log10(AIRI) as the dependent variable,
and the same equation forms used for rut depth predictions apply. The resulting
equations for the entire data set and the four environmental zones appear in Table 7.9.
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Figure 7.22 shows plots of predicted versus actual changes in roughness for HMAC over
granular base models for the four environmental zones, and Figure 7.23 shows plots of
the residuals versus predicted changes in roughness.

Figure 7.24 shows the predicted changes in roughness versus KESAI..s for the entire data
set and for each environmental zone, when the independent variables appearing in the
five separate predictive equations are held at their means for the respective data sets. It
appears from these graphs that the change in IRI was much greater in the freeze zones
than in the no freeze zones, and the rate of change in IRI was also much greater for the
freeze zones than for the no freeze zones.

The results from the sensitivity analyses conducted on the equations in Table 7.9 appear
in Figures 7.25 and 7.26. KESALs were found to be the most significant independent
variable for the wet freeze and dry-no freeze data sets, while other variables were found
to be more significant for the wet-no freeze and dry freeze data sets. HMAC thickness
was found to be significant in each of the equations, as it had been for rutting, but
generally significance was only moderate. Somewhat surprisingly, the amount of the
subgrade passing the #200 sieve was only found to be significant for the dry-no freeze
data set, and there it was ranked sixth, although the variations and relative significance
in this case were fairly minor. This result may have come from a bias toward coarse-
grained subgrades in the data set.

As the lines in Figure 7.24 represent predicted changes in IRI when all variables are at
their mean values in the separate data sets, fourteen case studies were conducted for the
wet-freeze zone to provide some insight as to the effects of variations of these variables
from their means. As occurred in the similar rutting studies, three levels of most
variables were used in various combinations of variable magnitudes. The magnitudes of
variables for each case study and the resulting calculated changes in IRI appear in Table
7.10.

Cases 1, 2, and 3 show the effects of KESALs. Unlike rutting, the predicted changes in
roughness do not so much indicate the distress early in the life of a pavement, but that
the rate of roughness decreases over the pavement's life.

Case 12 represents a substantial pavement structure with heavy traffic and a freeze index
typical for parts of the northern United States. Its moderately high increase in roughness
likely reflects the unexpected finding that roughness in this zone increases with increasing
HMAC thickness (see Figure 7.26.c). Because this effect is the opposite that indicated
for the other three zones and does not appear to be logical, it may have been a
consequence of a bias in the data set.

The highest predicted change in IRI in this set of cases was found for Case 4, which was
conducted as a worst case scenario. Case 8 resulted in the next highest prediction,
reflecting the relatively high positive sensitivity to increases in HMAC air voids. It can
be seen from Figure 7.26 that there are differences in sense (positive or negative
sensitivities) among zones for several of the independent variables.
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Table 7.9. Coefficients for Regression Equations Developed to Predict Change in
Roughness in HMAC on Granular Base

AIRI = NB 10c Where N = Number of Cumulative KESALs
(In./Mile) B =b 0+b ix 1 +b 2x2+... +b nx.

C = Co+ clxl + cqx2 + ... + cnx.
a. Entire Data Set

ExplanatoryVariable or Interaction Coeffidents for Terms In
(_) Units

bi q

Constant Term - 0.153 -0.000543

Asphalt Content % by Weight 0 -0.0160

Annual Precipitation Inches 0 0.000359

Asphalt Viscosity at 140"F Poise 0 3.634 X 10.5

Base Thickness Inches 0 -0.00335

Base Compaction 0VIod.AASHTO) % of Max. Density 0 0.0113

Subgrade < #200 Sieve % by Weight 0 0.00062

Freeze Index Degree-Days 0 8.107 X 10_

(Annual Number of Days > 90"F * Number 0 -0.000437
HMAC Thickness) Inches

(Annual Number of Days > 90"F* No. 0.000178
Air Voids in HMAC) % by Volume 0

n = 108 R 2 = 0.65 Adjusted R2 = 0.62 RMSE in Log 10(_d) = 0.34

Change in Roughness for Full-Depth HMAC Pavements

This data set is identified in Table 3.1 as having fifty-two total test sections, but only
thirty-three were suitable for the studies on change in roughness (fifteen of thirty-three
were from the wet-freeze environmental zone). Because the data set was so limited, only
one equation was developed for the entire data set, and this equation appears as Table
7.11. The test sections not included were omitted because no profile mon/toring data
were available at the time of these early analyses. However, that data should be
available for future analyses.
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Table 7.9(continued). Coefficients for Regression Equations Developed to Predict
Change in Roughness in HMAC on Granular Base

AlRI = Nn 10c Where: N = Number of Cumulative KESALs
On./Mile) B = b0 + b1 xx + b 2 x2 + ... + bn xn

C =C0+ClXl+C2X2+...+CnX n

b. Wet-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In
(x,) units

bi c_

Constant Term - 0.210 0.0233

Base Thickness Inches 0 -0.0372

Annmd Number of Days > 90"F Number 0 0.00249

Annual Precipitation Inches 0 0.0214

(HMAC Thickness * Inches 0 -0.000761
Base Compaction (Mod AASHTO)) _ of Max. Density

(Log (Air Voids in HMAC) * _ by Volume 0 0.0322
Daily Temperature Range) °F

(Asphalt Viscosity at 140"F * Poise 0 -0.000299
Log (Annual Freeze-Thaw Cycles + 1)) Number

(Asphalt Viscosity at 140"F * Poise 0 1.702X 10 .5
Daily Temperature Range) °F

n -- 32 Ra = 0.85 Adjusted Ra = 0.81 RMSE in Logt0 (_J) = 0.31

c. Wet-Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In
(x) Units

b_ c_

Constant Term - 0.250 0.0403

Asphalt Viscosity at 140"F Poise 0 0.00014

Air Voids in HMAC % by Volume 0 0.0704

Log (HMAC Thickness) Inches 0 0.314

Base Thickness Inches 0 -0.00162

Annual Number of Days > 90"F Number 0 -0.00165

(Freeze Index * Degree-Days
Air Voids in HMAC) % by Volume 0 1.628X 10.5

n = 35 R2 = 0.87 Adjusted R2 = 0.84 RMSE in LOgl0 (/diLl) = 0.27
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Table 7.9(continued). Coefficients for Regression Equations Developed to Predict
Change in Roughness in HMC Pavements on Granular Base

AIRI - Ns I0c Where: N = Number of Cumulative KF_ALs
0n./Mile) B = b0 + b1 x1 + b2 x2 + ... + bn xn

C = co + c_ xl + c_ x2 + ...+ ¢. x.

d. Dry-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In

(xO uni_
b_ c,

Constant Term - 0.406 -0.00994

HMAC Thickness Inches 0 0.0255

Asphalt Viscosity at 140"F Poise 0 0.00024

Base Thickness Inches 0 -0.0329

Annual Precipitation Inches 0 0.0124

(Annual Number of Days > 90"F • Number

HMAC Thickness) Inches 0 -0.00114

(Subgrade < #200 Sieve * % by Weight
Annual Precipitation) Inches 0 0.000268

n ffi 27 R_ = 0.95 Adjusted R 2 ffi 0.93 RMSE in Logx0 (_1) ffi 0.18

e. Dry-Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In

(70 units

Constant Term 0.271 0.00393

Asphalt Viscosity at 140"F Poise 0 0.000317

Base Thickness Inches 0 0.0240

Annual Number of Days > 90"F Number 0 -0.0125

(Log (Air Voids in HMAC) • % by Volume
I'IMAC Thickness) Inches 0 -0.00197

(Freeze Index * Degree-Days
Annual Number of Days > 90"F) Number 0 1.451 X l0 s

n -- 14 R2 -- 0.94 Adjusted R2 -- 0.92 RMSE in Logx0 (_RI) = 0.21

106



,_ ,Ann.F_.-_wC_dos <_:-::---_-_-_---_-_1 I_s
K-- IBaseThidc I

<---!----Jl-]---) KESALs k--- IDays > 90°F

----FI -->1AnnualPrec. _-- [ ] HMACThick.

_H_y HMAc -->1AnnualPrec.

IThick.

Daily Temp.Range [ I

Viscosity @ 14(YF I --)1 Viscosity @ 146VF

C Air Voids [

s > 90°F [ --9[ Subgrade< #200

ocomp., , [_ i 1BasoT_c_
I I I I ] I I I I

0 15 30 45 60 75 90 0 15 30 45 60 75 90

Change in IRI Change in IRI

a. Wet-No Freeze Data Set b. Dry-No Freeze Data Set

<-i _-_._--l--_1 Fr_ m_xl -->1
/ I

HMACAirVoidsI --->[ I V'ls¢osity (_ 14(YF -_1
I

Viscosity @ 14(YFF- --_ Base Tm_ I I -_1
HMACThi_.l-- _ Days>9_FI -->1

I
Freeze Index F-- _ KESALs I --)1

/

BaseThick. (--E-1 HMAC Air Voids
I I I I I I I I I I I

0 15 30 45 60 75 90 0 15 30 45 60 75 90

Change in IRI Changein IRI

c. Wet-Freeze Data Set d. Dry-Freeze Data Set

Figure 7.26. ResultsFrom SensitivityAnalysesfor Changein IRI in HMAC
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Figure 7.27 shows a plot of predicted versus actual changes in roughness for the full-
depth HMAC model, and Figure 7.28 shows a plot of the residuals versus predicted
log(change in roughness).

A plot of the change in IRI predicted by the equation in Table 7.11 appears as Figure
7.29. This plot appears to have much the same form as those in Figure 7.24 for HMAC
on granular base.

The results from the sensitivity analysis appear in Figure 7.30. KESALs is again the
most significant independent variable, but freeze index was also very significant. The
other significant variables in order of significance were subgrade passing the//200 sieve,
asphalt content, annual numbers of days experiencing a temperature greater than 90"F,
and HMAC thickness. It is not clear why the combination of finer subgrade soil and log
(freeze index + 1) would decrease change in roughness, so this characteristic is assumed
to result from the specific test sections in the data set.

Change in Roughness of HMAC Pavements on Portland
Cement-Treated Base

Only thirty-seven of the sixty-six test sections in this data set had the data necessary for
these analyses. Consequently, the analyses were conducted on the entire data set,
producing the equation appearing in Table 7.12.

Figure 7.31 shows a plot of predicted versus actual changes in roughness for the HMAC
over a portland cement-treated base model, and Figure 7.32 shows a plot of the residuals
versus predicted log(change in roughness).

The predicted changes in IRI versus KESALs, with all other variables held at their
means, appears in Figure 7.33. The general form of the equation appears to
approximate those for the other models for change in roughness, except a large initial
change in roughness occurs in the life of the pavement and the rate of change after that
appears to be smaller than that for the other pavements without portland cement-treated
bases. This appears similar to the differences noted for rutting.

The results from the sensitivity analysis appear in Figure 7.34. In this case, the subgrade
material passing the #200 sieve was found to be the most significant variables, followed
by KESALs and annual number of days with temperatures greater than 90"F.
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Table 7.11. Coefficients for Regression Equations Developed to Predict Change in
Roughness in Full-Depth HMAC Pavement, Entire Data Set

AIRI = Nn 10c Where: N = Number of 01mulative KESALs
(In./Mile) B = b0 + b1x1 + b2 x2 + ... + b n xn

C = co + clx 1 + c2x 2 + ... + CnXn

Explanatory Variable or Interaction Coe_cients for Terms n
(x0 U_its b,

Constant Term - 0_373 -0.0126

Log(HMACThi_eas) Inches 0 -0.145

Log (Anmlal Number of Days > 90"F) Number 0 -0.102

(Subgrade < #200 * % by Weight
Log (Freeze Index + 1)) Degree-Days 0 -0.00189

((Log (Asphalt Content)) * % by Weight
(Log Freeze Index + 1)) Degree-Days 0 0_531

n = 33 R2 = 0.76 Adjusted Ra = 0.71 RMSE in Logl0(/dRI) = 0.39

Summary of Sensitivity Analyses for Change in Roughness
of HMAC Pavements

Table 7.13 lists the rankings for the individual independent variables, in terms of relative
sensitivities, for each of the seven separate models and sensitivity analyses. One column
indicates the number of models for which a specific independent variable was found to
be significant. The far fight column gives average rankings, with a rank of 10 arbitrarily
assigned for cases when the variable was not found to be significant and was not
included in the model (same logic as for rutting, Table 7.8).

The independent variables are listed below in order of combined rankings, one list is
based on average rankings, and one is based on the number of models in which the
variable was included:
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Table 7.12. Coefficients for Regression Equations Developed to Predict Change in
Roughness in HMAC on Portland Cement-Treated Base, Entire Data Set

AIRI -- NB 10c Where: N -- Number of Cumulative KESALs
(In./Mile) B - b0 + b1 x1 + b2 x2 + ... + bn x.

C = c0 + c_xl + c2xz + ...+ cn x.

Explanatory Variable or Interaction Coefficients for Terms in
(x_ units

[ o,
Constant Term - 0.126 -0.00394

Log (Base Thickness) Inches 0 0.560

Log (Annual Number of Days > 90"F) Number 0 0.0394

(Log (I'IMAC Thickness) Inches

Log (Base Thickness)) Inches 0 -0.501

(Air Voids in HMAC * _ by Volum_
Annual Precipitation) Inches 0 0.000287

(Subgrade <//200 Sieve • % by Weight
Log (Annual Number of Days > 90"F)) Number 0 0.00717

(Annual Precipitation * Inches

Freeze Index) Degree-Days 0 -1.502X 10"_

(Freeze Index * Degree-Days
Log (Annual Number of Days > 90"F)) Number 0 0.00039

n -- 37 R 2 -- 0.80 Adjusted Ra = 0.75 RMSE in Log10 (aiR1) -- 0.33

Ranking Ranking by Number
of Models Found Signifi_nt

KESALs KESALs

Asphalt Viscosity Days With Temp. > 90"F
Days With Temp. > 90"F HMC Thickness
HMAC Thickness Base Thickness
Base Thickness Asphalt Viscosity
Freeze Index Freeze Index
Subgrade < 0200 Sieve Air Voids in HMAC
Air Voids in HMAC Subgrade < 0200 Sieve
Base Compaction Annual Precipitation
Annual Precipitation Base Compaction
Daffy Temp. Range Daffy Temp. Range
Annual Freeze-Thaw Cycles Asphalt Content
Asphalt Content Annual Freeze-Thaw Cycles
HMAC Aggregate <//4 Sieve HMAC Aggregate <//4 Sieve
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Figure 7.31. Plots of Predicted vs. Actual Change in IRI for HMAC on Portland
Cement-Treated Base Data Set
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Figure 7.32. Plots of Residual vs. Predicted Log(Change in IRI) for HMAC on
Portland Cement-Treated Base Data Set
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Figure 7.34. Sensitivity Analyses of Change in IRI in HMAC Over
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It can be seen that four of the fourteen independent variables have the same rankings
for both bases, and the others varied only one to three positions. These rankings also
appear logical.

Transverse Cracking of HMAC Pavements on Granular
Base and Full-Depth HMAC Pavements

There were not sufficient test sections with transverse cracking in some environmental
zones for separate analyses for HMAC on granular base and full-depth HMAC, so these
data sets were combined. In addition, any pavements which had not experienced
transverse cracking were deleted from the data set. As was the case for rut depth and
change in roughness, the multiple regressions were conducted with the common log of
the dependent variable, with the same equation forms. The resulting predictive
equations appear in Table 7.14. The dependent variable used is transverse crack
spacing.

Figure 7.35 shows plots of predicted versus actual transverse crack spacing for the
combined HMAC over granular base and fifll-depth HMAC models by environmental
zones. Figure 7.36 shows plots of residuals versus predicted log(transverse crack
spacing).

Figure 7.37 shows predicted crack spacing versus age for the entire data set and for each
environmental zone when the independent variables appearing in the five separate data
sets are held at their means. It appears from these graphs that there was more early
transverse cracking (closer crack spacing) for the pavements in the dry zones than for
those in the wet zones, and the predicted crack spacing after about 6 to 10 years was
close to the same for all environmental zones. The predictions for mean conditions in
the wet-no freeze zone indicate that the crack spacing will eventually be closer than for
the other zones. This scenario does not appear likely and probably results from only
having seventeen observations to use in developing the model for this zone.

The results from the sensitivity analyses conducted on the equations in Table 7.14 appear
in Figures 7.38 and 7.39.

As for rutting and change in roughness, fourteen cases were examined for the dry-freeze
zone to study the effects of variations in the magnitudes of the independent variables in
various combinations on transverse crack spacing. The magnitudes of variables for each
case study and the resulting calculated crack spacings appear in Table 7.15.

Case 1 represents a typical case for the dry-freeze zone, which had a predicted crack
spacing of 56 ft (17m). Case 4 represented the worst case, which had a predicted crack
spacing of 7 ft (2 m). Case 12 represents a highway with a heavy pavement structure,
heavy traffic (for this zone), and an age of 17 years. Its predicted crack spacing was 75 ft
(23m). In general, the predicted crack spacings appeared to be reasonable.
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Table 7.14. Coemcients for Regression Equations Developed to Predict
Transverse Crack Spacing in HMAC on Granular Base and Full.Depth
HMC Pavement

Crack Spacing = Ns 10c Where N = Age, Years
(Ft) B =b 0 +b ix l+b 2x z+...+b nxn

C =c 0+clx 1+c2x 2+...+cnx _
a. Entire Data Set

Explanatory Variable or Interaction Coefficieats for Terms n
(_) Units

bi ci

Constant Term - -0.205 0.282

Log (HMAC Thickness) Inches 0 0.341

Air Voids in I-IMAC % by Volume 0 0.00686

Log (Base Thickness +1) Inches 0 -0.00310

Base Compaction (Mod. AASHTO) % of Max. Density 0 0.00646

(Asphalt Viscosity at 140"F * Poise
Log (Base Thickness + 1)) Inches 0 0.00013

(Log (Annual Precipitation) • Inches

Log (Base Thickness + 1)) Inches 0 0.301

n = 118 Ka ffi 0.37 Adjusted R 2 = 0.33 RMSE in Logl0 (Crack Spacing)= 0.53

b. Wet-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In
(x_ Units

bi ci

Constant Term -1.12 0.0131

Log (Freeze Index + l) Degree-Days 0 0.733

Log (Annual Precipitation) Inches 0 0.534

(HMAC Thickness * Inches

Log (Asphalt Viscosity at 140"F)) Poise 0 0.0109

(Base Thickness * Inches

Asphalt Content) _ by Weight 0 -0.00587

(Base Compaction • _ of Max. Density
Daily Temperature Range) °F 0 0.000295

n = 17 Ka ffi 0.85 Adjusted R2 = 0.75 RMSE in Log10 (Crack Spacing)= 0.52
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Table 7.14(continued). Coefficients for Regression Equations Developed to Predict
Transverse Crack Spacing in HMAC on Granular Base and
Full-Depth HMAC Pavement

Crack Spacing = NB 10c Where N = Age, Years
(Ft) B = bo + bx Xl + b2 x2 + ... + bn Xn

C = Co+ ClXl + C2X2+ ... + C,X,
c. Wet-Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms n

(x_ Umats
b,

Constant Term - -0.106 -0.0201

HMAC Aggregate < #4 % by Weight 0 -0.0131

HMAC Thickness Inches -0.00474 0

Log (Annual Precipitation) Inches 0 1.84

Annum No. of Days > 90"F Number -0.0540 0

(Base Thickness* Inches
Log (Annual Precipitation)) Inches 0 -0.0159

(Base Thickness* Inches
Annual No. of Days > 90"F) Number 0 0.00240

(Subgrade < #200 * % by Weight
Log (Annual Precipitation)) Inches 0 0.00408

n = 44 R 2 = 0.86 Adjusted R 2 = 0.83 RMSE in Logx0 (Crack Spacing) = 0.30

d. Dry-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms n

('0 U-its

Constant Term - -0.241 -0.00155

HMAC Thickness Inches 0 -0.0282

Log (Base Thickness + 1) Inches -0.147 0

Log (Annual Precipitation) Inches 0 1.89

n = 23 R z = 0.86 Adjusted R 2 = 0.83 RMSE in Logt0 (Crack Spacing) = 0.35
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Table 7.14(continued). Coefficients for Regression Equations Developed to Predict
Transverse Crack Spacing in EIMACon Granular Base and
Full-Depth HMAC Pavement

Crack Spacing = NB 10c Where N = Age, Years
(Ft) B = b 0 + b ix I + b2x 2 + ... + b nx n

C = Co+ clxl + c2x2 + ... + cnx_
e. Dry-Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms n
(_ u-_ts b_

Constant Term - -0.425 0.0468

Log (Annual Traffic) KESALs 0 0.854

Base Thickness Inches 0 -0.00853

Freeze Index Degree-Days 0 0.00013

(HMACThickness* Inches
Base Thickness) Inches 0 0.00398

(HMACThickness* Inches
Asphalt Viscosity at 140"F) Poise 0 1.64 X 10.5

(HMACThickness* Inches
Log (Subgradc < #200 + 1)) %by Weight 0 -0.0350

(Asphalt V'mcosityat 140"F * Poise
Log (Subgrade < #200 + 1)) %by Weight 0 0.000109

n = 34 Rz = 0.78 Adjusted Rz = 0.72 RMSE in Log10 (Crack Spacing) = 0.44
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Summary of Sensitivity Analyses for Transverse Cracking
in HMAC Pavements

Table 7.16 lists the ra_kings for the individual independent variables, in terms of relative
sensitivities, for each of the five separate models and sensitivity analyses. One column
indicates the number of models for which a specific independent variable was found to
be significant. The far right column gives average rankings; a rank of 10 was arbitrarily
assigned for cases when the variable was not found to be significant and was not
included in the model (same logic as for rutting, Table 7.8).

The independent variables are listed below in order of combined rapkings. One list is
based on average rankings, and one is based on the number of models in which the
variable was included:

Rankings Ranking by Number
of Models Found Significant

Age Age
Annual Precipitation I-IMACThickness
HMAC Thickness Base Thickness
Base Thickness Annual Precipitation
Asphalt Viscosity Asphalt Viscosity
Base Compaction Base Compaction
Freeze Index Freeze Index
Days With Temp. > 90"F Subgrade < #200 Sieve
Subgrade <//200 Sieve Days With Temp. > 90"F
Annual KESALs Annual KESALs
Annual Freeze-Thaw Cycles Annual Freeze-Thaw Cycles
HMAC Aggregate <//4 Sieve I-IMACAggregate <//4 Sieve
Asphalt Content Asphalt Content
HMAC Air Voids I-IMACAir Voids
Daily Temperature Range Daily Temperature Range

It can be seen from Table 7.16 that three of the variables appeared in all five models,
one appeared in four models, one in three models, three in two models, and seven of the
fifteen variables appeared in only one model each. However, the environmental
variables are generally correlated with each other, so different combinations may
represent the climate in the different environmental zones.
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Table 7.16. Orders of Significance for Independent Variables, All Models for Transverse
Cracking in HMAC Pavements

Independent Variables HMAC on Granular Base and No. of Average
Furl-Depth HMAC Models Rankings

I IAll WNF WF DNF DF Significant

Annual KESALs - - - 2 1 8.4

Air Voids in HMAC 8 - - - 1 9.6

HMAC Thickness 5 5 7 2 6 All 5.0

I-IMAC Aggr. < #4 - - 5 - 1 9.0

Asphalt Viscosity 3 9 - 1 3 6.6

Asphalt Content - 7 - - 1 9.4

Base Thickness 7 4 6 4 4 All 5.0

Base Compaction 1 3 - 2 6.8

Subgrade < #200 - - 4 7 2 8.2

Days > 90"F - - 1 - 1 8.2

Annual Precipitation 2 6 3 1 - 4 4.4

Freeze Index - 2 5 2 7.4

Annual Freeze-Thaw Cycles 4 - - 1 8.8

Daily Temp. Range - 8 - 1 9.6

Age 6 1 2 3 3 All 3.0
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Summary of Sensitivity Analysis Results for HMAC
Pavements

Tables 7.8, 7.13,and 7.16 list rankings for individual independent variables, in terms of
relative sensitivities, for rutting, change in roughness, and transverse cracking,
respectively. Much more detail for individual pavement types and environmental zones
has been provided earlier in this chapter.

The twelve most significant variables from the sensitivity analyses for HMAC pavements
are listed below by distress type, in order of relative ranking with the most significant
variable at the top and the least at the bottom:

Rutting Chan_ in Roughness Transverse Cracking

KESALs KESALs Age
Air Voids in HMAC Asphalt Viscosity Annual Precipitation
I-IMAC Thickness Days With Temp. > 90*F I-IMAC Thickness
Base Thickness HMC Thickness Base Thickness

Subgrade < #200 Sieve Base Thickness Asphalt Viscosity
Days With Temp. > 90*F Freeze Index Base Compaction
I-IMAC Aggregate < #4 Sieve Subgrade < #200 Sieve Freeze Index
Asphalt Viscosity Air Voids in HMAC Days With Temp. > 90*F
Annual Precipitation Base Compaction Subgrade <#200 Sieve
Freeze Index Annual Precipitation KESALs
Base Compaction Daily Temp. Range Annual Freeze-Thaw

Cycles
Average Annual Min. Temp. Annual Freeze-Thaw HMAC Agg. <#4 Sieve

Cycles

It can be seen that nine of these variables are significant for all three distress types. The
following are exceptions:

• Air voids in HMAC was not significant for transverse cracking.

• HMAC aggregate passing a #4 sieve was not significant for change in
roughness.

• Annual number of freeze-thaw cycles was not significant for rutting.

• Average annual minimum temperature and daily temperature range were
significant only for rutting and change in roughness, respectively.

It can also be seen that four environmental variables were found to be significant for
rutting, five for change in roughness, and four for transverse cracking.
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Some recommendations and comments that result from the sensitivity analyses follow:

• The majority of the rutting occurred for these pavements right after the
pavement was opened to traffic; however, these pavements do not
represent cases in which deterioration has advanced; water is entering the
base, subbase, and subgrades; and the rate of rutting is increasing rapidly.

• It is important not to overcompact HMAC, because this will reduce the air
flow through the mix, which appears to result in early hardening that
stiffens the mix and substantially reduces the rate of compaction under
traffic. (It is also important to get sufficient compaction so that the early
compaction under traffic is not excessive.)

• The HMAC aggregate passing a #4 sieve was selected to represent the
effects of gradation. Within its inference spaces in the separate data sets,
increasing amounts of aggregate passing a #4 sieve appeared beneficial to
reducing rutting.

• As expected, traffic loading is the strongest contributor to the occurrence
of rutting and roughness, and pavement age had the strongest effect on
transverse cracking.

• Thicker HMAC surfaces and granular base layers may be expected to
generally decrease all three types of distress (again expected).

There are some results that are difficult to explain. For example, Figures 7.38 and 7.39
indicate that increasing base compaction, annual precipitation, asphalt viscosity, or
annual freeze-thaw cycles (or freeze index) tends to increase transverse crack spacing
(reduce cracking). These results are difficult to understand and cannot be explained
entirely in terms of reliabilities of the equations, because the regional equations had
fairly good statistics.

In summary, most results from the sensitivity analyses appear reasonable; however,
others are surprises that may (1) have resulted from the specific characteristics of the
data sets upon which they are based, (2) represent mechanisms we do not yet
understand, or (3) result from interactions not explained by the equation forms.
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8

Predictive Models for Distress Types and Results of
Sensitivity Analyses for Portland Cement Concrete
Pavements

Similar to the work described in the previous chapter, a major part of this study was the
development of predictive models for key concrete pavement distress types and
roughness indicators. The methodology used to select the significant data elements
considered in the development of the models, the initial data exploratory analysis to
assemble the data into the appropriate sets for analysis, and the model development
procedure used for concrete pavements have been discussed in the previous chapters.
The approach used to perform a sensitivity analysis on each of these models has also
been described. The results obtained from these activities for portland cement concrete
(PCC) pavements are presented in this chapter.

Predictive models were developed for ten key distress and roughness indicators, and
sensitivity analyses were conducted on each of them individually. The models include
joint faulting of doweled and non-doweled joints; transverse cracking of jointed plain
concrete pavement (JPCP); transverse crack deterioration of jointed reinforced concrete
pavement (JRCP); joint spaUing of JPCP and JRCP; and International Roughness Index
(IRI) of doweled JPCP, and non-doweled JPCP, JRCP, and continuously reinforced
concrete pavement (CRCP). The development of these models and the results of the
sensitivity analyses conducted to show the relative effects of the explanatory variables on
the distress and roughness indicators are described. The development of the first model,
joint faulting of doweled pavements, is described in detail to illustrate more fully the
general approach used (described in Chapter 6). All the prediction models are based on
nationwide data obtained from the Strategic Highway Research Program (SHRP) Long-
Term Pavement Performance (LTPP) Database. Because of the limited amount of data
available for this early concrete pavement analysis, regional models could not be
developed.
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Joint Faulting of Doweled Concrete Pavements

Faulting of doweled transverse joints of concrete pavements contributes greatly to
longitudinal roughness, and thus to user discomfort and the needs for rehabilitation. It is
directly related to water pumping and the erosion of the material beneath the slab
and/or treated base. Another contributing factor is poor load transfer across the joint.
Previous studies have shown that the faulting of doweled joints is controlled so much by
dowels that other factors have much less effect9. These factors were all taken into
account in the development of the model.

Database, Dependent Variables, And Explanatory Variables

Data on the pavement sections with doweled joints from both General Pavement Studies
(GPS)-3 (JPCP) and GPS-4 (JRCP) experiments were combined to provide the initial
database used for this model. The mean faulting of all doweled joints in a pavement
section, FAULTD, was the dependent variable used in the prediction model. The
potential explanatory variables initially selected for consideration were chosen from those
identified by experts to be significant as described in Chapter 2, provided they were
available in the LTPP Database. The explanatory variables that were initially considered
are as follows:

THICK: slab thickness, in.
EPCC: slab modulus of elasticity, psi (laboratory measured)
PCCAGG: gradation of aggregate in concrete
BASETYP: base type (0 = untreated aggregate, 1 = treated aggregate)
BASETHK: base thickness, in.
BCOMP: percentage of compaction of base
BAGG: coarse aggregate gradation of base
CESAL: cumulative 18,000-lb. (80N) equivalent single axle loads (ESALs)

in traffic lane, millions
AGE: time since construction, years
JTSPACE: mean transverse joint spacing, ft
JEFF: falling weight deflectometer (FWD) measured joint efficiency, %
DOWDIA: diameter of dowels in transverse joints, in.
EDGESUP: edge support (1 = tied concrete shoulder; 0 = any other shoulder

type)
DRAIN: drainage provisions (0 = no subdrainage; 1 = subdralnage)
SUBGRADE: subgrade soil classification (0 = fine grained; 1 = coarse grained)
KSTATIC: static backcalculated k-value, psi/in.
PM200: subgrade soil passing #200 sieve, %
PRECIP: average annual precipitation, in.
DAYS32: number of days/year with temperature less than 32"F (0*C)
DAYS90: number of days/year with temperatures greater than 90*F (32"C)
FT: number of air freeze-thaw cycles
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TRANGE: mean monthly temperature range (mean maximum daily
temperature minus mean minimum dally temperature for each
month averaged over the year), *F

Since there were very little data for several of these variables in the database, it was not
possible to consider all of them (e.g., PCCAGG, BAGG, BCOMP). In addition, the
maximum dowel/concrete beating stress (BSTRESS, psi), which had been determined to
be a cluster variable that influences faulting, was considered. It was calculated for each
section by using the conventional Bradbury approach and the data for the above inputs
and an assumed 9000 lb (40 kN) load located at the comer directly over one dowel. 7
However, BSTRESS was found to correlate strongly with dowel diameter as shown in
Table 8.1, so only dowel diameter was considered in the analysis.

Data Review and Evaluation

The data for each section were reviewed to determine if any data expected to be
significant were missing. Examples of data missing from some test sections included
joint faulting, CESALs, joint spacing, and FWD data. The pavement sections with such
data missing were not used in this early analysis. Data exploration started with a
determination of the mean, minimum, maximum, and standard deviation of each
dependent and independent variable. All data were then assembled into a matrix and
sorted several ways including increasing faulting, increasing age, and increasing traffic.
These results were studied and any abnormalities or obviously erroneous data were
identified.

Two-dimensional scatter plots of all variables were prepared and examined. Some of
these plots are shown as examples in Figures 8.1, 8.2, and 8.3. Figure 8.3 is of special
interest since it contains mostly climatic variables. The results show that several of the
climatic variables correlate well with each other, as also indicated in the correlation
matrix, Table 8.1. For example, TRANGE and DAYS32 correlate very strongly with
each other. There is also a strong correlation among the temperature variables, and
some of the temperature variables also correlate well with PRECIP. Other variables
that show some correlation with FAULTD include AGE, KSTATIC, JTSPACE, and
CESAL.

Three-dimensional plots of the raw data were also directly generated to help show the
general trends of FAULTD with AGE, CESAL, and other variables. Examples of two
such plots are given in Figures 8.4 and 8.5. Figure 8.4 shows the relationship among
FAULTD, CESAL, and AGE. This plot also shows an obvious area with no data in the
CESAL,-AGE plane. Figure 8.5 shows the relationship among FAULTD, JTSPACE,
and CESAL. A number of sharp peaks in the generated surface point to abrupt
variations in data that require further investigation. The pavement sections causing such
unusual peaks or reverse slopes were identified.
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Based on all these results, specific sections were identified that had missing, erroneous,
or questionable data. The sections with missing and erroneous data were deleted, and
those with questionable data were marked for observation and evaluation during the
actual model development. These data reviews provided valuable understanding of the
data and the type of relationships among variables that needed to be explored in detail.
Fifty-nine pavement sections remained for model development after the data review and
evaluation.

Model Development

The first step in model development for transverse dowel joint faulting was to identify
the general functional form of the distress with respect to time and traffic. Previous
studies have shown that faulting increases rapidly with traffic loadings at first, and then
levels off at a much decreased rate9'10. In previous studies where time series faulting
data were available, the following model form that meets this criteria has been used.

FAULTD = CESALP • [Explanatory Variables] (8.1)

This form of the model meets logical boundary conditions with the faulting equal to zero
when CESAL is zero (i.e., prior to opening to traffic). The exponent P is usually less
than 1. To allow the use of linear regression techniques, this form of the model was
transformed by dividing both sides of the equation by CESALr, to make the ratio
FAULTD/CESAL r the dependent variable. Other transformations of the model, such as
a logarithmic transformation, were tried but did not improve results.

Based on expert judgment and previous data observations, several explanatory variables
were selected for testing in the above model. Regression analyses were conducted with a
variety of techniques to develop the most useful faulting prediction model. The
following briefly describe the techniques used in the analyses:

• Many explanatory variables were tested to determine their actual
significance in the overall model. Even though some of these variables
were expected to have an effect on faulting, they were eliminated if they
were not significant to the prediction of joint faulting.

• Several interactions between the variables were evaluated and found not to
be significant.

• Tests for collinearity between explanatory variables were conducted
throughout the development phase. When significant coilinearity was
found, one of the variables was eliminated from the model (except for
AGE, which is explained below).
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• The two- and three-dimensional plots were studied, and these studies
indicated that some variables were not linearly related to faulting. These
included CESAL, KSTATIC, JTSPACE, and AGE. The bes: exponents for
these variables were determined by using the Alternating Conditional
Expectations (ACE) algorithm introduced by Breiman and Friedman along
with the Box-Cox transformation. Detailed descriptions of these techniques
are provided in "Design of Joints in Concrete Pavements. 'a

The final model for transverse joint faulting is as follows:

fJ'rsPACEFAULTD = CESAL°'2s, 0.0238 �0.0006* [ i6

[AGE ]2
[--TO--j - 0.0037 • EDGESUP - 0.0218 *DOWDIA (8.2)

where FAULTD = mean transverse doweled joint faulting, in.
CESAL = cumulative 18,000 lb. (80N) ESALs in traffic lane, millions
JTSPACE = mean transverse joint spacing, ft
KSTATIC = mean backcaleulated static k-value, psi/in.
AGE = age since construction, years
EDGESUP = edge support (1-tied concrete shoulder; 0-any other shoulder

type)
DOWDIA = diameter of dowels in transverse joints, in.

Statistics:
N = 59 sections
R2 = 0.534

RMSE = 0.028 in. (0.7 mm)

Figure 8.6 shows a plot of the predicted versus actual faulting for this model, and Figure
8.7 shows a plot of the residuals versus predicted faulting. A sensitivity analysis of the
model was conducted with the procedures described in Chapter 6. The results in Figure
8.8 show that CESALs, joint spacing, age, and the static k-value have the greatest effects
on doweled joint faulting, and increases in the significant variables appear to result in
logical increases or decreases in the dependent variable.
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FTqgure8.8. Sensitivity Analymisfor Doweled Joint Faulting Model

Predicted faulting increases with increasing CESALs, joint spacing, and age. An increase
in static k-value, which shows the effect of subgrade stiffness on the development of
faulting, results in a decrease in faulting. Edge support provided by a tied concrete
shoulder also causes a slight reduction in faulting. In addition, faulting decreases as
dowel diameter increases, which reflects the reduction in dowel/concrete bearing stress
brought about by the use of the larger dowels.

Three-dimensional plots of the response surface of this model, generated to show the
predicted relationship between faulting and CESALs and age, and joint spacing are
shown in Figures 8.9 and 8.10. As CESAI_s increase, faulting increases rapidly at first
and then the rate of increase decreases. Faulting also increases with age and as joint
spacing increases.

Although AGE and CESAL were found to be positively correlated with a coefficient of
correlation of 55%, AGE was included in the model due to its apparent strong individual
effect. It is believed that AGE reflects the effects of the cycles of climatic changes such
as joint opening/dosing and thermal curling cycles. None of the climatic variables were
significant enough to appear in the doweled faulting model itself.
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Figure 8.10. Three.Dimensional Plot (FAULTD, JTSPACE, CESAL) of
Doweled Joint Faulting
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The model includes several variables known from previous studies to affect faulting and
the effects of these variables appear logical. However, there are several potentially
significant variables that are missing from the model. For example, base type (untreated
versus treated) and climate did not show much significance, although they were expected
from previous studies to be significant. With a coefficient of determination (R 2) of only
0.53 and root mean square error (RMSE) of 0.028 inches (0.7 mm), there is considerable
room for improvement of this model.

Joint Faulting of Non-Doweled Concrete Pavements

The phenomenon of faulting of non-doweled transverse joints is similar to that described
in the preceding section for doweled joints. Faulting of non-doweled joints also
contributes greatly to longitudinal roughness and thus to user discomfort. Several factors
that have been shown in previous studies to influence the faulting of non-doweled joints
include traffic, design, materials, and climatic factors. 9 Faulting is directly related to
water pumping and erosion of the support material beneath the slab and/or treated base
of a concrete pavement. Another major contributing factor to non-doweled joint faulting
is poor load transfer across the joint, since aggregate interlock is often the only medium
of load transfer available. Faulting of non-doweled joints, therefore, depends much more
on several other variables, such as climate and base type. The general procedure
outlined in Chapter 6 for model development was used to obtain the non-doweled joint
faulting model described here.

Database, Dependent Variables, and Explanatory Variables

The initial database used for this model was obtained from all the pavement sections
with non-doweled joints from the GPS-3 (JPCP) experiment. The mean faulting of all
non-doweled joints in a pavement section, FAULTND, was the dependent variable used
in the model. Potential explanatory variables were chosen as those identified by the
experts to be significant, provided they were available in the LTPP Database. The initial
explanatory variables that were considered are as follows:

THICK: slab thickness, in.
EPCC: modulus of elasticity of PCC from laboratory testing, psi
PCCAGG: gradation of aggregate in concrete
BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate)
BASETHK: base thickness, in.
BCOMP: percentage of compaction of base
BAGG: coarse aggregate gradation of base
CESAL: cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
AGE: time since construction, years
JTSPACE: mean transverse joint spacing, ft
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JEFF: FWD-measured joint efficiency, %
EDGESUP: edge support (1 = tied concrete shoulder; 0 = any other shoulder

type)
DRAIN: drainage provisions (0 = no subdrainage, 1 = if subdrainage)

SUBGRADE: subgrade soil classification (0 = fine grained; 1 = coarse grained)
KSTATIC: static backcalculated k-value, psi/in.
PM200: subgrade soil passing #200 sieve, %

DAYS90: number of days/year with temperatures greater than 90°F (32" C)
PRECIP: average annual precipitation, in.
FT: number of air freeze-thaw cycles
TRANGE: mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month averaged over the year), *F

FI: freeze index, degree-days below freezing

Since there were very little data for several of these variables (e.g., PCCAGG, BAGG,
BCOMP, PM200) in the database, it was not possible to consider all of them in the
model development.

Data Review and Evaluation

The data from the GPS-3 test sections were reviewed to determine if data expected to be
significant were missing. Examples of data missing for some test sections included joint
faulting, CESALs, joint spacing, and FWD data. These sections with missing data could
not be used in this early analysis. Data evaluation included an examination of the mean,
minimum, maximum, and standard deviation of each dependent and independent
variable. These values appear in SHRP-P-684, Early Analyses of LTPP General
Pavement Studies Data. Data Processing and Evaluation.

The data were also assembled into matrix form and sorted several ways, such as
increasing faulting, increasing age, and increasing traffic, and studied in order to identify
any abnormalities or obviously erroneous data. Bivariate plots of all significant variables
were prepared and examined. A correlation matrix was then obtained to show the
strength of the correlation between all of dependent and independent variables. This
correlation matrix is shown in Table 8.2.

A three-dimensional plot which shows the relationship between faulting, CESALs, and
age is given in Figure 8.11. This plot shows there are a few abnormal peaks in the plots
that point to abrupt variations in data. The sections causing the unusual peaks or
reverse slopes were identified and examined. Twenty-five sections remained for model
development after the sections identified as having missing and erroneous data identified
were deleted.
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Figure 8.11. Three-Dimensional Plot (e.g., FAULTND, AGE, CESAL) of
Doweled Joint Faulting

Model Development

The general functional form identified for faulting of nondoweled joints is the same as
the one identified for faulting of doweled transverse joints in Equation 8.2. It shows
faulting increasing with traffic loadings at a rapid rate at first and then at a reduced rate
as time passes. The model also meets the necessary boundary conditions with faulting
equal to zero when CESALs are equal to zero (e.g., prior to opening to traffic). For
non-doweled pavements, the exponent P is also usually less than 1 for faulting. In order
to use linear regression techniques, both sides of the equation were divided by CESAL P
and the ratio FAULTND/CESAL p was used as the dependent variable. Other
transformations of the data were tried but were not successful in improving the results.

With several explanatory variables selected for testing in the above model, regression
analyses were conducted with a variety of techniques to try to develop the most suitable
faulting prediction model for sensitivity analysis. The techniques used included the
following:

• The explanatory variables were tested to determine their significance in the
overall faulting model. Those that were not siotmificant were eliminated,
even though they were expected to affect faulting.
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• Interactions between the explanatory variables were evaluated, but only the
interaction between freeze index and precipitation was found to be
significant.

• Tests for collinearity between the explanatory variables were conducted
throughout the development phase, and the results were used to identify
some of the variables that had to be eliminated from the model.

• The two- and three-dimensional plots were studied, and these studies
indicated that there were some variables that are not linearly related to
faulting of non-doweled transverse joints. These included CESAL, AGE,
and PRECIP. The ACE algorithm was used to determine the best
exponents for these variables to use in the model.

The model finally selected for transverse non-doweled joint faulting, based on the data
for the JPCP sections of GPS-3, is as follows:

007,7+00,.
IFI,PRECIP 1

+ 0.0012 * [ _ J - 0.0378, DRAIN (8.3)

where FAULTND = mean transverse non-doweled joint faulting, in.
CESAL = cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
PRECIP = mean annual precipitation, in.
FI = mean freeze index, degree-days < freezing
AGE = age since construction, years
DRAIN = 1=longitudinal subdrainage; 0= otherwise

Statistics:

N = 25 sections
R2 = 0.550

RMSE = 0.047 in. (1.2 mm)
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The limited number of sections available for the development of this model clearly limits
its adequacy. Figure 8.12 shows a plot of the predicted versus actual faulting, and Figure
8.13 shows a plot of the residuals versus predicted faulting. A sensitivity analysis of the
model was conducted with the procedures described in Chapter 6. The results are shown
in Figure 8.14. The variables that significantly affect the prediction of non-doweled joint
faulting include CESALs, age, precipitation, freeze index, and drainage. The senses of
these effects (increase in variables increases or decreases faulting) were consistent with
results from previous studies and theory 9.

The form of the model produces physically logical predictions of faulting with traffic
loadings. Faulting is known to increase rapidly at first, and then level off with continued
traffic loadings. In addition, this form matches the boundary conditions of zero faulting
at zero traffic loadings. Although AGE and CESALs are strongly correlated, both were
kept in the models due to their apparent strong individual effects. It is believed that
AGE in this model represents the effects of cycles of climatic changes such as joint
opening/closing and thermal curling cycles. The model indicates an increase in faulting
with increasing age. A three-dimensional plot of the predicted response surface
generated with this model that shows the relationship between FAULTND, AGE, and
CESAL is presented in Figure 8.15.

Two climatic variables, precipitation and freeze index, were also sufficiently significant to
enter the model. According to the model, increased precipitation will result in increased
faulting, and pavements located in areas with a higher freeze index (FI) combined with a
higher mean annual precipitation (PRECIP) will experience more faulting. The model
also indicates that the provision of subdrainage will decrease faulting. However, it
should be noted that most of the non-doweled JPCP sections included in this study did
not have subdrainage, and had a high potential for erosion and pumping, especially
becausse they did not have dowels to limit comer deflections. With only five of the
sections with subdrainage in the form of longitudinal pipes, the subdrainage variable
DRAIN included in the model must be viewed with caution. None of the pavement
sections used in this analysis had a permeable base.

The model developed includes several variables known from previous studies 9'10to affect
faulting, and the senses (increase in variable increases or decreases faulting) appear to
be logical. However, there were several variables expected to be significant that were
not found to be so. For example, neither base type (untreated versus treated) or joint
spacing showed up as significant, even though other studies have shown them to be
so. 9,10 There is much room for improvement of this model, which has an R2 of 0.55 and
a fairly high RMSE.
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Transverse Cracking of JPCP

For this study, transverse cracking of JPCP was defined as all severity levels of cracks
occurring transversely across the traffic lane. Such transverse cracks eventually spall and
fault, and lead to longitudinal profile roughness, user discomfort, and the need for
rehabilitation. The general procedure outlined in Chapter 6 for model development had
to be modified to obtain a transverse cracking model for JPCP. Since there were only a
few sections that contained transverse cracking data, the general approach could not be
used to produce a model. However, this opportunity allowed for a demonstration of the
development of a more mechanistic type model. The model developed is presented for
illustration and must not be used for prediction because of the limited number of
sections actually used to develop it.

The mechanistic model is based on the principle that transverse cracking results from
fatigue damage brought on by repeated tensile slab stresses. These tensile stresses are
caused by a combination of repeated heavy loads, thermal gradient curling, and moisture
gradient warping (and perhaps temperature and drying shrinkage). By combining all
these variables into a single calculated fatigue damage value over a pavement's service
life, the fatigue damage can be related to transverse cracking. This type of approach has
been used several times in the past and has produced useful results 9'11. The use of this
fatigue damage approach is described in this section.

Database, Dependent Variables, and Explanatory Variables

The initial database consisted of sections from the GPS-3 (JPCP) experiment. The
percentage of slabs cracked (all severities of cracks) in a pavement section
(PCRACKED) was the dependent variable used in the model. All potential explanatory
variables identified to be significant by the experts, provided they were available in the
LTPP Database and could be included in the mechanistic analysis, were used. The
initial explanatory variables that were considered are as follows:

THICK: slab thickness, in.
PCCSTR: indirect tensile strength of PCC (cores) converted to flexural

strength, psi
EPCC: modulus of elasticity of PCC measured in the laboratory, psi
JTEFF: longitudinal lane/shoulder joint load transfer efficiency
JTSPACE: mean transverse joint spacing, ft
KSTATIC: static backcalculated k-value, psi/in.
LNWIDTH: traffic lane width, ft
CESAL: cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
TGRAD: mean temperature gradients through slab for different geographical

regions, *F/in. thickness slab
PRECIP: average annual precipitation, in.
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Data Review and Evaluation

The usual review of each of the sections was conducted to determine if any critical data
were missing. The sections with such missing data were then eliminated. A
comprehensive evaluation of the data and interrelationships was conducted. The goal of
this evaluation was to identify data that appeared to be inconsistent with a majority of
the data. These sections were not deleted at this stage, but were simply identified as
potential errors to be examined further.

The mean, minimum, maximum, and standard deviation of each dependent and
independent variable were examined, as were the data that were assembled into a matrix
and sorted several ways (increasing PCRACKED, increasing CESALS, and increasing
JTSPACE). Bivariate plots of all the variables were examined, and a correlation matrix
of all dependent and independent variables was obtained. This correlation matrix is
shown in Table 8.3.

Table 8.3. Correlation Matrix for Selected Variables for JPCP Transverse Cracking

PCRACIG_D THICK PCC3-WR J'rSPACE CF_AL TGRAD PRECIP dit_v EPC_ K.STATIC

PCRACKED 1 -0.02 -0.06 0.03 0.37 0.01 0.20 -0.05 -0.16 0.13

THICK -0.02 1 -0.1 0.112 0.036 0.072 0.08 0.079 .0.13 0.201

PCCSTR -0.06 -0.1 1 -0.441 0.014 0.013 .0.346 0.069 -0.043 0.018

JTSPACE 0.03 0.112 -0.441 1 0.219 0.318 0.532 0.019 0.175 0.031

CESAL 0.37 0.036 0.014 0.219 1 0.332 0.032 -0.006 0.037 0.025

TGRAD 0.01 0.072 0.013 0.318 0.332 1 0.3 0.075 0.243 0.12

PRECIP 0.20 0.08 -0.346 0.532 0.032 0.3 1 -0.059 0.131 0.003

JTEFF .0.05 0.079 0.069 0.019 -0.006 0.075 .0.059 1 0.025 0.073

EPCC -0.16 -0.13 -0.043 0.175 0.037 0.243 0.131 0.025 1 -0.203

KSTATIC 0.13 0.201 0.018 0.031 0.025 0.12 0.003 0.073 -0.203 1

These results were studied and any abnormalities or obviously erroneous data were
identified. For example, one clear abnormality was a thick 12 in. (305 ram) slab, which
was only 5 years old, did not carry very heavy traffic, and had over 50% cracking. It was
obvious that the cracking observed was related to construction (such as late joint sawing)
and not load fatigue. A total of 128 sections remained for the model development after
the sections with missing and erroneous data had been deleted. Only twelve of these
sections had experienced any transverse cracking.
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Mechanistic Inputs

For the mechanistic-based model developed for transverse cracking of JPCP, the critical
stress and fatigue damage had to be calculated for each of the pavement sections. The
critical edge stress was calculated to account for the combined effect of loading and
positive (daytime) temperature gradient curling. The stress prediction models used are
based on finite element analyses and are described in "Mechanistic Design Models of
Loading and Curling in Concrete Pavements ''n. The variables used in the edge stress
calculation include slab thickness, modulus of elasticity, Poisson's ratio, slab length,
thermal gradients through the slab, subgrade k-value, single axle load at edge of slab and
the thermal coefficient of expansion of concrete. Some of these inputs, such as thermal
coefficient of expansion of concrete and Poisson's ratio, had to be assumed.

Temperature gradients were based on mean positive gradients during daylight hours. The
following values obtained from Design for Zero-Maintenance Plane Jointed Concrete
Pavement n were used in the analysis:

Environmental Slab Mean Annual Thermal
Zone Thick (in.) Gradient (°F/in. slab)

Non freeze 8 1.40
9 1.30
10 1.21
11 1.11
12 1.01

Freeze 8 1.13
9 1.05
10 0.96
11 0.87
12 0.79

(1 in. = 25.4 mm; *F/in. = 0.0458 *C/ram)

With these inputs the free edge stress was calculated and then adjusted for load transfer
for a tied concrete shoulder (i.e., approximately 75% deflection transfer, which results in
a 15% reduction in edge stress).

Miner's fatigue damage model was used to determine the accumulated damage over the
life of each pavement section. Fatigue damage was calculated as follows:

Fatigue Damage = n/N
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where n = expected number of applied edge stresses considering CESAL
loadings and thermal daytime curling

-- CESAL • percentage of loads at edge * percentage of trucks
in daytime hours (with 5% loads at edge for regular width
lanes, and 0.1% for widened traffic lanes assumed; 75%
percent trucks assumed in daytime)

N = mean number of allowable edge stress loads that causes slab
cracking

= 10 { 2.13 *( 1/RATIO )1.2 }

RATIO = STRESS/STRENGTH

STRESS = f [EPCC, THICK, POISSON'S RATIO, KSTATIC]
(computed with finite element techniques described in
"Portland Cement Concrete Pavement Evaluation System-
COPES".)

STRENGTH = mean 28 day flexural strength, psi (estimated from
split tensile strengths of cores taken during LTPP data
collection, adjusted to 28 days)

Both n and N were computed for each section in the database in this manner from the
time the pavements were opened to traffic to the time when transverse cracking was
measured. The ratio n/N was used as the estimated fatigue damage at the slab edge.

Model Building

The first step in buffing the model was to identify the general functional form of the
occurrence of transverse cracking over time. From field observations, transverse
cracking has been shown to develop slowly in pavements during their early life, then
increase more rapidly as time passes, and eventually level off as all slabs become
cracked. The lower limit of cracking is 0% of slabs cracked, and the maximum amount
of cracking is 100% of slabs cracked. Any cracking that occurs very early in a
pavement's life is usually the result of inadequate forming of transverse joints or other
construction problems.

Two previous studies show that this progression of transverse cracking follows an
s-shaped curve with traffic or time?' 10 Rehabilitation is usually performed by the time
50% of the slabs have cracked, so most pavements never experience greater than 50%
slabs cracked. With percentage of slabs cracked, PCRACKED, as the dependent
variable, Figure 8.16 was prepared to show the relationship of percentage of cracked
slabs versus accumulated fatigue damage (n/N) on a logarithmic scale.
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This plot shows very little crackingfor accumulated fatigue damage less than about 1.0.
Cracking develops for accumulated fatigue damage beyond 1.0. Although there are a
limited number of cracked sections, there exists a general trend that follows the s-shaped
curve. Similar results have been obtained in previous studies with far more data than
were available for this study.

Conceptually, an s-shaped curve that satisfies the proper boundary conditions should be
fitted through this data. However, fitting such a curve by regression techniques was not
successful because of the limited number of cracked sections. Therefore, for illustrative
purposes only, the best s-shaped curve was fitted through the data with a curve-fitting
method and is shown in Figure 8.16. The equation of this curve is given below:

1
PCRACKED =

0.01 + 10.100- IOgl0(N) (8.4)

where PCRACKED = percentage of cracked slabs (all severities)
n = expected number of applied edge stresses,

considering ESALs and thermal daytime curling
N = mean number of allowable edge stress loads that

cause slab cracking

The results of a sensitivity analysis of this model are shown in Figure 8.17. Slab
thickness (THICK) has by far the greatest effect on transverse cracking, followed
distantly by concrete flexural strength at 28 days. This model is based upon too few data
points and should only be considered illustrative. As more LTPP data become available,
especially sections with more slabs cracked, it will be possible to develop a much more
reliable model for predicting transverse slab cracking for JPCP.

Another important point to note is that the fatigue damage calculation algorithm used
was not comprehensive. A much more comprehensive fatigue damage analysis can be
developed and applied in the future. Such an analysis should consider axle load spectra
(not CESAI._), increased concrete strength over time, erosion beneath the slab, a far
more accurate representation of thermal gradient over a year, and moisture gradients
through the slab. Placement of the axle at the slab comer should also be considered
along with a negative (nighttime) thermal gradient on transverse cracking.
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Figure 8.17. Sensitivity Analysis for Slab Cracking of JPCP (PCRACKED) Model

Three-dimensional plots illustrating the relationship between CESALs, slab thickness,
and percentage of slabs with transverse cracks (PCRACKED) for this model are given in
Figure 8.18. The plots show the effect of a widened traffic lane on transverse cracking of
JPCP. Clearly, a widened lane decreases transverse cracking of JPCP.

Transverse Cracking of JRCP

Transverse cracks in JRCP are of concern when they deteriorate as a result of spalling
and faulting. Low-severity transverse cracks are a normal occurrence in JRCP the
reinforcement is designed to hold them tight and prevent deterioration. However,
deterioration can be caused by repeated vertical shear stresses across the cracks from
heavy wheel loads and increasing crack widths. As a crack widens, loss of aggregate
interlock increases, which results in deterioration of the crack. The deterioration of such
cracks causes longitudinal profile roughness, user discomfort, and the need for premature
rehabilitation. As a result, only deteriorated (medium- and high-severity) transverse
cracks were considered in the model development. The general procedure outlined in
Chapter 6 for model development was utilized to obtain a deteriorated transverse crack
model.
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Database, Dependent Variables, and Explanatory Variables

Previous studies have shown that the deterioration of transverse cracks in JRCP depends
on traffic, design, materials, and climatic factors. 1° Data on pavement sections from the
GPS-4 (JRCP) experiment were used to provide the initial database. The number of
deteriorated cracks (defined as medium- and high-severity cracks) in a pavement section,
CRACK JR, was the dependent variable used in the model. The initial explanatory
variables that were considered are as follows:

THICK: slab thickness, in.
EPCC: slab modulus of elasticity of PCC measured in the laboratory, psi
TYPAGG: type of coarse aggregate in concrete
PCCAGG: maximum size of coarse aggregate in concrete

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate)
BASETHK: base thickness, in.
BCOMP: percentage of compaction of base
BAGG: coarse aggregate gradation of base
CESAL: cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
AGE: time since construction, years
JTSPACE: mean transverse joint spacing, ft
EDGESUP: edge support (1 = tied concrete shoulder; 0 = any other shoulder

type)
PSTEEL: percentage of longitudinal steel reinforcement, % area
DRAIN: drainage provisions (0 = no subdrainage; 1 = subdrainage)
KSTATIC: static backcalculated k-value, psi/in.
SUBGRADE: subgrade soil classification (0 = fine grained; 1 = coarse grained)
PM200: subgrade soil passing #200 sieve, %
FI: freeze index, degree-days
Fr: number of air freeze-thaw cycles
PRECIP: average annual precipitation, in.
TRANGE: mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month averaged over year), *F
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Data Review and Evaluation

A comprehensive evaluation of the data for each section was conducted to determine if
any critical data were missing. Examples of such data missing for some test sections were
deteriorated transverse cracks per mile (CRACKIR), CESALs, joint spacing, and
percentage of steel. Sections with such data missing were eliminated from the study. The
mean, minimum, maximum, and standard deviation of each dependent and independent
variable were computed and examined. All data were then assembled into a matrix and
studied in several ways to detect any abnormalities or obviously erroneous data. This
study included the use of bivariate plots of all the variables. A correlation matrix that
shows the strengths of the correlations between all the dependent and independent
variables is shown in Table 8.4.

Table 8.4. Correlation Matrix for Selected Variables for Tranverse Crack
Deterioration for JRCP

CRACK JR THICK J'rSPACE CESAL PRECIP EIN2C KSTATIC AGE PSI'EEL TRANGE

CRACK JR 1 0.27 -0.09 0.0 -0.11 -0.02 0.11 0.02 -0.25 -0.02

THICK 0.27 1 -0.13 -0.061 0.513 -0.022 0.233 -0.162 -0.523 -0.635

JTSPACE -0.09 -0.13 1 0.259 0.26 0.071 -0.152 0.097 0.496 -0.316

CESAL 0.0 -0.061 0.259 1 -0.094 -0.068 -0.257 0.449 0.116 0.034

PRECIP -0.11 0.513 0.26 -0.094 1 0.364 -0.163 0.147 0.184 -0.898

EPCC -0.02 -0.022 0.071 -0.068 0.364 1 -0.314 0.093 0.13 -0.371

KSTATIC 0.11 0.233 -0.152 -0.257 -0.163 -0.314 1 -0.39 -0.371 -0.035

AGE 0.02 -0.162 0.097 0.449 0.147 0.093 -0.39 1 0.422 -0.02

PSTEEL -0.25 -0.523 0.496 0.116 0.184 0.13 -0.371 0.422 1 0.001

TRANGE -0.02 -0.635 -0.316 0.034 -0.898 -0.371 -0.035 -0.02 0.001 1

Three-dimensional plots were also used to study the data further. Two examples of such
plots are given in Figures 8.19 and 8.20. Figure 8.19 shows the relationship between
CRACKIR, AGE, and CESALs, and Figure 8.20 shows the relationship between
CRACKJR, PSTEEL, and CESALs. Any abrupt variations in the data indicated by
unusual peaks in the surface or reverse slopes were identified and investigated. Twenty-
seven sections remained for model development after sections with missing and erroneous
data were deleted.

Model Building

The first step in building the model was to identify the general functional form of the
occurrence of the distress over time. There were no time series data to clearly show the
functional form of the progression of deteriorated transverse cracks. However, a model
from a previous study shows that deteriorated transverse cracks develop almost linearly
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Figure 8.19. Three-Dimensional Plot (C'RACKJR, AGE, C'ESAL)
of Deteriorated JRC'P Transverse Cracks

Figure 8.20. Three-Dimensional Plot (CRACKJR, PSTI?_EI,,CESAL) of
Deteriorated JRCP Transverse Cracks.
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for several million applications of traffic loadings (CESALs), and then accelerate slightly
with continual loadings. 1° It is also known that when CESALs and age are zero (prior to
the pavement opening to traffic), deteriorated cracks are also zero.

Based upon expert judgment and the data evaluations, several explanatory variables were
chosen for testing. Regression analyses were conducted with a variety of techniques to
try to develop the most suitable model for deteriorated cracks prediction the sensitivity
analysis. The following briefly describe the techniques utilized in the analyses:

• The explanatory variables were tested to determine their significance in the
overall model. Those that showed a lack of significance on transverse
cracking, even though they logically were expected to have an effect, were
eliminated.

• Several interactions between variables were evaluated, but none were
found to be significant.

• Tests for collinearity between the explanatory variables were conducted
throughout the model development phase, and where significant
collinearity was found, one of the variables was eliminated from the model.

• Observations of the previous two- and three-dimensional plots indicated
some variables, including PSTEEL and KSTATIC, were nonlinearly related
to CRACKJR. The appropriate exponents for these variables were
determined from graphical observations and the ACE algorithm 6. The
result was a transformation of KSTATIC and PSTEEL to obtain a linear
regression model.

The final model selected for predicting deteriorated transverse cracks for JRCP is as
follows:

CRACKJR = -72.9 + 1.9 CESAL + 0.182 I. 1

tPSTEEL 2

(8.5)tKSTATIC J

where CRACK JR = number transverse cracks (medium-/high-severity)/mi.
CESAL = cumulative 18,000 lb. (80kN) ESALs in traffic lane,

millions
PSTEEL = percentage of steel (longitudinal reinforcement)
PRECIP = annual precipitation, in.
KSTATIC = mean backcalculated k-value, psi/in.
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Statistics:

N = 27 sections
R2 = 0.48

RMSE = 20.8 cracks/mi. (12.5 cracks/km)

The limited number of sections available for the analysis clearly limits the adequacy of
the model. Figure 8.21 shows a plot of the predicted versus actual CRACKJR, and
Figure 8.22 shows a plot of the residuals versus predicted CRACK JR.

The results of a sensitivity analysis of the model are shown in Figure 8.23. KSTATIC
has the greatest effect on CRACK JR. For low KSTATIC values (i.e., very soft
subgrades), CRACK JR increases, which is logical since a low KSTATIC will lead to high
deflection, which in turn will lead to crack deterioration. PSTEEL also has an effect on
CRACK J-R,with a lower PSTEEL resulting in a higher number of deteriorated cracks.
This is also logical since lower steel content will result in increased crack width. The
model indicates that deteriorated cracks will develop at a uniform rate with increased
traffic loadings (CESALs). Crack deterioration is also shown to depend on climate:
areas with higher precipitation have more crack deterioration. A three-dimensional plot
that shows the predicted relationship between CRACKJR, CESAI_s, and PSTEEL from
this model appears in Figure 8.24.

Although all the variables recommended by the experts that were available in the LTPP
Database were examined, only the variables shown in the model were found to be
significant. Other variables that have been found to be significant in previous studies
include base type (untreated versus treated), slab thickness, joint spacing, and climatic
variables.9, lo It is believed that consideration of these factors when more data are
available will help improve the R 2 of 0.48 and RMSE of 21 cracks/mi. (13 cracks/km)
obtained for the model.

Joint Spalling of JPCP

Joint spalling is defined as a breakdown of the concrete near the joint. Spalling
eventually causes longitudinal profile roughness and user discomfort. Joint spalling can
be caused by several mechanisms, including the following:

• infiltration of incompressibles into the joint over time, causing increased
stresses in hot weather;

• misaligned dowels that create high stress concentration points, which leads
to spalling of the concrete near the joint; and

• concrete durability problems, such as "D" cracking, that lead to
deterioration of concrete near the joint.
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The general procedure outlined in Chapter 6 for model development was utilized to
obtain a joint spalling model for JPCP.

Database, Dependent Variables, and Explanatory Variables

Data from sections from the GPS-3 (JPCP) experiment were used to provide the initial
database. The percentage of low-, medium-, and high-severity spalled joints in a
pavement section, SPALLJP, was the dependent variable used in the model. Those
explanatory variables identified by the experts to be significant that were available in the
LTPP Database were used. The initial explanatory variables that were considered are as
follows:

THICK: slab thickness, in.
PCCSTR: indirect tensile strength of PCC (cores), psi
TYPAGG: type of coarse aggregate in concrete
PCCAGG: gradation of coarse aggregate in concrete

JTEFF: joint load transfer efficiency
JTSPACE: mean transverse joint spacing, ft
JTSEAL: joint seal type (several types exist in the database)
DRAIN: drainage provisions (0 = no subdrainage; 1 = if subdrainage)

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate)
SUBGRADE: subgrade soil classification (0 = fine grained; 1 = coarse grained)
PM200: subgrade soil passing #200 sieve, %

CESAL: cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
AGE: time since construction, years

FI: freeze index, degree-days
DAYS90: number of days temperature is greater than 90*F
PRECIP: average annual precipitation, in.
Fr: number of air freeze-thaw cycles
TRANGE: mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month averaged over year), *F.

There were very little data for several of these variables in the database, which made it
impossible for them to be considered. These included PCCAGG and PM200.
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Data Review and Evaluation

Several of the techniques described previously for the other models were used in a
comprehensive evaluation of the data. This included an examination of the statistics for
each dependent and independent variable. A correlation matrix of the dependent and
independent variables is shown in Table 8.5. Two-dimensional plots of all variables were
prepared and examined. A three-dimensional plot, which shows the relationship between
SPALLJP, AGE, and FT is presented in Figure 8.25. After deleting the sections with
missing data and those with any abnormalities or obvious errors, fifty-six sections
remained for the model development.

Table 8.5. Correlation Matrix for Selected Variables for JPCP Joint Spalling

THICK JTSP&L-_ _ PRI_IP DRAIN lit DAYSg0 DA¥$32 AGE TRANGE SPAIA.JP

'rmcx 1.000 0.127 0.137 0.072 -0.065 -0.084 0.190 -0.104 0.006 -0.082 -0.162

gSt,ACE 0.127 1.000 0.147 0.504 -0.080 -0.136 0.048 -0.227 0.229 -0.197 -0.165

0.137 0.147 1.000 -0.012 -0.155 -0.264 0.339 -0.274 0.414 -0.181 0.111

!,_!, 0.072 0.504 -0.012 1.000 0.262 -0.529 0.067 -0.477 0.091 -0.543 -0.290

DRAIN -0.065 -0.080 -0.155 0.262 1.000 -0.472 0.308 -0.425 -0.248 -0.504 -0.116

rr -0.084 -0.136 -0.264 -0.529 -0.472 1.000 -0.647 0.925 -0.013 0.839 0.330

DAVS_ 0.190 0.048 0.339 0.067 0.308 -0.647 1.000 -0.727 -0.123 -0.448 -0.055

DA¥S._ -0.104 -0.227 -0.274 -0.477 -0.425 0.925 -0.727 1.000 -0.080 0.879 0.264

AGE 0.006 0.229 0.414 0.091 -0.248 "0.013 -0.123 -0.08 1.000 -0.095 0.312

TRANCE -0.082 -0.197 -0.181 -0.543 -0.504 0.839 -0.448 0.879 -0.095 1.000 0.263

st,AJa,n, -0.162 -0.165 0.111 -0.290 -0.116 0.330 -0.055 0.264 0.312 0.263 1.000

Model Building

An examination of the results from the exploration of the data showed that joint spalling
develops slowly over the first few years, and then increases more rapidly with age. Two
models developed from previous studies also show similar results. 9' 10 It is also known
that when age is zero (at completion of construction), joint spalling is zero unless early
joint sawing causes some spalling. Based on expert judgment and evaluation of the data,
several of the explanatory variables were selected for testing. Regression analyses were
conducted with a variety of the techniques previously described to develop the most
useful joint spalling prediction model.

Many of the explanatory variables tested did not show any significance nor did any of the
interactions between them. Where tests showed collinearity between explanatory
variables, one of the variables was eliminated from the model. This often occurred with
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the climatic variables. The observations of the previous two- and three-dimensional plots
indicated that freeze-thaw cycles were not linearly related to SPALLJP. An exponent of
2 was found to provide a best fit for the limited data.

With this information, the following model was developed for transverse joint spalling:

SPALLJP = 9.79 + 10.09.[- 1.227 + 0.0022 *(0.9853 *AGE + 0.1709.FT) 2] (8.6)

where SPALI_JP = predicted mean percentage of transverse joint spalling
(all severities), percentage of total joints

FT = mean annual air freeze-thaw cycles
AGE = age since construction, years

Statistics: N = 56 sections
R2 = 0.335

RMSE = 11.05 % joints

cq

Figure 8.25. Three-Dimensional Plot (SPALLJP, AGE, _ for JPCP Joint Spalling
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Figure 8.26 shows a plot of the predicted versus actual SPALI_JP, and Figure 8.27 shows
a plot of the residuals versus predicted SPALLIP.

Only two variables were found to be strongly related to joint spalling of JPCP. The
results from a sensitivity analysis of the model are shown in Figure 8.28. Both number of
freeze-thaw cycles and age significantly affect joint spalling. The model predictions for
joint spalling are generally consistent with those from previous studies 9' 10. A three-
dimensional plot showing the predicted relationship between joint spalling, number of
freeze-thaw cycles, and age is presented in Figure 8.29.

The model indicates that spalling generally increases slowly at first and then increases
more rapidly after several years. A high number of freeze-thaw cycles will tend to
increase spalling. This is logical since it takes time for the incompressible materials,
which increase compressive stresses in hot weather, to infiltrate the joints. A high
number of freeze-thaw cycles of saturated concrete may also slowly weaken the concrete
near the joints over time, and bring about dowel bar corrosion and subsequent joint
lockup that may contribute to joint spalling.

The model includes only two of the several variables known to affect spalling from
previous studies 9,10. However, it is believed that with an R a of only 0.34 and RMSE of
11%, there is considerable room for improvement of this model as more data become
available.
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Figare 8.26. Predicted SPALL.IPvs. Aetaai SPAI/jP for JPCP
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Figure 8.29. Three-Dimensional Plot of Joint Spalling Model for JPCP

Joint Spalling of JRCP

Joint spalling is defined as a breakdown of the concrete near the joint that results in
loose pieces. Spalling eventually causes longitudinal profile roughness, user discomfort,
and the need for rehabilitation. Joint spalling can be caused by several mechanisms,
including the following:

• infiltration of incompressibles into the joint over time, which in hot
weather can lead to a buildup of stresses when the concrete slabs expand;

• misaligned dowels that create high stress concentration points, which leads
to spalling of the concrete near the joint; and

• concrete durability problems, such as "D" cracking that lead to a
breakdown of concrete near the joint.

The general procedure outlined in Chapter 6 for model development was utilized to
obtain a joint spalling model for JRCP.
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Database, Dependent Variables, and Explanatory Variables

The initial database comprised data from sections of the GPS-4 (JRCP) experiment.
The percentage of low-, medium-, and high- severity spalled joints in a pavement section
(SPAI JJR) was the dependent variable used in the prediction model. The explanatory
variables identified by the experts to be significant were selected for consideration,
provided they were available in the LTPP Database. The initial explanatory variables
that were considered follow:

THICK: slab thickness, in.
PCCSTR: indirect tensile strength of PCC (cores), psi
TYPAGG: type of coarse aggregate in concrete
PCCAGG: gradation of coarse aggregate in PCC

JTSPACE: mean transverse joint spacing, ft
JTEFF: joint load transfer efficiency
JTSEAL: joint seal type (several types are listed in the database)
DRAIN: drainage provisions (0 = no subdrainage; 1 = subdrainage)

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate)
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained)
PM200: subgrade soil passing #200 sieve, %

CESAL: cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
AGE: time since construction, years
PRECIP: average annual precipitation, in.
Fr: mean number of annual air freeze-thaw cycles
TRANGE: mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month averaged over the year), *F

FI: freeze index, degree-days (*F) below freezing
DAYS90: number of days temperature greater than 90" F

There were very little data for several of these variables (e.g., PCCAGG and PM200) in
the database, which made it impossible to consider many of them. Each pavement
section was reviewed to determine if any data were missing. Examples of missing data
included SPALLIR, JTSPACE, and TRANGE data. Sections with missing data could
not be used in the analysis.

Data Review and Evaluation

A comprehensive evaluation of the data was conducted to identify those sections with
data outliers or influential observations. These sections were not deleted at this stage,
but were simply identified as sections with potential errors to be examained further. The
mean, minimum, maximum, and standard deviation of each dependent and independent
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variable were computed and examined. All data were then assembled into a matrix,
sorted several ways, and studied to identify any abnormalities or obviously erroneous
data.

Two-dimensional plots of all variables were prepared and examined. A correlation
matrix that shows the strength of the correlation between all the dependent and
independent variables is shown in Table 8.6. Three-dimensional plots were also
generated to show the relationships between the dependent variable and several of the
selected explanatory variables. One example of the three-dimensional plots is given in
Figure 8.30 that shows the relationship between SPALI_JR,AGE, and TRANGE. There
are a few sharp peaks in the surface that indicated abrupt variations in the data. The
sections causing these unusual peaks or reverse slopes were identified. In the end only
twenty-five sections remained for model development after sections with missing and
erroneous data were deleted.

Model Building

The first step in building the model was to identify the general functional form of JRCP
spalling with time and traffic. Two previous studies show that joint spallin_ develops
slowly over the first few years, and then increases more rapidly with AGE. r'10 It is also
known that when AGE is zero (at construction), joint spalling is zero unless early joint
sawing causes some spalling. Based on this information, expert judgment, and the
previous data observations, several explanatory variables were chosen for testing in this
model. Regression analyses were conducted with a variety of techniques to try to
develop the most suitable model for joint spalling prediction for the sensitivity analysis.
The following briefly describe the techniques utilized in the analyses:

• The explanatory variables were tested to determine their significance in the
overall model. Due to their lack of significance, many were eliminated,
even though they were known from previous studies to affect joint spalling.

• The variables were evaluated to determine the existence of significant
interactions between them, but none of the interactions were found to be
significant.

• Tests for collinearity between the explanatory variables were performed
throughout the model development phase. When such collinearities were
found, one of the variables was eliminated from the model. This was
found to be the case for some of the climatic variables such as FT and
TRANGE. For this model, TRANGE was retained as it was more closely
correlated to spaUing than FT.
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Figure 8.30. Three-Dimensional Plot (AGE, SPALLJR, TRANGE) for JRCP
Joint Spalling.

• The observations of the previous two- and three-dimensional plots
indicated that TRANGE and AGE were not linearly related to SPALLJR.
An exponent of 1.5 for both AGE and TRANGE was found to provide a
best fit to the limited data.

The following model was developed for all severities of transverse joint spaUing of JRCP
based on the data from the GPS-4 sections:

SPALI_JR = - 79.0 + 0.604*(AGE) 15 + 0.129*(TRANGE) 15 (8.7)

where SPALLJR = predicted mean percentage of transverse joint spaUing
(all severities), percentage of total joints

TRANGE = mean monthly temperature range (mean maximum
daily temperature minus mean minimum daily
temperature for each month over a year)

AGE = age since construction, years

Statistics:
N = 25 sections
R2 = 0.644

RMSE = 16.6% joints
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The limited number of sections available for the analysis dearly limits the adequacy of
the model. Although all the variables that were recommended by the experts that were
available in the database were evaluated, only a few were found to be si_ificant. Figure
8.31 shows a plot of the predicted versus actual SPALLJR, and Figure 8.32 shows a plot
of the residuals versus predicted SPALLJR. The results from the sensitivity analysis of
the model are shown in Figure 8.33. Both AGE and TRANGE have a large and
approximately equal effect on joint spaUing of JRCP.

The form of the model shows a curvilinear increase in spalling with AGE and with more
severe temperature conditions (TRANGE). A three-dimensional plot that shows the
relationship among the predicted SPALLJR, TRANGE, and AGE is shown in Figure
8.34. This form of the model is generally consistent with the measured development of
spalling with age in other studies. 9,10

The AGE variable in the model may represent factors such as cycles of climatic changes
such as joint opening/dosing, thermal curling cycles, cold/hot cycles, freeze-thaw cycles,
and progressive corrosion of dowels. The TRANGE variable reflects daily and monthly
temperature ranges to which the pavement is subjected. The higher the TRANGE
(northern US and Canada), the higher the joint spalling. Greater ranges in temperature
generally cause increased joint openings, that increase the infiltration of incompressibles
in cold weather and high compressive stresses in hot weather. TRANGE also correlates
strongly with other thermal variables, including the number of freeze-thaw cycles,
number of days above 90" F (32" C), and the freeze index.

This model includes only two of several variables known to affect spalling from previous
studies. For example, joint seal type and base type were not found to be significant, but
have been found to be significant in other studies. Also, data on concrete durability
were not available in the database, but durability is known to be significant to the
occurrence of D cracking. Joint spacing, which ranged from 13 to 30 ft (4 to 9 m), is
implicitly included in the model, because the dependent variable is expressed as the
percentage of joints spaUed. This means that as the number of joints per mile increases,
there will be more joints that can spall. The R2 of 0.64 and the RMSE of 17% indicate
that there is considerable room for improvement of the model.
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IRI of Doweled JPCP

The IRI is calculated from the longitudinal profile and is reported in units of in./mi.,
m/km_ or cm/km. IRI has been shown to correlate well with the subjective rating of
highway users. An IRI of zero represents a perfectly smooth plane. However, a typical
IRI for new construction is about 26 in./mi. (41 cm/km) which correlates to a Present
Serviceability Index (PSI) of approximately 4.5. A typical IRI of a pavement showing
considerable roughness is approximately 169 in./mi. (267 crn/km), which correlates to a
PSI of 2.5. (An increase in IRI with time after construction is caused by the
development of distresses and also any movement of the foundation.) Thus, IRI is an
indicator of the highway users' response to the pavement and thus to the needs for
rehabilitation based on roughness. The general procedure outlined in Chapter 6 for
model development was used to obtain an IRI model for JPCP.

Database, Dependent Variables, And Explanatory Variables

Data on the doweled pavement sections from the GPS-3 (JPCP) experiment provided the
initial database used in the development of this model. The values of IRI measured
over the LTPP sections were used to represent the dependent variable. The potential
explanatory variables selected for investigation were those identified by the experts to be
significant, provided they were available in the LTPP Database. The initial explanatory
variables that were considered are as follows:

THICK: slab thickness, in.
PCCSTR: indirect tensile strength of PCC (cores), psi
TYPAGG: type of coarse aggregate in concrete
PCCAGG: gradation of coarse aggregate in PCC

JTEFF: joint load transfer efficiency
JTSPACE: mean transverse joint spacing, ft
JTSEAL: joint seal type (several types exist in the database)
EDGESUP: edge support (1 = tied PCC shoulder; 0 = other shoulder types)
DRAIN: subdrainage provisions (0 = no subdrainage; 1 = subdrainage)

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate)

KSTATIC: align subgrade with static backcalculated k-value, psi/in.
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained)
PM200: subgrade soil passing #200 sieve, %

CESAL: cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
AGE: time since construction, years

PRECIP: average annual precipitation, in.
FT: mean number of annual air freeze-thaw cycles
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TRANGE: mean monthly temperature range (mean maximum daily
temperature minus mean minimum daily temperature for each
month averaged over the year), *F

FI: freeze index, degree-days (F) below freezing
DAYS90: number of days temperature greater than 90*F (32"C)

Sufficient data were not available for some variables even though they were expected to
be significant. Examples include PCCAGG and PM200. Examples of other data missing
for some of the test sections include IRI, JTSPACE, CESAL, and TRANGE. Sections
with such data missing could not be used in the analysis.

Data Review and Evaluation

Evaluation of the data was conducted to identify anomalies and errors. Various statistics
of the dependent and independent variables, such as the mean, minimum, maximum, and
standard deviation, were computed and examined. All data were then assembled, sorted,
and studied in several ways to determine any abnormalities or obvious errors. Two-
dimensional plots of all variables were also prepared and examined to determine the
bivariate relationships between selected variables. A matrix that shows the strengths of
the correlations between dependent and independent variables appears in Table 8.7.

Three-dimensional plots that show the trends of IRI with AGE, CESALs, and other
variables were also prepared and examined. One example of such a plot appears in
Figure 8.35 to show the relationship between IRI, JTSPACE, and AGE. There are a
few unusual peaks and reverse slopes in the plot that indicate the existence of abnormal
data. Twenty-one sections remained for model development after the sections with
missing and erroneous data had been deleted.

Model Building

Model building started with an attempt to identify the general functional form of IRI in
relation to time and traffic. Although time series data were not available to identify a
typical functional form for change in IRI, two previous studies on in-service pavements

show that PSI drops somewhat rapidly at first, and then levels out for a lon_ time, which
may then be followed by another rapid drop as severe deterioration occurs." 10.Because
PSI is primarily a measure of roughness, this form was assumed for model building.
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It is also known that immediately after construction when AGE is zero, IRI is not
necessarily zero due to construction variation. Since the initial IRI was not measured for
any of the sections, however, it was not possible to utilize the change in IRI as the
dependent variable. In addition, there is no maximum value of IRI. As a result, the
measured IRI was selected as the dependent variable for the model to be developed.

Based upon expert judgment and previous data observations, several explanatory
variables were selected for testing in the model. Regression analyses were conducted
with a variety of techniques to try to develop the most suitable IRI prediction model for
the sensitivity analysis. The following briefly describes the techniques utilized in the
analyses:

t..................................................................................................................iii>:.
• ....

& 5

Figure 8.35. Three-Dimensional Plot (IRI, JTSPACE, AGE) for JPCP
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• The explanatory variables were tested to determine their significance in the
overall model. Those that were not found to be significant were
eliminated, even if they should logically affect IRI.

• Interactions between the variables were evaluated. One interaction that

was found to be significant was that between AGE and KSTATIC.

• Tests for collinearity between the explanatory variables were conducted
throughout the development of the model. Where such collinearity was
found, one of the variables was eliminated from the model.

• Observations of the previous two- and three-dimensional plots indicated
that KSTATIC was not linearly related to IRI. The relationship was
linearized by using 1/KSTATIC as the independent variable.

With these techniques and regression analysis, the following model was developed for
predicting the IRI of doweled JPCP sections with data from the GPS-3 sections:

IRI -- 105.9 + 159.1 * AGE �2.167*JTSPACE
KSTATIC

(8.8)
- 7.127 *THICK * EDGESUP

where IRI = International Roughness Index, in./mi.
AGE = age since construction, years
THICK = concrete slab thickness, in.
KSTATIC = mean backcalculated static k-value, psi/in.
EDGESUP = 1 = tied concrete shoulder; 0 = any other

shoulder type
JTSPACE = mean transverse joint spacing, ft

Statistics:
N = 21 sections
R 2 - 0.548

RMSE = 19.06 (in./mi.) (30.6 cm/km)

Figure 8.36 is a plot of the predicted versus actual IRI, and Figure 8.37 shows a plot of
the residuals versus predicted IRI for this model. Although all variables recommended
by the experts that were available in the database were evaluated, only a few were found
to be significant. The results of a sensitivity analysis of the model showing the level of
significance of the variables in the model is presented in Figure 8.38. JTSPACE has the
largest effect on IRI of doweled JPCP, followed closely by THICK, EDGESUP, AGE,
and KSTATIC. The form of the model provides for a linear increase in IRI over time.
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According to the model, as joint spacing increases, IRI increases. (This result may relate
to the faulting model for doweled JPCP and JRCP, where increased joint spacing
resulted in increased faulting.) As THICK increases, IRI decreases, perhaps indicating
that thicker slabs develop fewer distresses such as transverse cracking that cause
roughness. The indication that the presence of a tied concrete shoulder, EDGESUP,
results in an increase in IRI is difficult to explain.

AGE probably represents a combination of factors, including traffic loadings and the
effect of cycles of climatic changes, such as joint opening/closing, thermal curling cycles,
and freeze-thaw cycles, on the pavement. AGE may also represent time-dependent
settlements or heaves of the foundation. (No climatic variables were sufficiently strong
enough to appear in the model.) Similar to the results for several of the distress types
such as faulting and cracking, the model shows that a stiffer subgrade, as measured by
the backcalculated KSTATIC, lowers the IRI. A three-dimensional plot showing the
relationship between the predicted IRI, JTSPACE, and AGE is shown in Figure 8.39.

This model for predicting the IRI of doweled JPCP includes several variables known to
affect roughness from previous studies, and the senses of the effects (increase with
variable magnitude increases or decreases the predicted distress) appear logical. There
are, however, several variables that were expected to have an effect that are not
represented in the model, including base type (untreated versus treated) and several
climatic variables. With only an R 2 of 0.55 and a RMSE of 19 in./mi. (30.6 cm/km),
there is considerable room for improvement of this model.

IRI of Non-Doweled JPCP

The IRI for non-doweled JPCP is also calculated from the longitudinal profile and is
reported in units of in./mi., m/km, or cm/km. As in the previous case, the IRI for non-
doweled JPCP has been shown to correlate with the subjective rating of highway users
and thus to rehabilitation needs based on roughness. The development of a model for
predicting the IRI of non-doweled JPCP, with the procedure outlined in Chapter 6, is
described in this section.

Database, Dependent Variables, and Explanatory Variables

The data used for the development of an IRI model for non-doweled sections were
obtained from GPS-3 (JPCP) sections. The IRI measured over the LTPP section was
used as the dependent variable.

The potential explanatory variables for the model were chosen as those identified by the
experts to be significant, provided they were available in the LTPP Database. The initial
explanatory variables that were considered are as follows:
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THICK: slab thickness, in.
PCCSTR: indirect tensile strength of PCC (cores), psi
TYPAGG: type of coarse aggregate in concrete
PCCAGG: gradation of coarse aggregate in PCC
JTSEAL: joint seal type (several types are listed in the database)
JTSPACE: mean transverse joint spacing, ft
JTEFF: joint load transfer efficiency
DRAIN: drainage provisions (0 = no subdrainage; 1 = subdrainage)

EDGESUP: edge support (1 = tied PCC shoulder; 0 = other shoulder types)
BASE: base type (0 = untreated aggregate; 1= treated aggregate)

KSTATIC: static backcaleulated k-value, psi/in.
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained)
PM200: subgrade soil passing #200 sieve, %

CESAL: accumulative 18,000 lb. (80kN) ESALs in traffic lane, millions
AGE: time since construction, years

PRECIP: average annual precipitation, in.
FT: mean number of annual air freeze-thaw cycles
TRANGE: mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month averaged over the year), *F

FI: freeze index, degree-days (*F) below freezing
DAYS90: number of days temperature greater than 90*F (32"C)

There were little or no data for some of these variables, including PCCAGG and PM200,
and these variables were, therefore, not considered in the model development. Review
of the data for individual test sections indicated that data were missing that were
expected to be significant to the predictions of IRI of nondoweled JPCP. Examples of
the variables for which data were missing include IRI, JTSPACE, CESAL, and
TRANGE. Sections missing such data could not be used in the analysis.

Data Review and Evaluation

Various statistical properties of the data were determined and examined. These included
the mean, minimum, maximum, and standard deviation of each dependent and
independent variable to determine their distributions. All data were also assembled,
sorted several ways, and studied to detect any abnormalities or obvious errors.
Two-dimensional plots of all the variables were prepared and the bivariate relationships
were examined. A correlation matrix that shows the strength of the relationship between
all dependent and independent variables is presented in Table 8.8.
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The effects of multiple explanatory variables on the IRI of non-doweled JPCP were also
studied by using three-dimensional plots to display general trends in IRI with two
selected explanatory variables. One example of such a plot is given in Figure 8.40, which
shows the relationship between IRI, PRECIP, and CESAL. The unusual peaks and
reverse slopes in the surface of this plot point to anomalies in the data. The data
causing such abnormalities were identified and closely examined to determine if they
required any special attention. Twenty-eight sections remained for the development of
the model after the deletion of sections with missing and erroneous data.

Model Building

Model development started with an effort to determine the general functional form of
IRI over time and traffic. Since time series data were not available to identify a typical
functional form for change in IRI with time and traffic, the functional form of PSI, which
is closely related to IRI, was used as a starting point. Two previous studies on in-service
pavements show a rapid drop in PSI at the beginning of service and then a leveling off
for a long period thereafter, which may then be followed by another rapid drop as severe
deterioration sets in.9,10 This functional form was assumed for IRI of non-doweled
JPCP.

Because IRI is not zero when AGE is zero (immediately after construction due to
construction) because of construction variation, it was not possible to use the change in
IRI as the dependent variable since the initial IRI was not measured for any of the
sections. Therefore, the measured IRI was selected as the dependent variable for the
model to be developed.

Based on expert judgment and previous data observations, several explanatory variables
were selected for testing. Regression analyses were conducted with a variety of
techniques to try to develop the most appropriate IRI prediction model. The following
briefly describes the techniques used in the analyses:

• The explanatory variables were tested to determine their significance in the
overall model. Those that were not found to be significant were not
considered further, even in cases where the variables were expected to be
significant to the occurrence of IRI.
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• The variables were examined to determine if there were any significant
interactions between them. None were found to be significant.

• Tests for collinearity between the explanatory variables were conducted
throughout the model development phase. When such collinearity was
found, one of the variables was eliminated from the model.

• Observations of the previous two- and three-dimensional plots indicated
that, generally, all the variables were linearly related to IRI.

Through the application of these techniques, the following model was developed for
predicting IRI for non-doweled JPCP sections with data from the GPS-3 pavement
sections:

IRI = 38.85 + 12.89 ,CESAL�0.2217 ,FT + 1.498 ,PRECIP

- 10.96 • BASE - 13.69• SUBGRADE (8.9)
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where IRI = International Roughness Index, in./mi.
CESAL = cumulative 18,000 lb. (80kN) ESAI_s in traffic lane,

millions
PRECIP = mean annual precipitation, in.
FT = mean annual air freeze-thaw cycles
BASE = 1 = treated granular material (with asphalt oement)

or lean concrete; 0 = if untreated granular material
SUBGRADE= 1 = AASHTO classification (A-l, A-2, A-3 coarse

grained); 0 = if AASHTO classification (A-4, A-5, A-
6, A-7 fine grained)

Statistics:
N = 28 sections
R2 = 0.644
RMSE = 31.29 (in./mi.) (50 cm/km)

Figure 8.41 shows a plot of the predicted versus actual IRI, and Figure 8.42 shows a plot
of the residuals versus predicted IRI for this model. The results of a sensitivity analysis
of the model are presented in Figure 8.43. The results indicate that CESAL has the
largest effect on IRI of non-doweled JPCP, followed closely by PRECIP, FF,
SUBGRADE, and BASE. The form of the model indicates a linear increase in 11%1with
cumulative ESALs.

Specifically, IRI increases linearly as CESAL increases. This result is related to the
various distress types such as faulting and cracking that develop with increased traffic
loadings. As PRECIP and FT increase, the IRI increases, which indicates the significant
effects a severe climate has on the deterioration of non-doweled JPCP.

Base type (BASE) affects IRI in that treated bases result in a decrease in IRI in
comparison to untreated bases. Subgrade soil classification (SUBGRADE) also affects
IRI; coarse-grained soils result in a lower IRI over time than do fine-grained soils.
These results support the common belief that better subgrades and bases result in
smoother pavements.

A three-dimensional plot that shows the relationship between the predicted IRI, PRECIP
and CESAL, is shown in Figure 8.44.

Several variables, such as joint spacing, that are known from previous studies to affect
IRI do not appear in the model. The small number of sections (28) that were available
for the development of the model also limited its adequacy. The R2 of 0.64 and RMSE
of 31 in./mi. (50 cm/km) indicate that there is considerable room for improvement of
this model.
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IRI of JRCP

The IRI of JRCP is also calculated from the longitudinal profile and is reported in units
of in./mi., m/km; or cm/km. It also correlates well with the subjective rating of highway
users and therefore is a good indicator of highway users' response to the pavement and
of rehabilitation needs based on roughness. The general procedure outlined in Chapter
6 for model development was utilized to obtain an IRI model for JRCP.

Database, Dependent Variables, and Explanatory Variables

Data from the GPS-4 (JRCP) sections of the LTPP Database were used to form the
initial database for the development of this IRI model. The IRis measured over these
sections were used to represent the dependent variable.

The explanatory variables identified by the experts to be significant to the IRI of JRCP
were selected for consideration, provided they were available in the LTPP Database.
The initial explanatory variables that were considered are as follows:

THICK: slab thickness, in.
PCCSTR: indirect tensile strength of PCC (cores), psi
TYPAGG: type of coarse aggregate in concrete
PCCAGG: gradation of coarse aggregate in t'CC

JTEFF: joint load transfer efficiency
JTSPACE: mean transverse joint spacing, ft
JTSEAL: joint seal type (several types are listed in the database)

PSTEEL: percentage of longitudinal reinforcement, percentage of area
EDGESUP: edge support (1 = tied PCC shoulder; 0 = other shoulder types)
DRAIN: subgrade provisions (0 = no subdrainage; 1 = if subdrainage)

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate)

KSTATIC: static backcalculated k-value, psi/in.
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained)
PM200: subgrade soil passing #200 sieve, %

CESAL: cumulative 18,000 lb. (80kN) ESALs intraffic lane, millions
AGE: time since construction, years

PRECIP: average annual precipitation, in.
FT: mean number of annual air freeze-thaw cycles
FI: freeze index, degree-days (*F) below freezing
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DAYS90: number of days temperature greater than 90°F
TRANGE: mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month averaged over the year), °F

There were little or no data for several of these variables, such as PCCAGG and PM200;
therefore, these could not be considered in the development of the model. The data for
each section were also reviewed to determine if any data expected to be significant were
missing. Examples of such missing data for some of the sections include IRI, JTSPACE,
CESAL, and TRANGE. Sections with such missing data could not be used in the
analysis.

Data Review and Evaluation

Evaluation of the data consisted of examination of the mean, minimum, maximum, and
standard deviation of each dependent and independent variable to determine its
distribution. The data were then assembled into matrix form, sorted several ways, and
studied to determine any abnormalities or obviously erroneous data. The bivariate
relationships between all the variables were also studied with two-dimensional plots. A
correlation matrix obtained to show the strengths of the correlations among all the
dependent and independent variables is presented in Table 8.9.

Three-dimensional plots were used to visualize the general trends of IRI with several of
the explanatory variables. Figure 8.45, which shows the relationship between IRI,
PRECIPS, and AGE, is one example of these plots. With such plots, unusual peaks and
reverse slopes that correspond to atypical data were investigated. Thirty-two test sections
remained for the model development after sections with missing and erroneous data had
been deleted.

Model Building

The first step in building the model was to identify the general functional form of the
IRI of JRCP over time and traffic. Similar to the other IRI models for the other
pavement types, the known functional form for PSI was used as a basis. In two previous
studies on in service pavements, PSI was shown to drop somewhat rapidly at first and
then level out for a long period, which may then be followed by another rapid drop as
severe pavement deterioration occurs.9'10

It is also known that when AGE is zero at construction, the IRI is not zero due to
construction variation. The initial IRI was not measured for any of the sections and,
therefore, could not be used in the model development. Based on all these
considerations, the measured IRI on the pavement sections was selected as the
dependent variable to use in the model.
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30
Figure 8.45. Three-Dimensional Plot (IRI, PRECIP, AGE) for JRCP

Several explanatory variables were chosen for testing based on the results of expert
judgment and previous data observations. Regression analyses were then conducted with
a variety of techniques to relate the explanatory variables to the predicted I_. The
following briefly describe the techniques utilized in the analyses:

• All the explanatory variables were tested to determine their significance in
the overall model. Those that were not significant were deleted.

• Several interactions between variables were evaluated, but none were
found to be significant.

• Tests for collinearity between the explanatory variables were conducted
throughout the model development phase. When such collinearity was
found, one of the variables was eliminated from the model.

• Observations of the previous two- and three-dimensional plots indicated
that KSTATIC was not linearly related to IRI. The relationship was
linearized by using 1/KSTATIC as the independent variable.

Based on using these techniques and the data from the GPS-4 sections, the following
model was developed for predicting IRI for JRCP sections:
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IRI = -141 + 0.849 * AGE + 0.347 * PRECIP + 1390

i 1 ]* * THICK + 15.1 * EDGESUP (8.10)
KSTATIC

where IRI = International Roughness Index, in./mi
AGE = age since construction, years
THICK = concrete slab thickness, in.
KSTATIC = mean backcalculated static k-value, psi/in.
PRECIP = mean annual precipitation, in.
EDGESUP = 1 = tied concrete shoulder; 0 = any other shoulder

type

Statistics:
N = 32 sections
R2 = 0.78

RMSE = 9.86 (in./mi.) (15.6 cm/km)

A plot of the predicted 1RI based on this model versus actual IRI is shown in Figure
8.46. Figure 8.47 shows a plot of the residuals versus predicted IRI. The results of a
sensitivity analysis of the model are shown in Figure 8.48. THICK has the largest effect
on IRI of JRCP, followed closely by KSTATIC, EDGESUP, AGE, and PRECIP. The
form of the model shows a linear increase in IRI over time.

The specific trends shown by the model include an increase in IRI when slab thickness
increases. While this may seem illogical, one possible explanation may be that the
thicker slabs in the GPS-4 database may have been constructed rougher originally.
According to the model, the presence of a tied concrete shoulder increases the IRI
slightly, which may also be related to initial construction.

AGE probably represents a combination of factors, including traffic loadings and the
effect on pavements of cycles of climatic changes such as joint opening/closing, thermal
curling cycles, and freeze-thaw cycles. IRI is shown to increase with time, or AGE. One
climatic variable, PRECIP, also showed a sufficient effect to be included in the model.
As PRECIP increases, IRI increases.

The model indicated that the stiffer the subgrade, as measured by the backcalculated
KSTATIC, the lower the IRI. This result correlates with models developed for several
key distress types that showed that stiffer subgrades resulted in decreased faulting and
cracking. A three-dimensional plot that shows the relationship between the predicted
IRI, PRECIP, and AGE is presented in Figure 8.49.
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The model developed for predicting the IRI of JRCP includes several variables that are
known from previous studies, to affect roughness and the senses of these effects (increase
in variables increases or decreases IRI) were consistent with results from previous
studies. However, there are several other variables, including base type (untreated
versus treated) and climatic variables, missing from the model that were expected to
have an effect on IRI.

IRI of CRCP

The IRI for CRCP is calculated from the longitudinal profile and is reported in units of
in./mi., m/km, or era/kin. The IRI for CRCP has also been shown to correlate well with
the subjective rating of highway users and is a good indicator of highway users' response
to the pavement and, consequently, of rehabilitation needs based on roughness. The
general procedure outlined in Chapter 6 for model development was used to obtain an
IRI model for CRCP.

Database, Dependent Variables, and Explanatory Variables

Data for the GPS-5 (CRCP) sections in the LTPP Database were used to provide the
initial database. The IRis measured over the sections were available to represent the
dependent variable.

The potential explanatory variables that were selected for consideration in the model
were those identified by the experts to be significant, provided they were available in the
LTPP Database. The initial explanatory variables that were considered are as follows:

THICK: slab thickness, in.
PCCSTR: indirect tensile strength of PCC (cores), psi
TYPAGG: type of coarse aggregate in concrete
PCCAGG: gradation of coarse aggregate in PCC

JTEFF: joint load transfer efficiency
PSTEEL: percentage of longitudinal reinforcement, % area
EDGESUP: edge support (1 = tied PCC shoulder; 0 = other shoulder types)
JTSEAL: joint seal type (several types are listed in the database)
DRAIN: subdrainage provisions (0 = no subdrainage; 1 = if subdrainage)

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate)

KSTATIC: static backealeulated k-value, psi/in.
SUBGRADE:subgrade soil classification (0 - fine grained; 1 = coarse grained)
PM200: subgrade soil passing #200 sieve, %

AGE: time since construction, years
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CESAL: cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions

PRECIP: average annual precipitation, in.
FT: mean number of annual air freeze-thaw cycles
FI: freeze index, degree-days (*F) below freezing

DAYS90: number of days temperature greater than 90*F
TRANGE: mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month averaged over the year), *F

Among these variables, were several for which little or no data were available in the
database, which made it impossible for them to be considered in the model development.
These included PCCAGG and PM200. Data for test sections in the initial database were

also reviewed to determine if any sections had data missing that were expected to be
specific. Those test sections with such data missing could not be included in the model
development. Examples of such missing data included IRI, PSTEEL, CESAL, and
TRANGE.

Data Review and Evaluation

Evaluation of the data in the database included examination of the distribution of each
dependent and independent variable. This included an examination of the values of
various statistics for the variables, including the mean, minimum, maximum, and standard
deviation. The data were also assembled into matrix form, sorted several ways, and
studied to identify any abnormalities or obvious errors. Two-dimensional plots of all
variables were also used to examine the bivariate relationships between them. A
correlation matrix that shows the strength of the relationship between all the dependent
and independent variables is presented in Table 8.10.

Several three-dimensional plots were generated to help visualize the general trends
between IRI and various combinations of the explanatory variables. An example of a
three-dimensional plot that shows the relationship between IRI, PSTEEL, and AGE is
presented in Figure 8.50. From such plots, the data causing unusual peaks and reverse
slopes were identified for further examination. Forty-two sections remained for the
model development after the sections identified to have missing and/or erroneous data
were deleted.
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Model Building

As with the other models, the first step in model building was the identification of the
general functional form of IRI with time and traffic. Since IRI and PSI are correlated
and previous studies9'10on in-service pavements have shown the functional form of PSI
with time and traffic, this equation form for PSI was used as the basis for this model. 9'10
The previous studies indicated that IRI drops rapidly at first, then levels off for a long
period, and may then drop rapidly again as severe deterioration occurs.

That IRI is not zero when AGE is zero at construction is also true for CRCP. Since the
initial IRI was not measured for any of the sections, it was not possible to utilize the
change in IRI as the dependent variable. Based on these considerations, the measured
IRI on the pavement sections was selected as the dependent variable to use in the model
development.

From the list of potential explanatory variables selected by the experts to be significant
and the previous data observations, several explanatory variables were chosen for testing.
Regression analyses were conducted, with a variety of techniques to attempt to develop
the most suitable model for IRI prediction for CRCP. The following briefly describe the
techniques utilized in the analyses:

• The explanatory variables were tested to determine their significance in the
overall models, and those that were determined not to be significant were
eliminated from consideration.

• The interactions between the variables were evaluated, but none were
found that could be considered in the model to be developed.

• Tests for collinearity between the explanatory variables were conducted
throughout the development phase. When such collinearity was found
between a pair of variables, one of the variables was eliminated from
consideration.

• The two- and three-dimensional plots were studied, and these studies
indicated that all variables to be considered in the model were linearly
related to IRI and did not need to be transformed.

Based on these principles, the following model was developed for predicting the of
CRCP with the data from the GPS-5 test sections in the LTPP Database:
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IRI = 262 + 1.47*CESAL - 2.94 *THICK - 232.3 *PSTEEL

- 29.8 *WIDENED - 16.8 *SUBGRADE (8.11)

where IRI = International Roughness Index, in./mi.
CESAL = cumulative 18,000 lb. (80kN) ESALs in traffic lane,

millions
PSTEEL = percentage of steel (longitudinal reinforcement), %
THICK = concrete slab thickness, in.
WIDENED = 1 = widened traffic lane; 0 = normal width traffic

lane
SUBGRADE= 1 = AASHTO classification is A-l, A-2, or A-3 (i.e.,

coarse grained); 0 = if AASHTO classification is A-4,
A-5, A-6, or A-7 (i.e., fine grained)

Statistics:
N = 42 sections
R2 = 0.546
RMSE = 17.19 (in./mi) (27 cm/km)
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Figure 8.51 shows a plot of the predicted versus actual IRI, and Figure 8.52 shows a plot
of the residuals versus predicted IRI. The results of a sensitivity analysis of the model is
shown in Figure 8.53. PSTEEL has by far the largest effect on IRI, followed by
SUBGRADE, WIDENED, CESAL, and THICK. The form of the model provides for a
linear increase in IRI with time. No climatic variables were sufficiently significant to be
included in the model.

According to the model, as the percentage of reinforcement increases, the IRI decreases
considerably. Increased reinforcement holds cracks tighter which reduces the number of
punchouts. The number of punchouts has been strongly related to the percentage of
reinforcement in other field studies. 9'10 A coarse-grained subgrade soil type
(SUBGRADE) results in a lower IRI in comparison to a fine-grained soil, and a
widened lane reduces IRI. Increasing traffic (CESAL) results in an increase in IRI, and
thicker slabs decrease IRI. A three-dimensional plot that shows the relationship between
predicted IRI, CESAL, and PSTEEL is presented in Figure 8.54. All of the effects and
trends indicated by the model are correct in sense (increases in explanatory variable
increases or decreases the dependent variable).

The IRI model developed for CRCP includes several variables known to affect roughness
from previous studies. However, there are additional variables that are known to affect
IRI that are missing from the model. Examples include base type (untreated versus
treated) and several climatic variables. With an R 2 of only 0.55 and a RMSE of 17
in./mi. (27 em/km), the model has considerable room for improvement.

Summary of Sensitivity Analysis Results for PCC
Pavements

Table 8.11 lists the rankings for individual explanatory (independent) variables, in terms
of relative sensitivities, for each of the ten separate models and sensitivity analyses. One
column indicates the number of models for which a specific explanatory variable was
found to be significant. The far right column gives average rankings, with a rank of 8
arbitrarily assigned for cases when the variable was not found to be significant. The
numbers of explanatory variables ranged from 2 to 6 per model, with a mean of 4.1, so
the assigned priority had to be greater than 6. As there could be other relatively
nonsignificant variables having stronger impacts on the occurrence of distress, the value
of 8 appeared logical.

The independent variables are listed below in order of combined rankings. One list is
based on average rankings, and one is based on number of models in which the variable
was included (in the case of a tie, the other ranking basis was used to order the two
variables):
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Ranking Ranking by Number
by Average of Models Found Simlificant

Age Age
CESALs CESALs
Slab Thickness Slab Thickness
Static k-Value Static k-Value
Precipitation Precipitation
Joint Spacing Edge Support (Tied Shoulders)
Percentage of Steel Joint Spacing
Edge Support (Tied Shoulders) Percentage of Steel
Annual Freeze-Thaw Cycles Annual Freeze-Thaw Cycles
Type of Subgrade Type of Subgrade
PCC Flexural Strength PCC Flexural Strength
Monthly Temperature Range Monthly Temperature Range
Widened Traffic Lane Widened Traffic Lane
Freeze Index Freeze Index
Dowel Diameter Dowel Diameter
Subdrainage Subdrainage
Type of Base Type of Base

As can be seen, the rankings are almost identical for both methods. However, this set of
rankings does not tell the whole story, because the rankings are very dependent on type
of pavement and type of distress. Conclusions drawn from the sensitivity analyses (and
partially from past experience) are presented below:

Related Comments and Observations for JPCP

• The use of sufficiently sized dowels for the traffic loadings (the larger the
dowel diameter, the less faulting) will ensure that faulting will not become
si_ificant and cause severe roughness. Dowel use is particularly important
for heavy traffic in cold and wet climates. Thicker slabs by themselves do
not reduce faulting significantly. Longitudinal subdrainage will help reduce
faulting of non-doweled joints. A tied concrete shoulder will reduce
doweled joint faulting.

• Increased slab thickness has a strong effect on reducing transverse slab
cracking and providing a smoother JPCP (lower IRI) over time.

• Provision of increased subgrade support, as indicated by the backcalculated
k-value, results in a lower IRI and a smoother pavement. Increased
support over an existing soft subgrade would likely require either treatment
of the soil or a thick granular layer over the subgrade.
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Table 8.11. Significance Rankings for Explanatory Variables, by Distress Type and
Pavement Type, for PCC Pavements

•,-. o "_ "_ _ _ _ _ "_ _

Explanatory ;_ "oU _ _ _ _.,° .,° _ .._ _ _ Z
Variables

CESALS 1 1 3 1 4 5 5.0

Joint Spacing 2 1 2 6.7

Age 3 2 2 1 4 4 6 _4.8

Static k-Value 4 1 5 2 4 5.9

Dowel Diameter 5 1 7.7

Edge Support 6 3 3 3 6.8

Precipitation 3 4 2 5 4 6.2

Freeze Index 4 1 7.6

Longitudinal 5 1 7.7
Subdrainage

Slab Thickness 1 2 1 5 4 5.7

PCC Flexural 2 1 7.4

Strength

Percent Steel 2 1 2 6.7

Annual Freeze- 1 3 2 6.8

Thaw Cycles

Monthly Temp. 2 1 7.4
Range

Type of Subgrade 4 2 2 7.0
(Granular or

Clay)

Type of Base 5 1 7.7
(Treated or
Untreated)

Traffic Lane 3 1 7.5

(Widened or Not)

Note: Empty cells are considered as 8 for averaging
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• Use of shorter slabs for JPCP will reduce the amount of joint faulting and
transverse cracking and will result in a smoother pavement (lower IRI)
over time.

• Specification of durable concrete in freeze climates is desirable, so that
freezing and thawing and other climatic factors do not result in significant
joint spalling.

Related Comments and Observations for JRCP

• The use of sufficiently sized dowels for the traffic loadings (the larger the
dowel diameter the less faulting) will ensure that faulting will not become
significant and cause severe roughness. A tied concrete shoulder and
shorter joint spacing also help to reduce joint faulting.

• The use of an increased percentage of longitudinal reinforcement will help
control the deterioration of transverse cracks.

• Increased subgrade support will result in fewer deteriorated transverse
cracks and a smoother pavement (lower IRI). Increased support over an
existing soft subgrade would likely require either treatment of the soil or a
thick granular layer over the subgrade.

• Shorter JRCP slabs will reduce the amount of joint faulting.

Related Comments and Observations for CRCP

• Increases in the percentage of longitudinal reinforcement will provide a
smoother CRCP (lower IRI) over time. The increased percentage of steel
reduces the amount of punchouts and the deterioration of transverse
cracks.

• Increased subgrade support will result in fewer deteriorated transverse
cracks and a lower IRI (smoother pavement). Increased support over an
existing soft subgrade would likely require either treatment of the soil or a
thick granular layer over the subgrade.

• A widened traffic lane will provide a smoother CRCP (lower IRI) over
time.

• Increased slab thickness will result in somewhat smoother CRCP (lower
IRI) over time. This is probably due to fewerpunchouts as a result of the
thicker slab.
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General Discussions of Results From Sensitivity Analyses

The constraints imposed on the results that could be expected from these sensitivity
analyses have been previously discussed in considerable detail in the Introduction and
other locations throughout the previous chapters. While those planning for the
sensitivity analyses knew that the timing of these first analyses critically reduced the
utility of the database, it was hoped that the distribution of ages would partially offset
the lack of adequate time sequence data and help to explain the curvatures in the
relationships. This hope proved to be at least partially satisfied, even though few of the
equations derived can be claimed to be highly reliable.

A general discussion of the results in the sensitivity analyses is presented below.

Limitations of Sensitivity Analyses Imposed by Database
Limitations

Because there is a substantial discussion in Chapter i under "Analytical Limitations
Resulting From Data Shortcomings," those limitations previously discussed are only listed
below:

• The values of cumulative equivalent single axle loads (ESALs) were simply
estimates from State Highway Agencies (SHAs), and are not believed to be
very reliable.

• Initial roughness in terms of the International Roughness Index (IRI) had
to be estimated for hot mix asphalt concrete (HMAC) pavements. This
was done by using the estimated values of initial Pavement Serviceability
Index (PSI) in an equation, developed by the World Bank.s
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• There was generally only one measurement of each distress for each test
section, plus an initial estimated or assumed value. For all distresses
except roughness, it could be assumed that the distress was zero at the time
the pavement was opened to traffic. Two values are generally not enough
to explain the curvature in the relationships; however, as mentioned
previously, we also had the advantage of the ages of the pavements at the
times the distresses were observed being distributed reasonably over twenty
years (see Figure 1.3).

• At the time the data arrived, important inventory data were missing for a
number of test sections. When reasonable values could not be inferred,
these test sections had to be omitted from the analyses.

• There were not enough test sections displaying some types of distress to
support effective model development. In general, only data from test
sections displaying a distress of interest were included in the analysis
database for that distress type.

• There were not enough overlaid pavements for which the condition prior to
overlay was known to support model building and sensitivity analyses.
Consequently, these data were only used to evaluate existing design
procedures (see SHRP-P-394, Early Analyses of LTPP General Pavement
Studies Data. Evaluation of the AASHTO Design Equations and
Recommended Improvements).

• It was intended that current knowledge be integrated into the process by
use of mechanistic clusters of variables in the regression equations, but this
plan was thwarted by a lack of layer stiffness data, which was required for
the development of the mechanistic clusters.

• Test sections had not been found for all the cells within the sampling
templates, which tends to introduce biases.

It is probable that any missing inventory data that can be obtained is now in the
database, because Quality Assurance/Quality Control procedures have been developed
and applied to identify such deficiencies, and the regional offices have been instructed to
obtain and enter the data wherever possible. However, the test sections that could not
be used because of missing data are identified in SHRP-P-684, Early Analyses of
General Pavement Studies Data, Data Processing and Evaluation of this report; efforts
may be made to obtain the missing data, or perhaps decisions can be made to eliminate
the test sections if it is believed that this lack of data will unacceptably limit the sections
use in future analyses.

Some of the mising data are easily determined, such as joint spacing for jointed concrete
pavement (JCP) and other data that can simply be measured in the field. For those test
sections missing deflection data, these data are now available for all or virtually all the
test sections.
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The research staff was able to deal with some of the problems of missing inventory data.
For instance, tables from the Asphalt Institute 13were used to approximate asphalt
viscosity when the asphalt grade was known. In a few cases where data on base densities
were not available, it was assumed that they were compacted at 95% of modified
American Association of State Highway and Transportation Officials (AASHTO)
compaction.

It became obvious early in the development of the predictive equations that adequate
equations could generally not be developed on the basis of the overall inference space
(the U.S. plus part of Canada). For most of the distress types studied for HMAC
pavements, there were sufficient test sections to allow development of limited regional
models. These were typically more accurate than the models based on all the data.
Unfortunately, there were really not enough portland cement concrete (PCC) pavement
test sections that had both sufficient data and the distress types of interest to allow
development of regional models.

For HMAC pavements, only 14 to 27% of the test sections in the analysis databases
rested on clay subgrade (see Table 9.1), so there is a bias toward pavements on granular
subgrades. Studies should be initiated for the individual analysis databases to study
distributions of test sections within the sampling templates that could be used for the
separate analyses (pavement type and distress type combinations). Entries could be
made on the sampling template factorial of interest to indicate for each cell whether its
test section(s) were on clay or on granular subgrades. Such a study would display the
degree of the bias and identify cells where test sections with clay subgrades should be
sought. Such plots would display other biases as well.

Table 9.1. HMAC Pavement Test Sections With Clay Subgrade
Within Databases Used for the Analyses

Distress Numbers of Test Sections % With

Type of Pavement Type Clay Subgrade
Total Clay Subgrade

HMAC Over Rutting 152 33 22
Granular Base

Change in IRI 108 26 24

Full-Depth HMAC Rutting 44 8 18

Change in IRI 33 6 18

HMAC Over Transverse 118 17 14

Granular Base and Crackln£
Full-Depth HMAC

HMAC Over Rutting 49 10 20
Portland Cement-

Treated Base Change in IRI 37 10 27

Transverse Cracking 35 8 23
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In summary, a number of the data limitations experienced during this early data analysis
will not seriously constrain future analyses. As time passes, time sequence data on the
occurrence and severity levels of distress will accumulate, substantial traffic monitoring
will tend to improve the estimates for ESALs, and the availability of data for the Specific
Pavement Studies (SPS) projects will enhance the databases. It is also hoped that some
additional General Pavement Studies (GPS) test sections will be selected and brought
into the studies to reduce biases in the databases. Unfortunately, some test sections may
continue to be unusable when significant inventory data are missing.

Reliability of Results

Tables 9.2 through 9.6 have been prepared to provide the pertinent statistical values for
the various predictive equations developed for use in the sensitivity analyses. For the
data available, the development of these equations was limited to statistical linear
regressions for the sensitivity analyses. It is almost certain that better models could have
been developed if the research team was free to use nonlinear regression techniques.

It can be seen by reviewing the several tables that the coefficient of determination (R2)
varied for flexible pavements from 0.33 to 0.75 for the entire data set. Those for rutting
varied from 0.41 to 0.54. Those for AIRI range from 0.62 to 0.75, and the one for
transverse cracking was the lowest at 0.33. As discussed previously, these equations were
not considered sufficiently reliable, so data sets were developed for the four individual
environmental zones and were regressed separately.

The R2's for the regional models for rutting varied from 0.55 to 0.81. The R2's for AIRI
varied from 0.81 to 0.93, and those for transverse cracking varied from 0.72 to 0.83.
While a number of these models appear very promising, it must be remembered that the
RMSE shown is for the common log of the distress. As explained early in Chapter 7, the
confidence interval for these equations is quite broad. Consequently, the research team
has not recommended that these early equations be used in design procedures or
pavement management systems. However, it may be worthwhile to use them to check
pavement structure designs obtained by other means and to use them in pavement
management systems as placeholders when more reliable predictive equations are not
available.

The statistics for the PCC pavement predictive equations appear in Table 9.6. Because
the number of test sections with usable data was considerably less for the PCC
pavements than for the HMAC pavements, the research staff did not have the luxury of
developing regional models, but instead had to try to explain the variations in distress
caused by environmental variables, and their interactions with other variables, across the
entire United States and part of Canada. Consequently, the R2's are somewhat lower for
these models, varying from 0.34 to 0.78. Although these models cannot be claimed to be
very reliable, they may also be useful for checking designs developed by other means and
serve as placeholders in pavement management systems.
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Table 9.6. Statistics for Predictive Equations for PCC Pavement
Distress, Developed for Sensitivity Analyses

Pavement Type Distress Type N R 2 RMSE

JPCP & JRCP Joint Faulting 59 0.53 0.028
With Dowels

JPCP & JRCP Joint Faulting 25 0.55 0.047
Without Dowels

JPCP Transverse Crack N/A N/A N/A
Deterioration

JRCP Transverse Crack 27 0.48 20.8
Deterioration

JPCP Joint Spalllng 56 0.34 11.0

JRCP Joint SpaUlng 25 0.64 16.7

JPCP With Dowels IRI 21 0.55 19.1

JPCP Without IRI 28 0.64 31.3
Dowels

JRCP Without IRI 32 0.78 9.9
Dowels

CRCP IRI 42 0.55 17.2

Note: N = No. of test sections in data set, R2 is not the adjusted R2, and
RMSE = root mean square error.

N/A = Not Applicable

Actions Recommended to Repair Limitations in the LTPP
GPS Database

Because of the late arrival of the data, not all the planned studies could be accomplished
within the time available. In addition, hindsight has produced some ideas for improving
the data for future analyses. The following recommendations propose subsequent work
to improve the database:

• Carefully review the data deficiencies for those test sections that could not
be used for these analyses. If the data have since been obtained or can be
obtained, eliminate the deficiency so that the data for these test sections
can be used in future analyses.
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• Evaluate those test sections for which apparently critical data cannot be
obtained to see if the available data are sufficient for any anticipated
research. If a test section does not have the critical data, consider
eliminating it from the studies.

• In recognition of the fact that the databases of primary interest are those
that can be used for specific analyses, separate all available data into data
sets by pavement types and environmental zones. These data sets can then
be used for more detailed studies in terms of specific data required for
specific analyses; e.g., those that exhibit specific distresses or those with
mix designs with various characteristics. Observe the distributions of the
significant data elements within these data sets to determine if the data
sets are adequate for the desired analyses. SHRP-P-684, Early Analyses of
General Pavement Studies Data. Data Processing and Evaluation of this
report contains numerous plots that indicate distributions for specific GPS
experiments and environmental zones. While these aren't the exact data
sets that were used, they will be useful to a study such as that proposed
here.

• Use plots similar to the sampling template factorial plots for the various
data sets so that the gaps in the factorials can be studied to decide where
additional test sections are needed.

• Consider the test sections that have been built, and to the extent possible
those that will be built, for the SPS, and add them to the factorials for the
GPS before seeking to fill gaps in the GPS. The data for the SPS should
be much more complete, because they will not depend on old SHAs
records, and a more detailed materials testing program will be applied.

To summarize, it is recommended that the period between this data analysis and the next
major data analysis be used to rectify deficiencies in the data and to conduct further
limited analyses to improve the products from these early studies. Some examples of
useful analyses follow:

• Based on the layer modulus data that were not available for these studies,
apply the mechanistic variable clusters that the research team was unable
to use for this analysis and nonlinear regression techniques to develop
improved predictive equations. Monitoring data from an additional 3 or so
years could be included to reap the benefits of time sequence data.

• Utilize mechanistic responses from models such as MICHPAVE '4 that was
used by the Michigan SHA in its data analyses along with other data, to
develop mechanistic-empirical models. Such regression models that include
mechanistic responses can be used in combination with mechanistic
response models, or regression models that have been developed from
response models, to predict the occurrence of distress.
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• Utilize the data available in existing mechanistic-empirical distress models
to identify deficiencies and to improve or calibrate these models to provide
more reliable predictions.

The implementation of the recommendations offered above will likely lead to other
useful studies and applications.

221



10

Summary and Conclusions

The steps leading to the sensitivity analyses, the process of developing suitable models
for sensitivity analyses, the procedures for conducting the sensitivity analyses, and the
results from the sensitivity analyses have been discussed in detail in the preceding
chapters. The limitations for the results and their causes have also been identified and
discussed. The Long-Term Pavement Performance (LTPP) studies are indeed long-term
and improved analytical results can be expected in the future. The question at this time
is; How can these results be used to benefit the highway community? The purpose of
this chapter is primarily to identify potential benefits from these early analyses.

Use of Sensitivity Analysis Results by the Highway
Community

It should be noted again that the results from the sensitivity analyses, like load
equivalence factors, depend heavily on the predictive equations from which they are
derived. Therefore, it is important to determine whether these predictive equations
reasonably represent the performance of pavement structures while those structures are
subjected to the traffic loadings and the environment in which they exist. Are the
independent variables those that truly control the occurrence of distresses in pavements?
If so, are the equation forms sufficiently realistic? If so, are the relative sensitivities of
the independent variables themselves realistic? These questions probably cannot be
answered precisely, but part of their answers can come from a review of the results in
light of previous studies and experience.

Review of Chapters 7 and 8 indicates that the relative rankings of sit,nificance for the
various distresses and pavement types are generally logical in terms of past studies and
experience. While there is no doubt that the relative magnitudes of the sensitivities have
been affected by the inevitable biases in any database such as this, they are believed to
be generally reasonable.
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There have also been cases where independent variables were not found to be
significant; however, other studies have indicated that they were significant. There were
also some mild surprises, but some of them had logical explanations. An example of
such a surprise, is that it became apparent during the analyses that increasing hot mix
asphalt concrete (HMAC) air voids decreased predicted rutting. This finding was not
expected and caused considerable consternation until it was understood that the
inference space included few pavements with really high air voids. Thus, it did not mean
that 10% air voids will minimize rutting, but that air voids in the order of 5 to 7% offer
better access for air flow within the pavement, compared to lower air voids, which in
turn stiffen the mix and reduce rutting. This result has been reported in other studies as
well.

If one can reach the conclusion that individual models are reasonably reliable for
predicting the occurrence of the distress of interest, then the relative sensitivity rankings
indicate where more or less emphasis should be placed in mix design, structural design,
and construction control. For instance, the results for the portland cement concrete
(PCC) studies indicate rather dearly that dowels should be used for jointed concrete
pavements. Similarly, inspectors should strive to avoid overcompaction, as well as
undercompaction, of HMAC mixes.

The results from these sensitivity analyses can be compared to results from previous
studies to either corroborate that in-service pavements respond as expected from
previous studies or experience, or that the relative significance of specific independent
variables differs from that of current experience and past studies. In the latter case, the
differences may point to other fruitful research to explore the differences.

Use of Linear Regression Distress Models for Design
and/or Pavement Management

As previously stated, the development of the distress models was constrained by both
data limitations and the requirement that the models be statistically linear for use in the
sensitivity analyses. Consequently, they are not recommended for general use in design
or in pavement management systems. However, the design procedures used by many
highway agencies deal only with composite indices, such as the Present Serviceability
Index considered in the American Association of State Highway and Transportation
Officials (AASHTO) design procedures. As maintenance, repair, and rehabilitation
decisions are more often based on the distresses noted in the pavements, it appears that
it would be useful to check such pavement structure designs against predictions of
specific distresses. If a pavement thickness design and planned construction control
appear to suitably limit the occurrence of distresses over the design life, then confidence
in the design tends to increase. If the predictive equations indicate that the pavement
structure will not limit specific distresses to an acceptable level over the life of the
pavement, designers can look into this aspect in more detail until they are satisfied with
the reliability of the design or make changes to limit the predicted distress. This
approach also provides experience for future design procedures, which are expected to
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include consideration of several distress types rather than just one composite index.

It is recognized that the distress models for many pavement management systems do not
include all these distresses or may be based on even less reliable predictive models. In
these cases, it may be worthwhile to insert these distress models into the system as
placeholders until better models are available.
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Appendix A: Preliminary Identification of Data Elements to Be

Included in P-020 Sensitivity Analyses of Pavements

With Asphalt Concrete Surfaces (March 19, 1991)

There are some 117 data elements that may be entered into the National Information
Management System (National Pavement Data Base) for pavements with flexible surfaces.
It is necessary to considerably reduce the number of variables (data elements) from the 117
available in order to develop meaningful performance prediction equations and reasonable
estimates of relative significance of the independent variables to occurrence of specific
distresses (dependent variables). The approach adopted for preliminary elimination of
insignificant variables was to obtain relative significance rankings from experts in pavement
performance modeling. A table that lists the 117 data elements as rows and the six
distresses for study as columns is attached. Space was provided to enter a significance
ranking for each of the 117 data elements with respect to each of the six distresses. Space
was also provided to enter the other data.element numbers con.sidered to be correlated with
each specific data element.

The voluminous forms (11 pages) were filled out by Dr. Witczak, Dr. Mahoney, Dr. Baladi,
Dr. Rauhut and Mr. Von Quintus. Data elements that were considered to be of importance

_to the occurrence of the distress in question, in the opinion of the rater, were marked with
a "1". If considered to be moderately significant, a "2"was entered. If a data element was
considered to have little or no significance to the occurrence of the distress, a "3" was
entered. The five ratings were averaged for each box, and the average rating of significance
entered on the attached set of forms, entitled "Significant Variables and Their Relative
Importance to the Significant Distresses for Pavements with Asphalt Concrete Surfaces".
Those boxes that are hatched are those that have been tentatively selected to be of sufficient
significance that they should be included in the analysis, subject to the inclusion of one or
more other data elements that are expected to provide sufficient correlation to allow
"explanation" of essentially the same portion of the variation. Therefore, it is not expected
that aU of the data elements hatched will necessarily be included individually in the analysis
if other data elements are included that are closely correlated.

The general approach that was used for selecting the data elements to be hatched was as
follows:

1. AU boxes with an average score of less than 2 were included.

2. Data elements with a score of 2 were included in some cases but not in others

on the basis of judgement.

3. No data elements with a score greater than 2 were included.

None of these decisions are final and different combinations of data elements may be tried
to achieve the best results possible. The 1i-page table attached provides the results of this
study, and has been further marked up to provide additional information for GPS
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Experiment 1, Asphalt Concrete Pavements Over Unbound Base. Note that: a number of
boxes have been crossed out. This is to eliminate boxes involving overlays or bound base
or subbase that are not included in GPS-1. The set of codes and some notes have been

included on the right side of the forms to indicate relative importance (criticality) and
source from which the data will be forthcoming. These codes are identified below:

CL Critical - Available from Lab results

CI Critical - Only available from Inventory Data

CT Critical -Available from Traffic Data

IC Important, but can be "explained" by other correlated variables indicated
by No.

NC Noncritical

DU Sufficient data not available - have to obtain the data from SHA's or rely
on correlations to other data elements.

CM Critical- Available from Monitoring Data

CE Critical - Available from Environmental Data

The forms have been further marked up to indicate the following:

1. Percentages have been provided in the left hand margin for a number of
the data elements to indicate approximately the percent of test sections
for which that data has been provided. This is very important because
data elements cannot be included if it is missing for the majority of test
sections in an experiment.

2. A check mark in a box representing a data element and a significant
distress indicates that the current expectation is that that data element
will be included in the study for that distress.

3. An "X"in the box indicates that we do not expect to have enough data for
consideration of that data element for the distress indicated.

4. A "C" in a box indicates that this variable is tentatively expected to be
represented by one or more other correlated variables, even though it
may be available. As an example, asphalt grade (data element 25) and
penetration (data element 29) are expected to be represented by viscosity
of the asphalt cement (data element 28). Although each could reasonably
be used to represent either of the other two, it is believed that viscosity
is the more meaningful variable, and it can be estimated from the other
two.

An analysis of these results has been summarized in another table entitled, "Evaluation of
Numbers of Data Elements for GPS Experiment 1 that will be Available and will be Used
for Contract P-020 Data Analysis". In this table, numbers of test sections in various
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categories (availability, correlation, etc.) appear as rows and the six distresses to be studied
appear as columns. The first row describes the number of significant data elements for each
of the distresses. These are found by simply counting the hatched boxes for a particular
distress in the relative significance forms. The second row indicates the number of
significant data elements that will not be available in sufficient numbers. Specific data
elements can be identified as they have an "X" in the box. The third row indicates a
maximum number of significant data elements available for analyses, arrived at by
subtracting the second row from the first.

The fourth row includes the estimated number of variables with correlation to other

variables that will not be included in the analyses. These can be identified as a "C"appears
in these boxes.

The fifth row indicates the number of deflection data elements not to be used for the P-020

analyses (even though rated as significant). Deflection data is not being included because
it would amount to duplication as major deflections are the consequence of the other
characteristics of the pavement structure that are included. The sixth row provides a
number of data elements expected to be used for the P-020 analyses, arrived at by
subtracting the fourth and fifth rows from the third row.

A separate row has been included at the bottom of the table to indicate the number of the
missing data elements that are believed to be sufficiently correlated to other data elements
that their absence would not have a significant effect on results. Fortunately, most of this
missing data will be sufficiently correlated with other available data elements for four of the
distresses, while other correlated data is not available for friction loss or ravel-
ing/weathering.

The information provided above can be usefully summarized for identification of specific
data elements of inventory data that must be available for a test section to have value for
the analyses (critical data elements). Data elements that are expected to be available in
sufficient quantity for reasonable use are listed below to indicate the expected source of the
data:

1. Critical data elements available from material sampling and testing: 1-13, 22,
41, 42 (air voids after traffic), 68, 72, 73, and 79.

2. Critical data elements available from inventory data: 14, 28, (or 25 or 29), 42
(initial air voids), and 113.

3. Critical data element available from National Traffic Data Base: 15.

4. Critical data elements available from environmental data: 89, 90, 91,102-107.

This leaves a number of critical data elements that may be available for some test sections,
but not in sufficient numbers to support the analyses. Some of these are expected to be
represented to a reasonable level by correlations to other data elements. Those expected
to be adequately "explained" are listed below, with the data elements that are expected to
"explain" their effects:
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Expected

Data Element _ Degree of
Number Correlated With Correlation

16, 18 22-24 and 8 Adequate

25, 29 28 Adequate

32 28 Reasonable

33 28 Limited

34 28 Adequate

35 28 Reasonable

36 28 Adequate

37 28 Limited

43-45 8, 22, 41 and 42 Adequate

51 8, 22, 25, 41, and 42 Adequate

52 42 Adequate

66, 67 9, i0, 57 Adequate

69, 70 13, 68, and 79 Adequate

81-83, 85, 86 68, 72, 73, and 79 Adequate

We have now accounted _r most of _e cfific_ dam dements, leaving a _w _at we could
certainly use. The absence of some of _ese is not exp_ted _ gr_fly affect the
development of per_rmance equations 0n_oduce error in equations), but those not
included can not be ev_uated dirtily as to sensitivity of predictions _ _or variations. The
_sence of a _w will have serious impacts _r some dis_esses. These remaining dam
elements are listed brow, with indications as m _e expected effects of their absence on the
_yses _r sp_ific dis_esses:

Data Element Level of

Number Effect Distress Type(s)

19 (Type of Mineral Filler) Nominal All

20 (Aggregate Durability) Serious Friction Loss and

Raveling/Weathering
Nominal Other 4 Distresses

21 (Polish Value of Coarse Serious Friction Loss

Aggregate) Nominal Other 5 Distresses

30 (Type of Asphalt Modifiers) Nominal Friction Loss
Moderate Other 5 Distresses

31 (Quantity of Asphalt Nominal Friction Loss

Modifiers) Moderate Other 5 Distresses

49 (Moisture Susceptibility) Nominal Friction Loss
Moderate Other 5 Distresses
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It can be seen from the discussions above that the expectation is that a reasonable array of
data elements will be available for the sensitivity analyses for all of the distress types of
interest, except for friction loss. Two of the most important variables, polish value and
aggregate durability, will generally be missing, leaving only age of pavement, cumulative 18-
kip ESAL, geological classification of coarse aggregate, and type of environment to explain
variations in skid measurements.

Review of the data elements indicates a few data elements that should be available, if a test
section is to prove very useful in the analyses. Those from inventory data believed to be
necessary are listed below with the distress type for GPS-1 for which each is believe to be
required:

Data Element Distress Types

Number Description Necessary For

14 Age of Pavement All

17 Geological Classification For Friction

of Coarse Aggregate Loss (Unless
Polish Value

is Available)

20 Aggregate Durability Raveling/

Weathering and
Friction Loss

(Unless Polish
Value is Avail-

able)

21 Polish Value of Coarse Friction Loss

Aggregates

25,28, or Asphalt Grade, Viscosity, or Alligator Crack-

29 (One of Penetration ing, Transverse

these) Cracking, and

Rutting

30, 31 Type and Amount of Asphalt Alligator Crack-

Modifiers (if a modifier was ing, Transverse

used in sufficient quantity Cracking, and

to seriously affect asphalt Rutting
cement characteristics)

For GPS-2, other data elements describing bound base and subbase layers may also be
critical as follows:

Data Element Distress Types
Number Description Critical For

60, 61 Type and Percent of Stabil- Transverse

izing Agent Cracking
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For GPS-6 and GPS-7, data elements characterizing asphalt concrete (described above)will
also be necessary for the overlay layer.

Considering the necessary data elements identified above in the previous three paragraphs,
age of pavement will virtually always be available, although some may have used dates for
original construction rather than for the overlay (GPS-6 and GPS-7). If geological
classification of coarse aggregate is missing, this can likely be obtained from the State
Highway Agency (SHA) or through observation of extracted aggregate in the laboratory.

Data on aggregate durability or polish value of coarse aggregates may not be available in
project files, but local SHA personnel may be able to approximately relate other data for
other projects to the project of interest, based on their knowledge of local materials in use.

Data on asphalt grade, viscosity, or penetration will generally be available. If it is not in
project files, local SHA personnel may know what asphalt grade was specified or in common
use at the time of construction.

Data on type and amount of modifiers may be difficult, if not available in project files, but
this data should be pursued if there is reason to think a modifier was used.

Where a bound base is known to exist, the type of stabilizer at least should be identified.
This can probably be ascertained by inspection in the laboratory. Amount of stabilizer
would be good to have, but likely could be omitted without serious consequence, if the type
is known.

Similar evaluations can be made for Experiments GPS-3, GPS-4 and GPS-5. Drs Darter
and Owusu-Antwi are conducting similar evaluations on these experiments to establish
relative significance of data elements.
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Appendix B

Technical Memorandum by Dr. Robert L. Lytton, March
31, 1992, "Clusters of Terms Relevant to Pavement
Performance Prediction"
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TECHNICAL MEMORANDUM

PROJECT: Contract SI-IRP 89-P-020 DATE: March 31, 1992
Data Analysis

DISTRIBUTION: Dr. Robert Raab, Dr. Brent Rauhut, Dr. Michael I. Darter, Dr.
Emmanuel Owusu-Antwi, Dr. Olga Pendleton, Dr. Bill Hadley, Dr. Gil
Baladi, and Dr. Peter Jord_hl

AUTHOR: Robert L Lytton

SUBJECT: Clusters of Term_ Relevant to Pavement Performance Prediction

The prediction of pavement performance has been found empirically to be related to the
"primary responses" of the pavement such as deflection and strains at specific points in the
pavement. This is information that is known from previous studies and experience that
should be carried forward into all future studies. Knowledge such as this can be used to
make the task of developing future models of pavement performance much more efficient.
In this memorandum, the use of relations taken from mechanics to make up terms that
predict deflections and str:_in_will be illustrated and the cluster_ of terms that result can be
used as super, single variables in further regression analysis studies. This reduces the
number of pavement sections on which data needs to be collected, reduces the number of
independent variables in the regression equations, and best of all it makes use of what we
already know.

Approximate Layered Elastic Theory

Odemark's assumption can be used to good advantage in this endeavor. Odemark found
that in predicting pavement deflections of a multilayered pavement, a simplification could
be used which transformed the layers of different materials into one layer of the same
material. The thickness of the equivalent layer is h_given by:
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h.;c E" _

where: c - 0.9
n " 1/3

= the thickness of layer i.
= the Young's modulus of layer L

E, = the reference modulus. It can be selected to be the modulus of
any layer.

]as = the equivalent thickness of the reference material.

If layers on top of a subgrade with modulus, E, , are all convened into equivalent
thicknesses of subgrade material, then the Boussinesq equations may be used to calculate
the deflections, Stralrt_, or stresses at any point in a pavement.

The Boussinesq equation for the deflection, _, of the surface of a half-space with a Poisson's
ratio of 0.5 is:

3PA -
4_tEs r

where P = the load
r = the distance 2t is from the load

The vertical str_;n beneath the load in the center of each layer m_y be est;m_ted using a
combination of the Odemark assumption and the Boussinesq equations. The equation is
ofthe form:

where

i-1

_ - 2 IE,) j., tz_)

_i" = the Odemark - transformed distance to the center of each layer
from the surface.

a = the df_meter of the loaded area.
q = the Imiform pressure on the loaded area (typical units: lbs/in. 2)
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The equation for the Strain may be rewritten as:

[
An estimate of the shearing stmln at a radius, r, and depth, z, below the surface is:

4 _ E L-_-j

where, in thi_ case, _ is defined differently as:

z_ = the Odemark transformed distance to the bottom of layer i
from the surface.

I,E,)

and R_ = r2+ _=
r = the radius from the center of the tire load.

Thi._shearing strain is zero on the surface where r = z = 0 and is usefitl in estimating the
fatigue life of the pavement surface. The number of load cycles to reach failure due to the
propagation of a crack by shearing strains should be inversely proportional to the m_tTimllm

value of the shearing strain that occurs at the bottom of the surface layer, that is, for a
specific zi, where:

- 0
Or

This occurswhere:

2

That is where:

_ = *2r
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Before intoning a regression analysis on fatigue it will be necessary at first to determine the
value of r for which

and then to determine the value of the shearing strain, -fi, corresponding to it.

The equation for the deflection of a one-layered pavement resting on a rigid base is:

P
A - c_

e,H

where c = a constant of proportionality.
H = the th/ckness of the layers above the rigid base.

The equation for the deflection of a multilayered pavement above a rigid base is:

P
A = c

where I = thenumberoflayers

These simple equations give the form of the equation and the proper relationship among
the variables,and becauseof thistheyare veryvaluablein determl-l-g the correct dusters
of terms that relate a primary_response of a pavementto the load, layer thicknessesand
modulion which it depends. Regressionanalysiscansupply the value of the constant, C.

If it is assumed that rutting is due to:

1. Vertical compression and,

2. Horizontal displacement

in each layer, then more mechanistic terms may be added to the previous work. The forms
of equation for vertical compression have already been worked out above.
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Forms of equations for horizontal displacement are worked out below. Let us advance the
hypothesis that the permanent horizontal displacement in each layer is proportional to the
ma_ml,m shearing str, i- at the center of each layer. The shearing str, l= is given by

au
-- m 4"& ar

Displacements in a half-space

u - 2x E r Ib" (t R3'

P (1+o)[z._ a + 2(1-o)"w = 2_ E R

R = (: +z_)_ R3 = (: +z_)_

Ifu = I/2,then (I-2u)= 0 and

3P rz
U -

4_E R3

]4/ -- +
4_E

r 3r_ 2]_ 3p J;'4Tz
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_, + _ 3P I_- 3r_2 r 3rz=]
- _ or = 4_ LR_ Rs Rs Rsj

Another useful set of relations comes from beam-on-elastic foundation theory. For ez.mple,
the ma_mnm moment in a beam beneath a -n;form load of length, a, is:

M_._ - 2_ 2

where q = the uniform load (example units: lbs/ft)
a = length

a

l!!!l!!!qi
hl 15.I

l h2 E2
'V'

///,<" ",,,\_ / ,_\ \'

Es
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EI = the flexural sti_ess of the pavemem per unlt width.

,-, t' i_ + E,h,

¢1i = the centroidal distance of each layer from the neutral axis of
the layers above the subgrade.

l = n,lmber of pavement layers above the subgrade.

d = the distance to the neutral axis of the pavement from the
surface.

E E,h, +E
= I-I j-I

l

E E,h,
1,.1

_, aI = 2 h_2
h:

= _-h,-_-_ etc.

The bending strain at the bottom of the top layer is:

6 M.,..
_1 -

All of these equations provide relations among the load, tire pressure, cfiameter of the
loaded area, layer thicknesses and moduli which are dictated by mechanlcs to predict the
primary responses of deflection, strain and stress of a pavement. Regression analysis will
provide the "scale factors" which ]ink these primary responses to the different types of
distress and deterioration in pavements.
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Material Property Relations

Several useful material property relations have been found from previous studies in
pavements and other materials. The studies have been in the areas of creep, fracture, and
permanent deformation of materials. The relations will be presented here without the
derivations.

In a creep test, a stress is applied to a material and held constant at ao while the str,in
changes with time, e(t). The quotiem of the two is D(t), the creep compliance. This
response of practically all materials of which pavements are built has been found to obey
a power law:

¢(t) - D(O = DO + D1 t"
0 o

where DO = the "elastic" or glassy part of the compliance.
D 1 = the constant related to the t/me-dependent part of the

compliance.
m = the creep compliance exponent.

It has been found from fracture mechanics that the fatigue exponent, normally called K2, is
proportional to 2/m.

Furthermore, it has been found that the permanent deformation exponent, _, is given by
l-re. Other useful relations have been found which include m, the creep compliance
exponent. Thus, it is useful to have a way of est/mating it.

In asphaltic concrete, the greater the amount of asphalt that fills the voids in the mineral
aggregate, the higher is the creep compliance exponent, m, which ranges between 0 and 1.
It is never larger than L0. These facts may be used to estimate m. The block diagram of
asphalt concrete is used for this purpose.

Volnrnetric Weight
Q_tities Qta_ties

Voln_e ofAir V_ Air

Vob_rncofAsphalt "9'. Asphalt W, Wei_htofAsphalt

Vol-me of Solids V, Solid W, Weight of Solids
(Aggregate)

Total Vob,me V W Total Weight
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VMA - V_ + V_, = Voids in the Mineral Aggregate

An estimate of m is the ratio of the volume of asphalt to the vol-me of voids in the mineral
aggregate, given by:

w, y,
m -

where: wa = asphalt content by weight
_/a = unit weight of asphalt
"ft = density of asphaltic concrete
V_r = air voids, decimal, (Va/VMA)

All of these data axe recorded in the SHRP LTPP data base for each pavement section.

For base course and subgrade materials, the exponent of the creep compliance, m, has been
found to depend upon the volumetric contents of the solids and water, according to the
relation drawn from the rule of mixtures.

m = 0.02 O_+ 0.60 O_

Os - V' the volumetric solids content

v.- the volumetric water content
Ow V"

These cannot be determined uniquely without knowing the water content, w, and the specific
gravity of the solids, G,.

_w
0 w -

l+ w

1
0s =

and thus,

0.02 + 0.60 G_ w
/It =
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The fatigue coeff/cient, K1,has been found from fracture mechanics to be proportional to:

l_r_
hi 2

Kz__
A

and the f_acture coefficient, A, has been found proportional to:

1
A _,

0 t E I 3

where a t = the tensile strength of the fatig_,ing material
s = the speed of travel

Thus, the fatigue coeffident, K1, is found to be proportional to:

1___
hi 2 ot2 $

The fatigue exponent, I_ as stated previously, is proportional to 2/m, and thi_ allows the
use of appro_mation of "In"that was developed previously:

:2 +(t+w.)y.
= C_=¢

m w. Yt

where c = a regression coefficient to be determined.
w,, % % V_ = asphaltic concrete quantities that have been defined

previously.

The permanent deformation exponent, a, for the asphalt layer is:

(l+w.)Ya Va#o: = 1-m = c
w, Yt + (l+w_ ¥, V_

where c = a regression coefficient to be determined.

258



The permanent deformat/on exponent, a, for base courses and subgrades is:

o.98_.4o G_ w
_=l-m=C

I+G. w

where c = a regression coeffident to be determined.
G=, w = soft quantifies previously defined.

The permanent deformation coeffident'/_, has been found to be proportional to:

_. = (1-=) (At)_-=

where At = the loading t/me, i.e., the time duration during which a point on
the pavement is stressed by a moving load.

The loading time may be est/mated by:

d
At = --

$

where d = the length of a deflection basin (approx. 10-20 feet).

s = the speed of traveL

Thus, the permanent deformation coeffident' _, is given by:.

.:
where c = a regression coefficient to be determined.

_, d, s = quantities that have been defined previously.
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Pavement Performance Prediction Models

The kinds of pavement performance that need to be predicted include:

Alligator Cracking
Rutting
Damage due to the loss of serviceability index

Alligator Craekin_

The n-tuber of load cycles to failare by alligator cracking is generally considered to be
inversely dependent on the bending strain at the bottom of the asphalt layers, although
recent results from fracture mechanics indicate that the maximum sheafing strain may be
more responsfble. In either case, the number of load cycles to failure, Nf, is considered to
be given by:

or

Rutting

The rate of increase of permanent strain in each layer of a pavement due to repeated wheel
loads is considered to be proportioned to the resilient strain according to the rule:

- (tt N ') - e,ON

where e. = the permanent strain
N = the number of load cycles
• r = the resilient vertical strain

= the permanent strain coefficient
a = the permanent strain exponent
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The vertical compression of each pavement layer is:

Nl-_t
Pz : I_ e_ hz

1-%

where Pi = the contn'bution of layer i to the total vertical compression of
a pavement.

e_i : the resilient vertical Strain in each layer.
hi. = the thickness of each layer.

The total vertical compression is:

P = Pt = l__t1-1 1,,1

The rate of increase of the permanent lateral displacement in each layer is assnmed to be
of the same form.

1 _,

y aN

_G
- y(r) I_N'"

aN

where: -f, = the permanent shear strain
"_(r) = the resilient shearing strain at a horizontal distance, r, from the

center point of load application.

The lateral shear flow in layer i is given by:

fo':"' oN oo fo

_vl-g

: hi 1-,* f:"_ y(r)dr
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= h, 4-- j fo:* rdr(r2+z2:a

where: a = the radius of the loaded tire footprint area

hi _'* dr = hi - --
aN 1-a 2xE [(rl+a)2 + _3rz z_

The mt depth due to this lateral shear flow is proportional to it so that

Ya *" ar

where: w, = the acc-mulated vertical displacement due to lateral shear flow.

y, dr . _,,

f, r'_*rt ya dr = _ ''_+rt-o J,-o dwa = wa (a+ri) - wa(O)

For each layer, the increment of rut depth is proportional to

3P ht
A RDta_,,a/tow *_ 2_rE 1-a [(r, + a 2) + z_ 3tz

and the total mt depth due to lateral flow is proportional to

3P

RDtattrat_'w" 2_ _-1 _ m _

If P = _ q a 2 then
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Because the permanent strain coefficient, _i, is approximated by

ij.,= c(l-cO (._)'-"

another expression for the rut depth due to lateral flow is

+ �0�Damage

In general, damage is normalized distress, beginning at 0.0 and reaching an unacceptable
value when it reaches 1.0. The loss of serviceability index is usually treated in thlg way.

Pt - p(N)
g(N) -

p_ - pt

where g(N) = damage ratio
Pi = the initial serviceability index
Pt = the terminal serviceability index

p(N) = the current level of serviceability index

The damage ratio is considered to increase with the number of load cycles, N, and the
deflection of the pavement under load:

g(N) =

where .o,fl = regression coefficients

Clu_ter_ of Terms for Pavement Performance Prediction

Assembling all of the information that has been presented thus far permits the development
of equations descn'bing pavement performance and including chlsters of term_ that are
dictated by what we have learned in mechanics.
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Alligator Cracking Clusters

The wlmber of load cycles to failure, Nf, is given by:

where c_, _ c3, and c. axe regression coefficients

The regression equation by which these coefficients axe determined is:

log N! ffi log ca + c2 log (xx) + ¢3/_ log Cx.z) + c+ T log (x_

where

x 1 = h1 o) s

h,EyEp
x2 =

qall2

1

'(h24+E t
P,I

The terms xt, x2, and x3axe the clusters of terms which are appropriate to use in predicting
the -:'amber of load cycles, Nf, to reach a specific level of alligator cracking.

If the max/mum stlearmg strain criterion is used to relate to the number of load cycles to
reach failure, the equation to be used is:

N/
£,_ q a: "+zO"r'_r" %) J
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where cl, ca,ca, and c4axe regression coefficients to be determined. The regression equation
to be used for thi_ purpose is:

logN/ =logc I + czlogx I + c3/Czlog_ + c4K_logx 3

where the cluster variables xl, xz, and x3 axe:

x 1 = h1 o2ts as before

16 s,
-

3 E1trz hiwz q a :2

x3 --
(r" +zi)a + r °z,(r" +zi)

r" = the radius at which the shearing strain, % is maximum at the
transformed depth, z i.

(R'._2 = (r') 2 + (z.02

The value of K z to be used in either of these expressions is:

r.,--
Wo Yt

where wa = the asphalt content, by weight (decimal)
Vm = the air voids (decimal)
7a = the unit weight of asphalt cement
")'t = the density of asphalt concrete
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Rutting Clusters

The regression equation for predicting rutting due to vertical compression is of the form:

/_ = q P
1,,1

or

/w =c1+c 2
i=1

In either form of equation, the term qr.p i represents the sum of the contributions to the total
rut depth of each of the layers. When it is written out to show the cluster terms, it is as
follows, in the preferred logarithmic form:

{ h' (-_)1-"'[(_2 +a2)atz-_3"]} c_

RD

The _i used in this equation is different from the zi used in the fatigue equations. Here, the
_. is the transformed depth to the center of layer i.

The regression equation that is used to determine the coefficients c_ and c3 is:

logRD =logc 2 + c31ogx_

In this case, the single variable, xl, is composed of the sllrn of clusters of terms, each duster
being related to one layer in the pavement. In other words,

xI = q[yl +y2+y3 + ....+y_]
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where q = the tire pressure

Yl E1 i"z_ 2": a-2)_

Ys - h, [.( z'z?._.+a:')3_- z's3]

The terms d, N, s, a, hi, and E i have been defined previously, except for the term, h s, the
depth of the subgrade. Technically speaking this depth should be infinite and would imply
an infinite depth of rutting. Since the rut depth is limited to the observed value, t_ (one
value for all sections) must be selected to be a finite value which represents the depth within
which significant rutting occurs in the subgrade.

However, it can also be used as a trial-and-error non-linear regression coefficient, altering
hs between regression r_m._to find the value that max_miT.esthe R2 and mlnimi_es the sllm
of squared errors between the observed and predicted values.

The form of the equation for rut depth due to lateral flow, when written out in the preferred
logarithmic form is

RD = C4 qa2_ _ +a +_z

i-1 l_t

The regression equations that is used to determine the coefficients C4 and Cs is

log RD = logC 4 + C5 logx 2
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In this case, the single variable, x2, is composed of the sum of clusters of terms, each cluster
being related to one layer in the pavement. In other words,

x2 = qa 2 ItI + t2 + t3 + ......... + ts]

where

q = tire pressure

a = radius of tire footprint

t2 - /r2
+a +_2 2

_h.(_)1__.I _ __11
Combinations ofthe two models can be made by simply adding together the Yi "terms and
the az ti - term-¢. An example of this would be

xl = q[Yl + Yz + Y3 + a2 (tl +t2+t3)]

Different combinations of the Yi- terms and the a2 t_ - terms may be tried to determine
which provides the best fit to the data.
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Serviceability_Loss Damage Clusters

The amount of damage to pavements represented by a loss of serviceability index from its
initial value, Pi, to its present value, p, is:

Pt - P
g -

Pl - P,

The damage ratio, g, is considered to be proportional tO the product of N, the number of
load cycles, and the deflection under the load, A. The equation for serviceability index
damage may be of the power law form or the exponential form.

g = (lower Law)

g = c • (_ponentiaO

In the exponential form, the coefficient, c, is [PJPi - P,] and the coeffidents # and _ are to
be found by regression analysis in both form_ of equation. In the power law form, the
regression equation is:

_g = pV.x 1 - i_wp

In the exponential form of equation, the regression equation is:

The single variable is x1which, when written to show the dusters of terms is:

Nq a 2
xl -

E,E h,
'll _Z')
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Here, as with the case of rutting, a depth of subgrade must be assigned, or may be found
by a trial-and-error, non-linear regression analysis method. It is also possible, by having
values of g corresponding to several values of N for a single pavement, that unique values
of p and _ may be determined for that single pavement. By determining values of p and

for a collection of pavements, regression equations for p and _ which incorporate the
layer thicknesses and moduli of the pavement may be developed.
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Appendix A
Clusters due to Environmental Effects

Effect of Temperature

The moduli or the strength of materials E0,E 1, ....Ej ..... all depend upon temperature
as follows:

Ej = E_ T-,_- E'oT"

where

E_ = the datum modulus or strength

If the temperature varies, the modulus varies, and the average modulus is:

q = number of time periods

define the mean temperature by the relation:

P q k-1 r2
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Thus, the mean temperature is:

1 _ l_x-_ 1 "_

Thi_ form of mean temperature equation needs to use a temperature datum that is below
the lowest temperature that the pavement will experience.

1
T =

This value of T can be used in any regression equation where temperature affects the
stir'hess or strength of the material.

Another mean temperature relevant to rutting centers around the fl'eezing point of water
where the strength of soil material goes nearly to zero when thawing occurs.

or

The rutting or permanent _train or deflection that occurs is inversely proportional to the
strength.

1

sj

_ 1

k=l bl $_ (Tt-32)"

q 1
c E

RDj- Sa/ t--l (Tt-32)"
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The average temperature factor, ct, is given by

- 1
a =

k-, (Tk 32)"

Effect of Rainfall and Climatic Moisture

As the rainfall increase_, the strength and stiff'hess of a moisture susceptible material
decreases. Thus,

= e,y(Ro-.- z,vc

where

Rk = the mount of rainfall in t/me period, k

Eai = the datum modulus (or strength) for layer j

Ejk = the modulus (or strength) for layer j and t/me period k

The mean modulus (or strength) is

q k-_ R_

The mean rainfall is

= 1

If monthly moisture balance is used to represent the dlm:_tic moisture and includes both
rainfall and evapo - tran_iration such as in the computation of the Thomthwaite Index, the
calculations follow the same pattern as before.

E,j._ = Ed/ (Tk- Td)-"
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where

T k -- the monthlymoisturebalance

Td = thedatum moisturebalancewhichislowerthanany other
moisturebalanceamount.Itwillusuallybenegative.

The mean moisturebalanceis

_- = 1

(rk r.)"

If what is to be represented has the strength or stiffness in the denominator, the average
temperature, r_infall, or Thornthwaite Index moisture balance term to be used will be
somewhat different.

where q = the re,tuber of time periods
Ea = the datum modulus or strength

The mean value of the temperature in this case is obtained from

--Tn 1 _-_ T_

I

q k-1

and
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Appendix C

Technical Memorandum by Dr. Michael I. Darter and Dr.
Emmanuel Owusu-Antwi, July 10, 1992, "Identification of
Mechanistic Variables and Clusters for Concrete
Pavement Distress Models"
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INC. Education • Research • EngineeringServices

TECHNICAL MEMORANDUM

TO: Robert Raab, Brent Rauhut, Robert L. Lytton

FROM: Michael Darter, Emmanuel Owusu-Antwi
P020 Contract, ERES Consultants, Inc.

DATE: July 10, 1992

SUBJECT: Identification of mechanistic variables and dusters for concrete
pavement distress prediction models

INTRODUCTION

This memorandum identifies the mechanistic variables and clusters of variables

that are believed to be related to three concrete pavement distress types including
transverse cracking, faulting of doweled joints and faulting of non-doweled joints. The
mechanisms of other distress types are not as well known and, thus, prediction must be
approached in a more empirical manner through conventional regression techniques,
although some potential explanatory mechanistic variables may be included in these
models to the extent possible.

Some Definitions As Used In This Memorandum

Dependent variable- pavement distress, such as transverse cracking and joint
faulting.

Independent variable- any individual item such as slab thickness, concrete
strength, mean annual temperature and number of single axle loadings of a
certain weight.

Primary response variable- a mechanistic type variable such as slab stress, strain,
or deflection; and horizontal opening and closing of joints/cracks.

ERES Consultants,Inc. 8 DunlapCourt Savoy,Illinois61874-9501

Telephone(217)356-4500 FAX (217)356-3088
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Cluster- a mathematical combination of two or more independent variables such
as slab bending stress (a mathematical combination of slab thickness, k-value,
wheel load, modulus of elasticity, etc. Note that stress is also a primary response
variable.), the ratio of modulus values of successive layers (El/E2), joint load
transfer, concrete bending stress/strength, or joint opening/closing from
temperature changes.

Mechanistic-Empirical (M-E) distress prediction model- a mathematical model
relating a particular distress to one or more primary response variables, clusters
and/or other variables. The functional form and boundary conditions are based
upon past knowledge of theoretical studies and field observations of the distress,
and the variables and clusters included in the model are based on knowledge of
the engineering mechanics behind the distress phenomena. The unknowns (or
constants) are derived from regression techniques using in-service highway
pavement performance data.

Goals For The Predictive Models And Background Information

Main goal: to maximize the possibility that a predictive model will accurately
predict the development of distress over a wide range of conditions in as much of a
cause-and-effect relationship as possible. To achieve this, the following model
characteristics are desired:(3)

• Correct overall functional form with time (age) and traffic applications.

• Proper boundary conditions at minimum and maximum points (e.g., at
minimum point, 0 traffic gives 0 faulting).

• Proper direction of all variables (must not contradict the principles of
engineering mechanics).

• Ideally, the independent variables included should be related to the
distress in a cause-and-effect sense so that the models have as much of a

rational scientific foundation as possible (this is the subject of this memo).

The independent variables included in the models are extremely important.
Ideally, these variables should include one or more primary response variables (stress,
strain, deformation) in a cause-and-effect relationship.

For example, transverse cracking in a concrete slab is believed to be related to the
magnitude of tensile stresses caused by traffic load, thermal curling and other causes.
However, slab cracking is also known to be related to other factors such as concrete
strength and the number and magnitude of stresses applied. The exact relationship
between the stress magnitudes, number of stress applications, the concrete strength and
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the occurrence of cracking is obviously a very complicated mechanism and theory has
not yet completely explained all of the mechanisms involved.

This is where field data becomes very valuable in bridging the gap between the
limitations of theory and actual cracking as observed in the field. After the functional
form and boundary conditions have been determined and the individual variables and
dusters of variables have been identified, regression techniques are used to "calibrate"
a prediction model (or solve for one or more constants using the field data). This M-E
type model will have then some "built-in" scientific basis and may well provide better
predictions outside of the relatively narrow inference space that the database provides.

PAVEMENT TYPES AND DISTRESSES

The SHRP LTPP P020 contract includes the development of predictive models for
key distress types for three types of conventional concrete pavements:

Jointed plain concrete pavement (JPCP)

Transverse cracking, all severities
Longitudinal cracking, all severities
Pumping/erosion
Roughness, IRI
Friction loss

Joint faulting (doweled and non-doweled joints)
Joint spalling

Jointed reinforced concrete pavement (JRCP)

Transverse cracking, medium/high severities
Longitudinal cracking, all severities
Pumping/erosion
Roughness, IRI
Friction loss

Joint faulting (doweled joints)
Joint spalling

Continuously reinforced concrete pavement (CRCP)

Localized failures (punchouts, deteriorated transverse cracks)
Longitudinal cracking, all severities
Pumping/erosion
Roughness, IRI
Friction loss

Spalling of cracks
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Previous research studies have determined that some of these distress types are
related to "primary response variables" such as stresses, strains and deflections at specific
points in the concrete slab (e.g., edges, comers, dowel/concrete interface). In addition,
past research studies have also identified some of the mechanisms involved in their

development. For these distress types, this knowledge will be very helpful in identifying
the variables and mechanisms involved in formulating the M-E predictive models.

Distress Types Amenable To Mechanistic-Empirical Model Development

The following distress types are related to one or more primary response variables
and are believed to be amenable to mechanistic-empirical analysis for jointed concrete
pavements:

Transverse slab cracking: caused primarily by tensile and bending stresses from
traffic loadings and climatic variables (note that this does not include the

deterioration of cracks in JPCP or JRCP pavements which are caused by some
different variables and mechanisms).

Transverse non-doweled joint faulting: caused primarily by large transverse
joint differential deflections (under load) across the transverse joint under certain
climatic conditions that leads to pumping action and erosion of the underlying
layers.

Transverse doweled joint faulting: caused primarily by high dowel/concrete
bearing stresses at the face of the joint when wheel load is directly above dowel
which wears away the concrete creating a gap at the top and bottom of the
dowel. Then, the same mechanism described for non-doweled joints develops to
cause faulting.

Some of the other distress types such as joint spalling, the deterioration of transverse
cracks in J-RCP pavements, erosion/pumping and CRCP punchouts are also related to
primary responses, but the mechanistic phenomena has not yet been adequately
researched to consider them directly at this time.

USE OF DIMENSIONAL ANALYSIS TO IDENTIFY VARIABLES AND CLUSTERS

A useful concept that can assist in the identification of mechanistic type dusters
that relate to primary response variables and thus to distress is that of dimensional
analysis. Several publications have demonstrated that the principles of dimensional
analysis can be utilized effectively in the interpretation of numerical data pertaining to
pavement primary responses, such as stresses.(1, 2, 4, 5, 6, 9)

Dimensional analysis is encountered in the works of pavement researchers such
as Westergaard, Bradbury, Burmister, Odemark, Pickett, and Losberg. Previous research
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has also provided considerable knowledge in the identification of governing
dimensionless parameters for a variety of mechanistic variables. Table 1 summarizes
these findings.

The use of dimensionless variables to directly predict distresses may be useful
when there does not exist a clear primary response variable, such as the case of faulting
or joint spalling. It is not particularly useful for transverse cracking for example, because
tensile stress can be calculated directly and used in the prediction model, rather than
dimensional ratios such as a/1.

TRANSVERSE CRACKING VARIABLES AND CLUSTERS

Past research has shown that the development of transverse cracking distress in
concrete slabs is the result of several external and internal tensile or bending stresses

acting on the pavement slab. The major causes of these critical slab stresses are as
follows:

• Traffic load repeated stresses with differing magnitudes and rates of
loading.

• Thermal and moisture gradients through the slab causing tensile stresses
at both top and bottom of the slab depending upon the gradient.

• Friction tensile stresses (maximum at mid-slab) that result when the slab

contracts but is resisted by friction along the base to slab interface. The
main causes of slab contraction include (1) drying shrinkage of the concrete
and (2) temperature changes in the slab.

• Changes in slab support, either loss of support from pumping/erosion,
foundation settlement or foundation heaving.

In addition to tensile stresses, concrete tensile or flexural strength is another
variable that is closely related to transverse cracking of slabs. Variables and clusters
relating to both of these are presented.

In conceptual form, transverse cracking is considered to be related to the
following major variables:

TRCRACK = f ( STRESS, STRENGTH, NO. LOAD APPLS.)

Where:

TRCRACK = Measure of transverse cracking (percent slabs, no. cracks/mi,
ft./mi)
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f = Functional relationship between cracking and independent
variables, could be of several different forms (two different

approaches will be considered: non-linear regression with
proper functional form and incremental fatigue damage)

STRESS = Tensile stress in slab as function of traffic load, thermal curl
and other variables

STRENGTH = Flexural strength of concrete slab at a given time after
construction, psi

NO. APPLS = Number of applications applied at a given load level and
axle type

Variables And Clusters For Tensile/Bending Stresses

Slab Stresses From Traffic Loads

There are two critical stress locations for transverse cracking: the longitudinal
slab edge and the corner. The longitudinal slab edge (at the bottom of the slab) position
is the conventional location of the critical stress that is used in design procedures for
controlling transverse cracking. The corner load position can become critical under the
following conditions: dowel bars are not used at the transverse joint or no tied concrete
shoulder exists. In addition to this, any severe upward warping from moisture gradients
or nighttime thermal gradients, or erosion of support beneath the slab will cause a very
high tensile stress at the top of the slab that could result in a transverse or diagonal or
comer crack.

The edge stress at the bottom of the slab that will be considered herein can be
calculated from Westergaard's 1948 model.(10)

Se = [ 3(l+u)P) / (lI(3+u)h 2) ] * [ln(Eh3/100ka 4) + 1.84

- (4/3)u + (1-u)/2 + 1.18(l+2u)(a/1)]

Where:

Se= Edge stress for circular wheel load tangent to edge, psi
P = Applied wheel load (9,000 lbs., or 18-kip axle load)
k = Effective k-value beneath slab (from backcalculation)

a = Load radius (calculated using 9,000 lb. load and 100 psi pressure)
h = Slab thickness (database)

E = Slab modulus of elasticity (backcalculation)
u = Poisson's ratio (0.15 assumed)
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This equation was extended by Salsilli using regression analysis techniques to
establish relations between dimensionless parameters and the edge (bottom of slab)
bending stress (Se) occurring in a slab-on-grade subjected to multiple-wheel loading
along one of its edges, distance from edge to outside of tire, slab length and load transfer
efficiency as summarized in Table 2. Most of the models in Table 2 can be considered
as multiplicative "correction factors" which are applied sequentially to Westergaard's
edge stress equation. The purpose of each factor is to eliminate one of Westergaard's
restrictive assumptions.

Temperature Curling And Moisture Warping Stresses

A thermal gradient or a moisture gradient through a slab results in the movement
of the slab corners and edges either upward or downward, depending upon the
direction of the gradient. This movement is resisted by the weight of the slab and the
bond to the base which results in tensile and compressive stresses in the slab. The

tensile stresses can by themselves, or in combination with load stresses)cause slab
cracking. The following model can be used to compute thermal curl stresses at the slab
edge.(13)

S_,t = [B*E*C*DT] /2

Where:

Scurl = curl stress, psi
B = coefficient that depends upon L/1 ratio reproduced in Figure 1
E = modulus of elasticity of concrete, psi
C = coefficient of thermal contraction of concrete, degree F
DT = temperature differential through slab, degrees F

Moisture gradients through slabs begin at the time of construction due to the top
becoming dryer than the bottom which is almost continually damp. In addition, if poor
curing occurs resulting in a very dry slab surface, permanent severe warping of the slab
will occur with the corners warped upward. If the base is relatively soft, the slab may
settle somewhat into the base and relieve the effects of this warping, but this may not
occur for stabilized bases. Very little work has been done in determining moisture
gradients in slabs in different areas of the country. Mathematically, moisture warping
can be considered similar to a negative thermal gradient in a slab, and thus the same
duster variables are involved. Moisture warping cannot be directly considered in this
analysis due to a lack of data on moisture gradients.

Traffic Load And Temperature Curling Stresses

The stresses from load and temperature curling cannot be directly added together.
In fact, the combining of these stresses is a highly non-linear problem due to the
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changing support conditions beneath the slab as the slab curls upward or downward.
The latest model for predicting the combined stress is that developed by SalsiUi (9)
under NCHRP Project 1-26. Models for stress caused by load and by thermal gradient
were developed separately, and then they were combined using using the finite element
program ILLISLAB.

Scomb = Sload 4" R _" Scurl

Where:

S,omb = combined edge stress, psi
S_oaa = Westergaard solution for edge stress, psi
Scu,_ = curl stress given by following expression

= [B*E*C*DT]/2

B = coefficient that depends upon L/1 ratio reproduced in Figure1
E = modulus of elasticity of concrete, psi
C = coefficient of thermal contraction of concrete / degree F
DT = temperature differential through slab, degrees F
R = an adjustment factor

The combined edge stress was computed from the ILLISLAB finite element
program. Then regression techniques were used to develop the R factor which depends
on many pavement parameters, including L (joint spacing), DT, k, h, B, E and 1 (radius
of relative stiffness.(9) Therefore, the S¢om_can be calculated in a closed form solution

over a wide range of pavement and load variables with good accuracy.

Stresses Caused By Slab Contraction (resisted bv base friction)

Tensile stresses occur in a slab whenever the slab tries to contract because the

movement is resisted by friction between the slab and base course. Slabs placed on a
fine grained subgrade develop very little friction. Slabs placed on a stabilized stiff base
develop a large amount of friction. Contraction of the slab can be caused by drying
shrinkage during the early concrete curing time period, and also from decreasing
temperatures.

The classical model used to predict the maximum friction stress at the center of
the slab is given as follows:

Sma = WLf/24h

Where:

S_,i,_ = tensile stress at slab center, psi
W = weight of slab, lbs/sf
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L = slab length, ft
f = average coefficient of friction between slab and base
h = slab thickness, in

This stress is almost negligible for short slab JPCP type of pavement, thus it is not
included in this analysis.

Variables And Clusters Related To Concrete Strength

In addition to stress, concrete strength is the other primary variable related to slab
cracking. Slab cracking can occur in two ways: (1) a high tensile stress due to some
combination of critical loading, climate or material (contraction) situation occurs which
exceed the slab strength, or (2) fatigue damage accumulates as a result of multiple
applications of different levels of stress to the point that a crack develops.

One way in which to bring strength into the model is through the dimensionless
stress/strength ratio. Flexural testing of concrete beams shows that the ratio of stress
to strength produces a cluster term that relates linearly to the logarithm of applications
to cracking as shown in Figure 2.

Variables And Clusters Related To Fatigue Damage

The stress to strength ratio provides a good dimensionless cluster to predict
cracking when one level of stress is involved as previously shown. When multiple levels
of stress exist, as in a concrete highway pavement, additional clusters must be included.
Flexural testing of concrete beams has shown that Miner's (12) incremental damage ratio
(Miners) provides a reasonable cluster that relates to cracking.

DAMAGE SUM = nilld / Niik_

nijkl = Number of applied load applications having ith axle type, jth
axle weight, kt" thermal gradient and 1th concrete strength.

Ni_ = Number of allowable load applications to initial cracking for
ith axle type, jth axle weight, kth thermal gradient and 1th
concrete strength.

This incremental damage ratio is actually a dimensionless "super cluster" of
variables including all of those involved in slab stress and strength. The accumulated
damage value is correlated with transverse slab cracking to provide for a prediction of
cracking. This approach has been successfully applied since 1977 (7,9,11) for the
prediction of transverse cracking caused by repeated load fatigue damage. Figure 3
shows an example of the damage ratio versus transverse cracking for a large number of
field slabs.

285



This approach provides a predictive model that sums "damage" ratios over
specific increments of time, where materials and soil properties, thermal and moisture
characteristics and traffic are constant within the increments but can vary between
increments (e.g., time increments could be as small as a few hours).

Example Model For Fatigue Cracking Of JPCP (S-Shaped Curve) (this curve form is
based on the observation of cracking vs load repetitions or accumulated damage on
actual pavements)(11)

CRACKING (percent slabs) = 1 / { 0.01 + a (bL°s DAMAGE)}

Where: a and b are determined from non-linear regression techniques.

• Possible Increments Over Which Damage Is Accumulated (due to
database limitations, not all of these will be included)

Thermal gradients (hourly thermal gradients over year)
Moisture gradients (seasonal)
Slab support (seasonal)
Concrete strength (monthly)
Traffic axle load distribution (single, tandem, tridem)
Lateral truck traffic loadings (with regard to slab edge)

• Data Required To Compute Damage (not all are required for this initial
analysis)

Slab hourly thermal gradients over a year time period
Slab seasonal moisture gradients over a year time period
Slab support k-value and base layer modulus over a year
Concrete slab thickness
Concrete slab thermal coefficient of contraction

Concrete slab strength increase over design life
Concrete slab E and Poisson's ratio over design life
Axle load distribution over design life
Lateral truck loading distribution in traffic lane
Load transfer of longitudinal joint (if tied PCC shoulder)

TRANSVERSE CRACK SUMMARY

Variables

The following variables are needed to develop the M-E models for transverse
cracking. Where each will be obtained is given in parentheses.
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P = Applied wheel load (9,000 lbs., or 18-kip axle load)
k = Effective k-value beneath slab (from backcalculation, estimate seasonal

variation)
a = Load radius (calculated using 9,000 lb. load and 100 psi pressure)
h = Slab thickness (database)

E = Slab modulus of elasticity (backcalculation, backcast over time)
u = Poisson's ratio (0.15 assumed)
C = Thermal coefficient of contraction of PCC slab (assumed based upon coarse

aggregate type)
L = Joint spacing (database)
N = Number of 18-kip ESALs accumulated in traffic lane (database)
FS = Flexural strength at 28 days, third point loading, psi (backcasted from data

obtained from coring results, or backcasted from backcalculation of slab E)
G = Slab hourly thermal gradients over a year time period (computed using

CMS program and data from climatic database)
D = Lateral truck loading distribution in traffic lane, distance from slab edge

(assume from existing data)
LTs= Load transfer of longitudinal joint if tied PCC shoulder (measured by

FWD, in database)
W = Slab width, ft.(database)

Clusters

Stress = Tensile stress from load and thermal curling obtained from Salsilli
(modification of Westergaard)

Stress / Flexural Strength of concrete slab

Miner's fatigue damage summation ratio

JOINT FAULTING VARIABLES AND CLUSTERS

Past research has shown that the development of joint faulting distress is in
essence caused by repeated deflections from wheel loads at the transverse joint,
particularly differential deflections across the joint. The differential deflection is defined
as the deflection of the loaded side minus that of the unloaded side of a joint. The
differential deflection is considered to be more closely related to faulting than load
transfer since it represents an absolute difference in deflections as a wheel rolls across
the joint, and thus, should correlate well with pumping and erosion beneath the joint.
This differential deflection causes water to flow forward and backward beneath the joint

at a high velocity which ultimately leads to erosion and a buildup of material under the
approach joint causing faulting.

287



The major causes of high differential deflections (and high deflections in general)
are as follows:

• Repeated moving heavy traffic loads across the joint (particularly near the
comer).

• Greater than perfect (zero) differential deflection that results from several
causes, including joint opening when slab contracts, no mechanical load
transfer device, enlargement of dowel socket from high bearing stresses.
The main causes of slab contraction include (1) drying shrinkage of the
concrete and (2) temperature and moisture changes in the slab.

• Negative thermal and moisture gradients through the slab causing comers
and edges to curl/warp upward creating voids between the slab and
stabilized base where moisture can accumulate and then pump under
deflection.

In addition to differential deflection, the erosion resistance of the base layer and
also its permeability are other variables that are closely related to faulting. Also, the
availability of free moisture beneath the slab and or treated base layer (sometimes
erosion occurs beneath the treated base layer) is an important factor. Variables and
clusters relating to these variables are presented.

In conceptual form, joint faulting is considered to be related to the following
major variables:

FAULT = f ( DIFFERENTIAL DEFLECTION, BASE ERODABILITY,
MOISTURE AVAILABILITY, SLAB CURL/WARP, NO. LOAD
APPLS.)

Where:

FAULT = Mean joint faulting, in

f = Functional relationship between faulting and independent variables,
could be of several different forms (two different approaches will be
considered: non-linear regression with proper functional form and
incremental faulting damage)

DIF. DEF. = Differential deflection, difference between loaded side and
unloaded side deflections as measured by the FWD, in

BASE EROD = An index of the erodability of the base course
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NO. APPLS = Number of applications applied at a given load level and
axle type

SLAB CURL = Upward curling of corner under mean nighttime temperature
gradient.

Variables And Clusters For Deflections

Corner Deflections From Traffic Loads

The corner deflection is the largest deflection anywhere in the slab, and thus is

the point at which the faulting mechanism is likely to be the strongest to develop. The
deflection of a free corner is given by Westergaard's equation:

DEF = P { 1.1 - 0.88 (1.141 a/l) } / k 12

•Where:

DEF = Free corner deflection under circular load tangent to the
comer, in

P = Applied wheel load, Ibs.
k = Effective k-value beneath slab, psi/in
a = Load radius (calculated using 9,000 lb. load and 100 psi

pressure), in
1 = Radius of relative stiffness, in

= [Eh 3 / 12k(1-u 2)]°'2s
h = Slab thickness, in
E = Slab modulus of elasticity, psi
u = Poisson's ratio

Rearranging this equation gives a dimensionless duster:

Def*k*12/p = f(a/1)

The major factors include the wheel load P and the k support modulus. In
addition to these factors, the comer deflection depends greatly on the following:

,, load transfer of the transverse joint and longitudinal joint (100 percent load
transfer decreases deflection by 50 percent and decreases differential
deflection to 0)
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• the amount of curl/warp of the slab at the comer

• loss of support at the corner increases the deflection greatly

The differential deflection across the joint is dependent on the transverse joint
load transfer. A finite element program such as ILLISLAB or JSLAB can be used to
show the effect of load transfer, curling and loss of support on corner deflection and
differential deflection. A search is underway for a dosed form solution that considers
these factors directly.

Faulting Of Non-Doweled Joints

The differential deflection of non-doweled joints begins to increase with traffic
loadings soon after opening to traffic (as load transfer decreases). It is highly dependent
on the aggregate interlock of the joint, which in turn depends on maximum aggregate
size (to produce large unevenness through the joint), the hardness of the aggregate to
resist breakdown under repeated shearing from loads, and the width of the joint.

Differential deflection also depends greatly upon the opening of the joint. Joint
opening results in a loss of joint load transfer and an increase in the dowel bearing
stress. The mean joint opening is a function of the thermal coefficient of contraction of
the concrete, the friction between the slab and base, the slab length and the temperature
change or shrinkage of the slab. The mean expected joint opening is given as follows:

w=F*L(C*DT+e)

Where: w = Joint opening, in
L = Joint spacing, in
F = Friction factor between base and slab (empirical data gives

0.80 for granular base and 0.65 for treated base)
DT = Temperature range (maximum July - minimum January),

Degrees F
C = Thermal coefficient of contraction of concrete (5 ° 6"10.6 /

degree F)
e = Drying shrinkage coefficient of concrete over time (0.5 - 2.5

* 10-*strain)

Dimensionless cluster = C * DT + e

The amount of faulting of a non-doweled joint also depends upon the amount of
moisture that is available beneath the slab. The number of days having precipitation
greater than 0.1 in a year is one index for this variable. The amount of joint sealing is
not believed to have much effect on the amount of moisture beneath a slab.
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Faulting Of Doweled loints

Faulting of doweled joints can occur if the bearing stresses between the dowel and
the concrete becomes too large and the concrete is worn away causing a gap at the top
and bottom of the dowel. After the dowel loosens, the faulting mechanism would be

identical to non-dowelled joints and described above.

Dowel bearing stress is calculated by the following model (8):

BSTRESS = A(pavement) * B(load)

Where:

BSTRESS = Dowel/concrete bearing stress, psi
A=K(2+Bw) / (4B 3E sI)
B=P*%TL*f a

K = modulus of dowel support
B=Kd/(4E sI) °'2s
d = dowel diameter

Es = modulus of elasticity of dowel
I = Moment of inertia of dowel bar

w = Width of joint opening (C*DT*L)
C = Thermal coefficient of contraction of PCC

DT = Temperature range
TL = Joint load transfer
L = Joint spacing
fd = Distribution factor indicating how much of the transferred load
acts on critical dowel bar

P = Applied wheel load

Rearranging this equation gives a dimensionless cluster:

BSTRESS*(1/B 2) /P=f{(2+Bw) /Bd}

The major factor that affects the bearing stress is dowel diameter and spacing.
The larger the diameter and closer the spacing, the lower the bearing stress. Under
heavy repeated loadings, small diameter dowels will loosen very rapidly to the point
that the joint behaves like a non-doweled joint and faults significantly.

Variables And Clusters For Faulting Model

There are two different approaches to the development of faulting models. One
approach is to use non-linear regression techniques to fit a model that fits the functional
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form and boundary conditions. The other one is to develop an incremental faulting
damage model, similar to that for cracking, that considers various increments of time
and sums faulting over each increment. Either approach requires the identification of
key variables and dusters.

An example of the dusters that should be included in a non-linear mechanistic-
empirical faulting model is illustrated below. This will be a non-linear model with each
term likely having coefficients and exponents.

FAULT = N cl { a/l, LT, (2+B w)/(B d), C*DT+e, L/I,

BASE_, PRECIP, SUBDRAIN }

Based on this expression, joint faulting is a function of traffic loadings (N), (cl is
a regression constant that will be less than 1.0 to provide for the proper functional form
of faulting with load applications), comer deflection (a/l), load transfer (LT) which
controls differential deflection), dowel/concrete bearing stress for doweled joints ((2+B
w)/(B d)), joint opening (C*DT+e), base erosion (BASE e to be derived), precipitation
(PRECIP) and subdrainage (SUBDRAIN). Further conceptual work is needed to develop
a more fundamental approach to combining particularly base erosion, precipitation and
subdrainage into cluster variables.

JOINT FAULTING SUMMARY

Variables

The following variables are needed to develop the M-E models for joint faulting.
Where each will be obtained is given in parentheses.

P = Applied wheel load (9,000 lbs., or 18-kip axle load)
k = Effective k-value beneath slab (from backcalculation, estimate seasonal

variation)

a = Load radius (calculated using 9,000 lb. load and 100 psi pressure)
h = Slab thickness (database)

E = Slab modulus of elasticity (backcalculation, backcast over time)
u = Poisson's ratio (0.15 assumed)

L = Joint spacing (database)
N = Number of 18-kip ESALs accumulated in traffic lane (database)
G = Slab hourly thermal gradients over a year time period (computed using

CMS program and data from climatic database)
Lts= Load transfer of longitudinal joint if tied PCC shoulder (measured by

FWD, in database)

K = modulus of dowel support (assume 1,500,000 psi/in)
d = dowel diameter (database)
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Es = modulus of elasticity of dowel (assumed 29 million psi)
I = moment of inertia of dowel bar (calculated)

w = width of joint opening (calculated)
TL = joint load transfer
fa = distribution factor indicating how much of the transferred load acts on

critical dowel bar
F = friction factor between base and slab (empirical data gives 0.85 for granular

base and 0.8 for treated base)

DT = temperature range (maximum July - minimum January), Degrees F
C = thermal coefficient of contraction of concrete (5 6"10-6 / degree

F)(assumed based upon coarse aggregate type)
e = drying shrinkage coefficient of concrete over time (0.5 - 2.5 * 10.4 strain)

Clusters

Corner Deflection = Westergaard corner model, modified to consider joint
load transfer

Differential = Difference between loaded and unloaded side of joint,
deflection determined from above modified model

Joint deflection = Unloaded side deflection divided by loaded side
load transfer deflection

Dowel/concrete = Calculated from modified Westergaard's equation with

bearing stress various assumptions

Slab corner curling = Equation for uplift of corner from negative curling
gradient (from German research)

SUMMARY

The variables and their arrangement in a predictive model is very important. This
memorandum identifies the mechanistic variables and dusters of variables that are

believed to be related to selected concrete pavement distress types. This approach builds
upon past work with regard to the development of theoretical mechanisms that cause
distress in concrete pavements and in the development of M-E prediction models. The
concepts included in this memo will be useful in the development of the M-E models
during the initial analysis of the LTPP P020 data.
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Figure 1. Variation in the differential temperature stress coefficient C with B/I (60).
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Table 1. Governing Dimensionless Parameters for Concrete Pavements.

BRIEF DIMENSIONIJ_SS REFERENCES
DESCRIPTION VARIABL_

Load Size Ratio (aft) [20]

Slab Size Ratio (L/l) [28; 24]

Normalized Load

Placement Distance (D/q) [41]

Nondimensional Deflection (_kl2/P) or
(_D*/Pl 2) [22;201

Nondimensional Subgrade Stress (ql2/p) [54; 20]

Nondimensional Bending Stress (ah2/p) [28; 20]

Tire-print Spacing Ratio (S/a) [25]

Linear Thermal Differential

Product eaT [7]

Nondim. Joint Stiffness

(undoweled joint) (AGG/kl) [55]

Nondim. Joint Stiffness

(doweled joint) (D'/skl) [56]

Modular Ratio for

Base Laver Evaluation (Ec/'Eb) [43]

SYMBOLS USED:

a:.load radius; l: radius of relative stiffness; L: slab lengh; D: load placement distance from
slab edge; & deflection; k: subgrade modulus; P: total applied load; D*:slab flex'ural stiffness;
q: subgrade stress; a: slab bending stress; S: tire spacing; e: coefficient of thermal expansion;
zlT: linear temperature differential;A GG: aggregate interlock factor;D': spring-in-series joint
stiffness; s: dowel spacing; Ec:slab modulus; Eb:base laver modulus.
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Table 2. Proposed Formulae (After Salsilli [45]).

lr_e.rtm,gaard (1948) Edge Stress Equation:

= 3(l+#)P [In Eh3 +1.84-4/'t + t-p, ,l.18(l+21_)(a/l)]
aw_' Ir(3+_)h 2" 100ka' 3 2

Alternate Formula for (aft) >0.5:

a_ =l_0.0621(a/l)Z+O.131(a/03
GWc.

Equivalent _ for Duals, Spacing S (Perpendicular to Edge):
N=20; R2= 1; COV =1.2%. Limits: 0 < (S/a)_<20; 0.05<_(a/l)<_0.5

a_ =o.909+O339485(S /a) +O.103946(a/l)-O.O17881(S /a):
a

-O.045229(S /a)2(a /O +0.000436(S/a) 3

-O.301805(S/a)(a/l) 3+O.034664(S /a)"(a/l) 2+O.OOt(S/a)3(a/l)

Equivalent Radits for Tandems, Spacing t (Parallel to Edge):
N= 16; R2=0.997; COV=2.1%. Limits: 4<(t/a)<_16; 0.05<_(a/l)<-0.3

a_ =2.199479+0.74761 ha(t/a) _(a/l) In"(t/a)
a

-0.486597 haz(t/a) *In(a /l)-O 29507 In3(t/a)-O.O28n6 In3(a/l)

Effect of Axte W'MI.hD (Perpendicular to Edge):
N=28; R2:0.995; COV=6.9%. Limits: O.13<_(D/l)___z;0.05<_(a/I)<-_0.3

o'D =-0.15743211-0.26935303(a/l) .0.357644(l/D)
O'wea_

-O.0589073(l /D )Z (l/D )3

Effect of Slab Size, Length L (Parallel to Edge):
N=12; R'=0.996; COV=0.29%. Limits: 3<_(L/1)<_5;0.05<_(a/I)<_0.3

az" =0.58 v2282-O.533078(a/'l)*O.181706(L/l)-O.O19824(L/l) 2
awe_-x

+0.109051(a/l) (L /l)

Effect of Load Transfer Efficiency., Aggregate Interlock Factor A GG:
N=16; R2=0.988; COV=2.45%. Limits: 5<_(AGG,/kl); 0.05<_(a/l)<_0.3

a AC'O=0.99864-0.51237(a/l)-0.0762 In(A GG /k 0
£TW_

+0.00315 ln:(A GG /kl) +O.O15936(a/l) z In"(A GG /kl)

Alternate Formula Used for (aft) > 5:
a AC,G ,._ ,

=1.04284-0.8469 _.(a/ l) -0.09299 In(A G G /kl)
awe_

+0.06837(a/l) ln(AGG/kl)+O.63417(a/l)'

+0.0042 ln2(AGG /kl) -O.OOO629(a/l) tn(A G G /kl) 3
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Appendix D

Technical Memorandum by Dr. Olga J. Pendleton, April
27, 1992, "Statistical Methodology for LTPP Data
Analysis"
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TECHNICAL MEMORANDUM

DATE: April 27,1992

AUTHOR: 01ga ,1.Pendleton

SUBJECT- StatisticalMethodologyfor LTPP Data Analysis

The statistical methodology recommended for developing pavement
distress models for the LTPP data analysis encompassesa wide variety of
statistical tools and software. The discussion which follows are the
methods presented in a tutorial given at Texas A&M University in November,
1991 to prospective LTPP data analysts.

The data analysis procedures will follow a systematic sequence of
steps, as depicted in the flow chart of Figure I. These steps will further
be explained in the sections which follow.

The first essentialstep is the identificationof potentialexplanatory
variables to be used in the predictive equations for pavement distress.
Statistically,these explanatoryvariablesare referredto as "independent"
variables, although, in reality, there is a great deal of dependencyknown
to exist both between these variablesand the pavement distress variables
(dependentvariables)and among the explanatoryvariables,themselves. The
explanatory or independentvariablesare genericallyreferred to as "x's"
and the dependent variables, "y's". Some of the explanatoryvariablesmay
actually be clusters representing a numbers of individual pavement
characteristicsor properties.

After identifying both the dependent and independentvariables and
their relationships, the second step is to examinethe observedvariables
(the data) for potentialdistributionalproblems. That is, statis¢ically,
certain assumptions are required in order that the statistical method
produce valid and reliable results (conclusions). Sometimes these
assumptions are valid for the bulk of the data but appear to be invalid
becauseof a few "unusual"data elements. Often these unusualdata elements
can be tracked down and found to be erroneous, in which case they can be
deleted or corrected (transcriptionor measurementerrors). Other times
they may lead to the identificationof anotherexplanatoryvariablethat was
inadvertently omitted from the model definition. In any case, it is
essential that statistical procedures be used to identify such data
anomalies.

The second flow chart procedureof Figure 1 refersto procedureswhich
will identify these 'unusual' data points or other problems for each
variable separately (univariately). However, a data point may be within
acceptable limits for two variablesseparatelyyet, the pair of values, be
"unusual" To detect these types of "paired" anomalies, bivariate
procedures are required (box 3 of the flow chart of Figure I).
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The final step in the analysis which includes the development of
distress models and sensitivity analyses, is termed, collectively,
multivariate analyses. There are several analyses involved under this
umbrella with the ultimate objective being the development of pavement
distress models along with ranges of sensitivity of the parameters to
provide the initial step for long range pavement distress modeling and
prediction.

I. Identification of pavement distress model variables and their
interrelationships

Both dependent (pavement distress) and independent (explanatory)
variables must be considered in this step. In order to apply the
statistical methodology of least squares regression analysis, certain
assumptions must be met.

Regarding the prediction variables, the assumption of independent,
normally distributed random variables is essential. For example, distress
variables such as rutting, transverse and alligator cracking, etc. must
follow a normal probabilitydistribution. That is, the degree of distress
among pavements must evenly distributeitself about some mean value. This
assumption is obviously questionablewhen combining pavements with some
distress with a large number of pavementswith no distress. The assumption
is more tenable for degree of distress qiven some distress has been
measured. Measured is a key word here as some pavementswith no distress
recorded or "measuredn may, in fact, be distressedonly not to the extent
that it can be measured. This issue will be further addressed in the

analysis procedures to be presented.

In order to satisfy the normal distributionassumptionsfor pavement
distress, a two-stage model building process is proposed. The first step
is to identify those explanatoryvariableswhich best predictwhetheror no
a pavement will have measurable distress by finding the best model that
discriminates between distressed and non-distressedpavements. The second
step is to use only the data from those pavements that have distress and
determine which explanatoryvariablesbest predictthe deqree of distress.
For this stage, transformationsof the distressare recommendedas follows:

alligator and transverse cracking - transform to % area cracked by
severity levels and take naturallogs

rutting - convert to a ratio of rut depth relativeto a thresholdvalue
of .5 and take natural logs

Initially, the second stage models may not be too informativeas for
some types of distress, there is very littledata, i.e. very few pavements
that have any measurable distress. As more time elapses and more of the
non-distressedpavementsshow distress,thesemodelsmay be more meaningful.
Also, as more data is collected,more sophisticatedstatisticalmethodsmay
be used such as modeling the time to distressand using censoredprocedures
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for pavements for which we do not know time of distress.

Independentvariablespose a real challenge. Although these variables
are not required to follow any particularprobabilitydistribution,There
are many known and hidden interrelationshipsamong these variableswhich can
cause serious problems (collinearity)in least squaresmodel building. The
extent to which these interrelationshipsor correlationscan be avoidedwill
enhance the degree of reliabilityand predictabilityof the models. Hence,
if known relationships exist based on sound engineering principals,these
should be incorporated in the basic model structure. These known
relationshipswill be referred to as "clusters".

An example of a potential "cluster"is the deflection relatedvariable
DELTA:

A - 9000N
E1 E2 _

_s((_--_)3 +(____) )

If this relationship among asphalt stiffness and thickness and cumulative
KESALs is , in fact, sound, then it makes far more sense to use the single
explanatoryvariable DELTA as a candidateindependentvariable than the six
separate measurements of stiffness,thickness,and KESALs. That is not to
say that only Delta should be used in the model, it is just a single
candidate representing six candidates. Other independent variables and
other clusters will also be candidate independent variables to form a
selectionpool. The variable selectionprocess will enable us to determine
which of these variables and clusters are most significant in predicting
pavement distress. An added feature of using the cluster approach, in
additionto simplificationof the model, is that it reduces the correlation
(collinearity)among the independentvariables. That is, the variablesthat
go into the definition of DELTA are likely to be correlated among
themselves. Hence, using the six measurementsseparately would introduce
a degree of collinearitythat could be avoidedif only DELTA were used. We
will see later that this collinearitycan greatly distort a model's outcome
or predictive abilities.
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Another consideration in identifyingpotential explanatoryvariables
is how to code them. For example, it is important that qualitative
variables (descriptivevariablessuch as region,wet/dry, etc.) be coded as
indicator variables as opposed to quantitativevariables (variablesthat
have some magnitude such as % asphalt)whose values can be entereddirectly
into the model. An example of this is region code. It would be incorrect
to enter region code as a single explanatoryvariable with values 1,2,3 or
4, because this implies some ordering and magnitude to the region code
number, i.e. region 4 is R4 times greater"than region I. The proper coding
of such a variable would be to define three explanatoryvariablesto define
region (always one less than the number of categories of the qualitative
variable). For region this could be done by defining XI, X2, and X3 as:

XI=1 if region=1;elseXI=O

X2=1 if region=2;elseX2=O

X3=I if region=3:elseX3=O

Region 4 is implicitly defined as XI=X2=X3=O. Now, by putting these
variables into the model separatelythe followingkinds of questionscan be
addressed:

I. Is there a significantamount of cracking in region 4? (This will be
the significancetest associatedwith the interceptterm.)

2. Is the degree of cracking in region I equal to the degree of cracking
in region 4?

3. Is the degree of cracking in region 2 equal to the degree of cracking
in region 4?

4. Is the degree of cracking in region 3 equal to the degree of cracking
in region 4?

Other considerations in defining explanatory variables are
transformations or the additions of quadratic terms and interactions.
Sometimes, the omission of these terms or need for transformationbecomes
apparent in the model building process from the examination of residual
plots. In general, interactionterms should always be included initially,
especially interaction terms involving a quantitative variable and a
qualitative one, unless there is strong reason to believe that such an
interactioncannot occur. For example, if region code and % asphalt were
both in a model, the interactionterms (i.e. the product of the x's) are
measuring the slope between the degree of distress and % asphalt for each
region. Omitting the interactionterms would be equivalent to forcing a
constraint on the model which says that this slope must be equal for all
regions and equal to the slope for region 4. This may, indeed,be the fact.
However, by including the interaction terms first, one can address the
question of equality of slopes and if they are in fact equal, then delete
them from the model.
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2. Examining both distress variables and explanatory variables
independently

The statistical term for examining variables one at a time is called
univariate analyses. The objective of these analyses are:

1. To examine the distributions of each variable

2. To identify gaps in the data

3. To identify unusual observations or measurements

4. To identify potential functional forms

The SAS procedures for doing these analyses are Proc Univariate and
Proc Freq. Proc Univariate is for continuous variables, i.e. KESALs/yr,
degree of rutting, etc. This procedure will produce descriptive statistics
about the distribution of the variable such as means, variances, quantiles,
max and mins, mode, median, skewness, kurtosis, etc. In addition, with the
proper options, this procedure will produce plots of the distributions and
box plots. Box plots are graphical means of identifying observations that
are not within the bulk of the data. Proc Freq can produce two-dimensional
frequency tables. This procedure is generally used with categorical-type
data such as region, wet/dry, etc. These tables can assist in the
identification of data gaps.

All candidate variables and clusters should be screened using this
procedure. In addition, the new distress variables should be created to
identify pavements with and without distress. Then, the univariate
procedure can be used with the BY statement to examine the distribution of
a continuous variable or cluster, like DELTA, for pavements with and without
a particular distress.

3. Analysis of paired relationshipsamong variables.

The analysisof relationshipsbetweentwo variablesis termedbivariate
analyses. The purpose of bivariateanalyses are:

I. To identifycorrelationbetweentwo variables

2. To identify observations that are unusual in both factors
simultaneously

3. To identify data gaps in both variablessimultaneously

4. To identify potentialfunctionalforms

5. To spot data "clusters"

The SAS procedures for doing these analysesare Proc Plot, Proc Corr, and
Proc Freq. Proc Plot will provide scatter plots and a visual way of
identifyingdata gaps, clusters,and relationships. Proc Corr will provide

307



statisticalverificationof any visual linear relationshipsin the form of
the correlation coefficient. Proc Plot is primarily for continuous
variables while Proc Freq attempts to do the same thing for categorized
variables. The Chi-Square statisticand other measures of association can
be used to statisticallyverify relationshipsamong categorized variables.

Again, these relationships should be examined not only on the
collective data but for distressed pavements separate from non-distressed
ones.

4. Identifying relationships amongmany variables - modeling

The statistical analyses of more than two variables is termed
multivariate analyses. The purpose of these analyses are to:

1. Identify relationships amonggroups of variables

2. Build pavement deformation models

The SAS procedures for conducting these analyses are Proc Reg and an
in-house SAS routine for conducting a Principal Component analysis. The
Proc Reg procedure will be used for two purposes:

1. To identify those explanatory variables and clusters which best
differentiate between pavements that do and do not have distress

2. To identify those explanatory variables and clusters which best
predict the degree of distress

The Principal component analysis will provide a method for identifying
unusual observations and collinearities(associations)in a multivariate
way. In so doing, it may be possible to identify observations that are
masking a problem, i.e. there may be a serious collinearitythat is being
hidden by a few unusual observationsor these unusual observations may be
causing an artificial collinearitythat really isn't a problem.
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BASIC STRATEGY

The basic steps in performingthe analysesand buildingthe statistical
models for describing pavement distresswill be outlined here. There are
five basic steps which will enable us to addressthe following questions:

1. How do we "describe" distressed and non-distressed pavements
in terms of potential physical and environmental factors that
might relate to distress?

EXAMPLE: What is the averageage of pavementsthat do not have
any measurable degree of alligator cracking and what is the
average age for pavements that do have some alligatorcracking?

2. What is the relationshipamongpotentialexplanatoryvariables
that might relate to distress?

EXAMPLE: Are AADT and asphaltthicknesscorrelatedor is asphalt
thickness correlated to some function of other explanatory
variables? Will this relationshipcause problems in the modeling
of distress or determiningthe sensitivityof the variablesin the
model?

3. What variables determinethe degree or extent of distress?

EXAMPLE: What explanatoryvariablesand/orwhat functional form
of these variablessignificantlypredictthe amount of rutting in
a pavement?

4. How do distressed and non-distressed pavements compare?

EXAMPLE: Do pavements with transverse cracking have the same
trafficload as pavementswith no measurabletransversecracking?

5. Which variables significantly determine non-distressed
pavements from distressed pavements?

EXAMPLE: Is the percent of voids a significant factor in
identifyingpavementswith some alligatorcracking?

The statistical steps for answering each of these questions,
respectively,are presented below along with the statisticalname for the
methods to be used.

I. Examine descriptive statistics of potential explanatory
variables and clusters for each type of distress for:
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All pavementsections
Distressedsectionsonly
Non-distressedsections only

Statisticalmethod: Univariateanalyses

2. For any potential explanatoryvariables and clusters that are
candidates for predictive models, examine their inter-
relationships. These relationshipscan occur in three basicways:

I. Among pairs of variables (Pearson'scorrelation)
2. One variablemay be correlated with all other variables

(Multiplecorrelationcoefficient)
3. Some subgroupof variablesmay be correlated(eigenvector

analysis)

These relationshipsshould be examinedfor each type of distress for

All pavement sections
Distressedsectionsonly
Non-distressedsections only

Statisticalmethods: Bivariateanalyses
Multiple regression modeling
Principalcomponent (eigen)analyses

3. Build models (selectimportantvariables,buildprediction
equations,testsensitivityof the final equations)

These analyses should be performedfor each type of distress for

All pavement sections
Distressedsectionsonly
Non-distressedsections only

Statistical methods: Regression analysis
Diagnostic methods
Sensitivity analysis
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4. Compare descriptivestatisticsand distributionsof
explanatoryvariablesand clusters for:

All pavementsections
Distressedsectionsonly
Non-distressedsections only

5. Determine which variablesbest discriminatebetween
distressed and non-distressedpavements.

Statisticalmethod: Discriminantanalysis

A very important questionthat ultimatelyneeds to be addressedis:

Which variables best predict time to distress or time
to failure?

In order to answer this question, pavements sections need to be
monitored over time. At this point in our study, we will only have, at
most, three points in time and for many sections,only one point in time
(i.e. observeddistresses fromdistresssurveysover a period of two years).
This is not sufficient data to allow us to address the above question.
Eventually there will be sufficient data as determined by the number of
pavements that show distress. That is, if within five years we can expect
to observe that 50% of the pavementswhich currently have no distress as
exhibiting some distress, then a five year period should be sufficient to
allow for modeling the time to distress.Time to failurewill be much more
difficult to model. This will require a clear definition of what
constitutes failure and will probably require a much longer observation
period to observe enough failed pavements.

At any rate, when sufficientdata has been obtained, other problems
will need to be addressed, namely censoring. Censored data is defined as
data for which only partial informationis available. In this application,
our censored data will be those pavementswhich have already shown some
degree of distress. The reason for this is that the key variable being
modeled, namely time of distress, is not known for the pavements we have
already found distress on. We know that at the time the study began, some
degree of distress was observed. These sections still provide valuable
information for the model but must be handled differently from those

pavements for which we know the time of distress. Had we been able to
observe that time, it would have been to the left (less than) of the time
we observed the distress.This is known as left censoring. A second type

of censoring is known as right-censoring. This occurs if the time to
distress could not be observed because the pavement section had to be
dropped from the study, for example, had to be resurfaced. The observed
time to distress can never be realizedand all we know is that at the time
the section went off-study, it had not failed. The true time to failure is
somewhere to the right (greater than the observed time) and hence the
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observed time must be right censored.The statisticalmethod to build these
models of time to distress are Cox regressionand survival analys_s.

Since we do have some pavementsfor which we have multiple points in
time, these will be handledby our analysesas follows. Preliminarymodels
will be built based on the initialdistresssurveys. These models will then

be re-run or updated for all sections after the second distress surveys.
That is, the model that discriminatesbetweenpavements that do and do not
show distress will now have a shift of data from the group that did not
show distress to the group that did. The effect of these sections, i.e.,
their explanatoryvariables,on the resultingdiscriminationmodel can then
be assessed. When a third survey is made, another model update will be
performed. Now even more sectionswill shift from the non-distressedgroup
to the distressed groups. This type of sequential modeling should be
performed throughout the time period that pavement sections will be
monitored. The models will be revised as more information on distress is
made available.
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DETAILON STATISTICALPROCEDURES

1. Univariateanalyses

Univariateanalysesconsisto_ statisticalmethodsfor describingthe
distributionof continuousrandom variables. Examples of continuous
variablesfor this studyare cumulativeKESALs,age, AADT,% trucks,etc.
These distributionsshouldbe examinedfor all sectionsas well as for
distressedand non-distressedsectionsseparately.A sampleof the Proc
Univariateoutput from SAS for one of the potentialclustervariables,
DELTA, is shown in Table I. Figure2 showscontinuedoutputfrom Proc
Univariatedepictingthe frequencydistribution,box plot, and Normal
Probabilityplot. FromTable I, descriptivestatisticssuchas numberof
sections(190),mean delta(671.5),standarddeviation(199.5053),etc.can
be found.Figure2 showsthe distribution,whichis somewhatskewed to the
left. The box plotcan be usefulin identifyingoutliers,the* andO'sand
themean and standarddeviationof thedistribution(dashedlines).The SAS
statementsfor generatingthisoutputare:

PROCUNIVARIATENORMALPLOT;
VAR XI X2 X3 X4 ETC.;

To do this for each levelof anothervariable,say YI where Y1 is 0 for
pavementswith no distressand YI=I for pavementswith distress,the BY
optioncan be used if the data is sortedfirst,e.g.

PROCSORT;BYYI;
PROCUNIVARIATENORMALPLOT;BYYI;
VAR XI X2 X3 X4 ETC.

2. Bivariateanalyses

Correlation

The simplelinearrelationshipbetweenpairsof variablescan be
measured and statisticallytested for significanceusing the Pearson's
CorrelationCoefficient.This is a valuebetween-I and I where-I denotes
a strongnegativerelationship,+I denotesa strongpositiverelationship,
and 0 denotesno relationship.

Table 2 gives an exampleof the outputfrom SAS's Proc Corr which
estimatesthe correlationcoefficient.The firstnumberin the set is the
estimateof the correlationcoefficient,i.e.,thecorrelationbetweenDELTA
andthe log of alligatorcracking(LDI)is .19577.The secondnumberis the
p-value or the level of significanceat which you would reject the
hypothesisof no significantcorrelation.FortheDELTAand LDIcorrelation,
this valueis .3088. If thisvalueis lessthan .05,it wouldbe concluded
that the correlationis significant. In this example,the correlation
betweenDELTA and LDI is not significant.The thirdnumberis the number
of pairson which this correlationwas based,namely,29 pavementsection
DELTAsand LDls.
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Frequency Tables

Classification variables such as wet/dry, region, etc. should be
examined in pairs as to the distributionof sites by these variables. The
statisticfor measuringthe associationamong these classificationvariables
is Pearson's Chi-square. The SAS procedure to do this analysis is Proc
Freq, and the required statementsare:

PROC FREQ;
TABLES XI X2 X3/cellchi2all;

Table 3 gives a sample output from this procedure for examiningthe
distribution of sites that did and did not have alligatorcracking by wet
or dry region. There are four numbers in the table. The first is the
number of sites in that cell, e.g. 94 sections in wet regions did not have
alligatorcracking. The second numberis the proportionof sectionsin that
cell relative to the total number of sections,e.g. 49.74% of the sections
(g4/18g) had no alligator cracking and were in the wet region. The third
number is the row percent, e.g. 59.49 % of the sites with no alligator
cracking were in the wet region (94/158). The last number is the column
percent, e.g., 82.46% (94/114) of the sections in the wet region had no
alligatorcracks. The marginal proportions(i.e. under headings of Total)
tell how the data is distributedfor one variable ignoringthe other, e.g.,
83.60% (158/18g) in this data set had no measurable amount of alligator
cracking. These numbers can be useful in getting a feel for data gaps which
ultimately will dictate the limitations of the statistical modeling
procedures.

Scatter Plots

Scatter plots of variable pairs can be very informativeand essential
to identifying data gaps, model distributionalrequirements,etc. These
plots should be examined for relevant explanatoryvariables and clusters.
The SAS procedure for doing this is Proc Plot, and the required statements
are:

PROCPLOT:
PLOT (X1 X2 X3)*(DELTAX4);

This SAS statement will produce 6 plots, namely, X1 vs DELTA, X2 vs DELTA,
X3 vs DELTA, X1 vs X4, X2 vs X4, and X3 vs X4. There are obviously many
superior graphic programs other than SAS and any of these could be used in
place of Proc Plot if desired. Figure 3 is an example of a scatter plot of
percent trucks vs KESAL/year for all sections that had some alligator
cracking. From this plot we see a potential outlier section that has an
unusually high value for KESAL/year.
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3. Multivariateanalyses

Regressionanalysis

Ordinary least squares regressionmodels attempt to explain some
dependentvariable,y, intermsofmanyindependent(explanatoryvariables),
x's. The SAS procedurefor doingthis is calledProcReg.

PROC REG;
MODELY=XIX2 X3 X4 X5/P R INFLUENCECOLLINOINTVIF;
OUTPUTOUT=NEWPRED=PREDRESID=RESID;

TheseSAS statementswillfindthe estimatesforthemodelcoefficients
that will provide the best (leastsquares)fit to the data.The model
correspondingto the above$AS statementsis:

y_o,_lx_i*_zxu-_3x3t-_4x4i-_x__

The statementsfollowingthe / in the model statementrequestdiagnostics
for influentialobservationsandcollinearity.Theoutputstatementcreates
a filecalled"NEW"whichwillcontainpredictedvaluesand residuals.This
file can then be used in plot statementsto plot the data:

PROC PLOTDATA=NEW;PLOT(Y PRED)/OVERLAY;
PROC PLOTDATA=NEW;PLOTRESID* (X1 X2 X3 X4 X5);

In the firstplotstatement,oneplotwillresultwithboththe observedand
predictedvalueson the same plot (OVERLAYoption). In the secondplot
statement,5 plots of the residualsvs each x valuewill result. These
plots are very useful in identifyingunusual points or in identifying
possiblenecessarytransformationsandrelationships(logs,quadraticterms,
etc.)

Table4 presentsthe SAS Proc Reg outputfor modelingthe degreeof
alligatorcracking(i.e.no sectionswith zero crackingare included)as a
functionof 12 explanatoryvariables. The analysisof variancetable
providesinformationon the model'soverallfit. In this example,this
modeldoes not providea significantexplanationforthe degreeof alligator
distress(Prob>F=.3271,this valuewouldhave to be less than .05 for the
modelto be significant).Therewere 20 observationsin this dataset, DF
for C Total+ 1). The RootMSE can be used to computethe 95% prediction
intervalat the point where it is narrowest(at the mean of each x) as
follows:
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__.+I.96_ MSE(I+I)n

Upper 95% Prediction interval:

803.4 + 1.g6(808.3943)(1.0246)= 2426.83

Lower 95% prediction interval:

803.4 - 1623.43= -820.03

This interval is interpretedas follows:We could expect, with 95% accuracy
that the predicted total amount of alligator cracking would be between -
820.03 and 2426.83. Obviously, these are ridiculous numbers. This is
because this model did not provide a significant fit to the data in the
first place and the amount of error in this model (MSE) is extremelylarge.
In practice, onewould not even computethis prediction interval and would
abandon this model in searchof another. The computation is presented here
for purely illustrativepurposes.

Both Rz and adjustedRZare providedon this output. These both measure
the percent of the total variation in alligatorcracking that is explained
by the model. The adjusted R2 adjusts for the degrees of freedom in the
model and is a more accurate estimate. For example, the unadjusted R2 of
.7102 looks deceptively good in view of the fact that we know this is not
a good model. However, the unadjusted R2 is only large because of the
larger number of variables in the model (12) relative to the few
observations (20). The adjustedR2 of .2133 is more realistic and adjusts
for this fact.

The model equation can be obtainedfrom the column ParameterEstimate.
The test of significancefor each model variable is shown along with its p-
value (Prob > ITI). Any values less than .05 correspond to model variables
which are statisticallysignificant. No model variablesare significantin
this example.

The column labeled Variance Inflation measures the amount of

collinearityin the model. If any of these numbers exceed 10, it means that
there is collinearity. Model variableswith a variance inflation factor
greater than 10 are variables which, when regressed on all the other X-
variables would have an R2 greater than .9. For example, X1 has a variance
inflation factor of 19.724. This means that XI is highly correlated with
all other X variables.
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Table 5 is the second page of output from PROC REG and contains
additional informationon the collinearityamong the explanatoryvariables.
The variance inflation factor merely identifies relationships between a
given X-variable and all other X-variables. The collinearitydiagnostics
can find relationshipsamong subgroupsof explanatoryvariables. The SAS
Proc option COLLINOINT producesthis output. It is importantto adjust for
the intercept, hence the option COLLINOINTrather than COLLIN.

To identify the source of the collinearity, find values under the
column heading Eigenvaluethat are close to zero. These are orderedlargest
to smallest. For this example there are two such eigenvalues,the 11th and
12th with values of .05756 and .02086,respectively. The next step is to
check thenumbers in the columnslabeledVar Prop X1, Var Prop X2, etc. Any
larqe numbers in these columnsreflect the weight of each X-variable in the
association. Basically, these relationshipscan be defined as:

klx 1+kzXz+. . . .,.klzx12=O

where the kj's are the Var Prop values and the zero is the assumedvalue of
the small elgenvalue. For this example,then, the relationshipfor the 12th
(smallest}eigenvalue is:

O.g363xI+0.5786Xz+0.133x3+0.007x4+0.8152x5+0.1891x6

+0.4884x7+0.7187xs+0.6318x9+0.6327Xio+

O.1743x11+0.O008xlz=0

This means that the major contributorsto this relationshipare x , x2, x ,I . .5

x8, xe, xlo, and xlz. Note that the second smallest eigenvalue ident_fles
variablesx11 and x12 as being correlated. These variables happen to be %
trucks and KESALs/yr, a logical relationship.

If these relationships can be identified, they may lead to the
formation of additional clusters or, as in the case of % trucks and
KESALs/yr, the exclusion of one variable in favor of another. In other
words, if single variables or variables in clusters are contributingthe
same amount of informationto the model, it is not necessaryto includeboth
or to include the cluster variables independently.
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Table 6 yields the diagnosticsfor identifyingoutliersor influential
observations• The model used to generate this table was based on only on
x- variable,the log of DELTA, and the y-variablewas the log of the % area
with alligator cracking for those 20 pavement sections that had some
measurable amount of alligatorcracks.Only 19 pavementshad all the values
necessaryto compute DELTA, hence the total number of observationsfor this
model is 19.

Many of the diagnostics listed in Table 6 yield the same information.
Four basic diagnostics and their criteria for identifying an unusual
observationwill be described here.

I. RSTUDENT > I.g6 - This diagnostic indicatesa large
deviation from the fitted model with respect to the
dependent or y- variable.

2. HAT DIA6 > 2p/n - where p is the number of
independentvariables in the model plus 1 and n is the
number of observations. This diagnostic identifies
observationsthat are having a significantinfluenceon
the prediction of the dependentvariable.

3 Cook's D • F_ - _ - where F is the F-statisticat• . ,p,_ )
the 5% level of slgn]_cance for p and (n-p) degreesof
freedom (n is the total number of observationsin the
model. This diagnostic identifies observations that
significantly changes one or more of the model
coefficient, i.e., it measures the sensitivityof the
coefficients to the observation or that site's
distress.

4. DFBETAS > 2/Jn - This measuresthe influenceof each
observation on each independentsvariable (see Table
7). That is, whereas Cook's D measures the influence
on all model coefficientscollectively,the DFBETA for
each x-variable measures the sensitivity of the
coefficient for that variable to the observed distress
for each pavement section•
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From Table 6 for this example we see that the RSTUDENT diagnostic
identifies observation # 2 (2.0944)and # 7 (-2.4613)as outliers on the
distress variable. The Hat Diag would have to exceed .2105, (2(2/Ig))and
hence identifiesobservation# g (.2089). Cook's Dwould have to exceed the
F value at the 6% level of significancefor 2 and 17 degrees of freedom
which is 3.68. No observations are flagged by this criteria. The last
criteria, DFBETAS, appear in Table 7. The DFBETAS are listed for the
intercept and the single x-variable, LDELTA. These values would have to
exceed .4588 (2/Jig)in order for an observationto significantlyinfluence
the sensitivityof these coefficients. Observations# 7 and 20 exceed this
value for both the intercept (.6786,-.9517),and LDELTA (.7537,.6841).
These diagnostics seemto indicatethat three observationsare influential,
in some sense, namely, 2, 7, and 20. A plot of the dependent variable vs
LDELTA is shown in Figure 4 with the three suspectobservationsidentified.

Variable Selection

In order to obtain the model that best describes the data with the
fewest parameters,variable selection is of interest. In fact, it is
possible to actually obtain a worse model by includingtoo many variables.
Whereas R2 will always increase as the number of variables increase,the
predictiveerror of the model may be optimal(minimal)at some subset of the
variables and then increase as variablesare added. Hence, a 5-variable
model may actually yield a better prediction (as reflected in the mean
squared error, MSE) than a 20 variable model even though the 20-variable
model will have a superficiallylarger R2. Figure 5 depicts this.

The RSQUARE option of Proc Reg will examine all possible subsets and
present the resultsto be used in selectingthe best subset. This procedure
is superior to any other stepwise selectionmethods because the stepwise
methods are sensitiveto collinearitiesin the model variablesand might not
produce the best model in the presenceof this collinearity. These methods
are outdated and should never be used. Their computationaladvantage(i.e.
not having to examine all possible subsets) is no longer a factor in this
day of high-speed computing.The criteria for choosing the best model is

minimum Co. Cp is a function of the model mean squared error (MSE) which
adjusts for the number of model parameters relative to the number of
observations similar to adjusted R2.

A sample output from Proc Reg with the RSQUARE option are given in
Table 8. The SAS statementsused to generate this output are:

PROC REG;
MODEL Y = XI X2 X3 ... XI2/P R CP SELECT=RSQUARE;
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In Table 8 all l-variable,2-variable,3- variable, etc. models are

listed in descending order of Cp. That is, for the l-variablemodels, the
one with X4 had the smallest Cp of all other l-variablemodels, 4.75999.
Examining the first entries in any variable size category shows that the

minimum Cp for any given subset size group decreases as the number of
variables increase up to the 6-variable case, i.e. 4.75999 > 3.48571 >
3.2744 > 2.24925 < 3.2489. That is, the best 5-variable model has a

smaller prediction error than the best 6-variablemodel.

The variables that form the best 5-variablemodel are X2, X4, X6, XIOLOG,
and X12. In order to obtain these model coefficientsand diagnostics,Proc

Reg would need to be re-run specifyingonly these variables in the model
statement.

Eigenanalysis

Eigenanalysis (Principal Component Analysis) is a multivariate
procedurewhich enables examiningthe data for both influentialobservations
and collinearity simultaneously. It is possible for the collinearity
diagnostics from Proc Reg to indicate a significantcollinearityproblem
which is really onIx being caused by a few observations. Conversely, the
diagnostics may show no problemwhen a serious collinearityexists but is
being masked by a few observations. This is known as the masking problem.

There is no SAS procedurefor doing this analysis. However, several
SAS procedures can be combined to produce this analysis. Proc Factor of
SAS, with the no rotation option,producesprincipalcomponentfactors. If
these factors are multiplied by (6i/n)I/2,where 61 is the eigenvalue,the
resulting principal component factor becomes the eigenvector for that
eigenvalue. Plots of pairs of eigenvectors that correspond to small
eigenvalues provide a visual means of identifying potential masking
problems.

The SAS statementsto do this are:

PROC FACTOR SIMPLE CORR MINEIGEN=OEV
NFACTORS=12OUT=SCORESI;

VAR XI-X12;

DATA NEW;SET SCORESI; K10=SQRT(.155415/Ig);
K11=SQRT(.O57561/19);K12-SQRT(.020860/19);
FACTIO=KIO*FACTORIO;FACT11=KI1*FACTOR11;
FACTI2=K12*FACTOR12;

PROC PLOT DATA=NEW;
PLOT FACTIO*FACT11FACTIO*FACT12FACTII*FACT12;
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These statements were written for a 12-variablemodel with 19 observations.
The eigenvalueswere obtained from the previous Proc Reg run of this model
with the VIF option or from the output of Proc Factor. The three factors
corresponding to the three smallest eigenvalues were chosen. In other
situations, more factors may be necessarydependingon the number of small
eigenvalues that occur. Table g is a sample output from the Proc Factor
procedurewhich contains the eigenvectorsand eigenvaluesas definedin the
Proc Reg output earlier. Figure 6 shows a sample plot revealing a single
observation that appears to be masking a collinearity. Collinearityis
present when the shape of the ellipsedrawn around the data is elongated.
The more the ellipse resembles a circle, the less the degree of
collinearity. The major axes of the ellipsedrawn around the data are the
reciprocals of the square root of the eigenvalues. Hence the smallerthe
eigenvalue,the greaterthe lengthof the major axis and the more elongated
the ellipse. In Figure 6, if we were to draw an ellipse about the data
excluding the observation in the lower left corner, that ellipsewould be
elongated, signifying a collinearity. By includingthe observation,the
ellipse is more circular, indicatingno collinearity.

Discriminantanalysis

The purposeof discriminantanalysisis to identifywhich variablesare
significant in classifyingdata into groups. For this application,we want
to use discriminantanalysis to addressthe question:

Which explanatory variables and clusters discriminate between
those pavements with no measurable distress and those with
measurable distress?

A discriminant analysiswith only two categoriesto choose from, e.g.
distress and no distress, can be performed using a multiple regression
procedure, if the y-variable is defined in a certainway. The advantageof
doing this as opposed to using a standarddiscriminantanalysisprogram is
the availability of the diagnostics for collinearity, influential
observations, etc. which are generally not available with discriminant
analysis programs.

The key is to code the y-variableas follows:

y=-n2/n for pavementswithoutdistress

y=nl/n for pavementswith distress

where nI = the number of pavementswithout distress, n2 is the number of
pavementswith distress and n is the total number of pavements. Note: these
numbers are not backwards; i.e., for pavementswithout distress y is the
negative proportion of distressedpavementsand for pavementswith distress
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y is the proportion of non-distressed pavements.

As an example, this procedure was done for data with 31 pavement
sections with alligator cracking and 158 pavements without, using 13
explanatory variables and clusters. The y-variable was codedas:

y=-31/189--.164 for pavementswith no distress

y=158/18g-.836for pavementswith distress

Table10 is the outputfromrunningthe ProcReg procedureusingthiscoded
y-variableas the dependentvariablein the model. The significantmodel
F-value(Prob>F=.0114)indicatesthatthismodelsignificantlydiscriminates
betweenpavementswith and withoutalligatorcracking. The R" statistics
for this model are meaningless. The variableswhich were significant
accordingto the Prob > ITI statisticsare H2 E5, and X6. The Variance
Inflationfactorfor LDELTAindicatesthat LDELTAis highlycorrelatedwith
the othermodelvariables.This is not surprisingsinceDELTAis a cluster
of many of the othervariablesin themodel.

In orderto determinehowwellthemodelclassifiespavements,theProc
Freq procedurecan be used to classifypavementsaccordingto predicted
distress,yes or no, and actualdistress,yes or no.
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Table 1. Univariate Output for Variable E1

Moments

N 190 Sum Wgts 190

Mean 671.5053 Sum 127586

Std Dev 199.2837 Variance 39713.99

Skewness 0.755811 Kurtosis 1.073465

USS 93180614 CSS 7505943

CV 29.67716 Std. Mean 14.45756

T:Mean = 0 46.44666 Prob > ITI 0.0001

Sgn Rank 9072.5 Prob > [SI 0.0001

Num = 0 190

W:Normal 0.959326 Prob < W 0.0003

Quantiles (Def = 5)

100% Max 1490 99% 1310

75 % Q3 774 95 % 1007

50% Med 638 90% 960

25% Q1 546 10% 448.5

0% Min 292 5% 370

Range 1198 1% 310

Q3 - Q1 228

Mode 851

Extremes

Lowest Obs Highest Obs

292( 148) 1048( 42)

310( 130) 1168( 41)

314( 142) 1187( 18)

330( 134) 1310( 43)

336( 78) 1490( 83)

Variable = E1
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Table 2. Correlation Analysis for Alligator Cracking Less than 0

LFZ LFF LD1 LD2 LD3

DELTA 0.13607 -0.61042 0.19577 -0.11679 0.41401
0.4815 0.0004 0.3088 0.5463 0.0256

29 29 29 29 29

LDELTA -0.17308 -0.55805 0.23408 0.12977 0.45891
0.3693 0.0017 0.2216 0.5023 0.0123

29 29 29 29 29

F1 0.56055 0.36576 -0.16305 -0.17999 -0.13817
0.0010 0.0430 0.3808 0.3326 0.4585

31 31 31 31 31

F2 0.88019 -0.54211 0.04023 -0.20509 0.29773

0.0001 0.0016 0.3299 0.2684 0.1038
31 31 31 31 31

LF1 0.59661 0.34642 -0.19208 -0.16658 -0.11545
0.0004 0.0563 0.3006 0.3704 0.5363

31 31 31 31 31

LF2 1.00000 -054617 -0.04162 -0.34030 0.31880
0.0 0.0015 0.8241 0.0610 0.0805
31 31 31 31 31

LFF -0.54617 1.00000 -0.15184 0.22390 -0.49315
0.0015 0.0 0.4148 0.2260 0.0048

31 31 31 31 31

LD1 -0.04162 -0.15184 1.00000 0.20490 0.48697

0.8241 0.4148 0.0 0.2588 0.0055
31 31 31 31 31

LD2 -0.34030 0.22390 0.20490 1.00000 -0.08048
0.0610 0.2260 0.2688 0.0 0.6669

31 31 31 31 31

LD3 0.31880 -0.49315 0.48697 -0.08048 1.00000
0.0805 0.0048 0.0055 0.6669 0.0

31 31 31 31 31

Pearson Co_el_ion Coefficients/Prob > [R I under Ho:Rho = 0/number of observ_ions
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Table 3. Frequency Table of Alligator Cracking versus Rainfall

Table of YII by Z2

YII Z2

Frequency Percent Wet 1 Dry 3 Total
Row Pet
Col Pct

0 94 64 158

49.74 33.86 83.60
59.49 40.51
82.46 85.33

1 20 11 31

Alligator 10.58 5.82 16.40
64.52 35.48
17.54 14.67

Total 114 75 189
60.32 39.68 100.00

Frequency Missing = 1

326



Table 4. Analysis of Variance from Regression for Alligator Cracking

Model: MODEL1 Dependent variable: Y1

Source DF Sum of Squares Mean Square F Value Prob > F

Model 12 11208369.228 934030.76897 1.429 _')

Error 7 4574509.5723 653501.36747

C Total 19 15782878.800

Root MSE 808.39431 R-square 0.7102

Dep Mean 803.40000 Adj R-sq 0.2133

C.V. 100.62165

Variable DF Parameter Estimate Standard Error T for H0: Prob > IT[
Parameter = 0

INTERCEP 1 3155.782427 10833.738236 0.291 0.7793

X1 1 23.799726 150.99011294 0.158 0.8792

X2 1 156.811760 118.57122389 1.323 0.2276

X3 1 -16.959703 21.59474780 -0.785 0.4580

X4 1 -594.106341 302.91171376 -1.961 0.0906

X5 1 -44.095722 225.20587319 -0.196 0.8503

X6 1 -1035.284160 545.5885509 -1.898 0.0996

X7 1 -239.820747 241.25263131 -0.994 0.3533

X8LOG 1 -56.769891 952.37371728 -0.060 0.9541

X9 1 -56.978781 97.30548221 -0.586 0.5765

X10LOG 1 667.512166 641.79166028 1.040 0.3329

X11 1 -14.995743 58.52547572 -0.256 0.8051

X12 1 -1.315447 2.09458646 -0.628 0.5499

Variable DF Variance Inflation

INTERCEP 1 0.00000000

X1 1 _ Base + Subbase Thickness
X2 1 6.96501220
X3 1 1.84106651

X4 1 2.369543..4_
X5 1 (1_i.i097109_ % Asphalt
X6 1 2.79560614
X7 1 6.47751189
X8LOG 1 4.63584514
X9 1 5.08479402
X10LOG 1 7.38128762
X11 1 7.01716524
X12 1 9.13532406
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Table 6. Analysis of Influential Observations

Dep Vat Predict Std E__r_ S_d E -- Student

Qhs LDI Value Predict Residual Residual Residual

! 2.8651 2.9904 0.451 --0.1253 1.345 -0.093

2 6.2097 3.5775 0.343 2.6322 1.376 1.913
3 4.3239 3.2788 0.389 1.0451 1.364 0.766

4 2.3128 3.8542 0.326 --1.5414 1.380 --1.117

5 3.5294 3.1987 0.404 0.3306 1.359 0.243

6 5.1!51 5.2688 0.581 --0.!537 1.294 -0.i!9

7 2.5326 5.3147 0.595 --2.782! 1.288 -2.161
S 5.5185 4.6673 0.424 0.8512 1.353 0.629

9 6.0572 5.4948 0.648 0.5624 1.261 0.446

!0 6.0076 5.0304 0.515 0.9772 1.322 0.739

!! 0.9765 .....

12 2.8651 4.1017 0.334 -1.2366 1.378 -0.89T
13 5.8052 4.2990 0.356 1.5062 1.373 1.097

14 3.7466 3.3909 0.369 0.3557 1.370 0.260

15 2.8651 3.5401 0.347 -0.6750 1.375 -0.491

16 2.8651 3.1756 0.409 --0.3105 1.358 -0.229

17 2.0733 2.8343 0.491 --0.7610 1.331 -0.572

!S 2.8556 4.3090 0.357 --I_.4534 1.373 -_.i059

19 5.8052 2.6208 0.338 2.1844 1.377 1.586
20 0.5080 1.9140 0.761 --!.4059 1.197 -1.175

Cock's Eat Diaq Car
0bs -2-1-0 ! 2 D Rs_adent E Ra_io Dffits

1 O.G00 -0.0904 0.1013 1.2549 -0.0304

2 *** 0.114 2.0944 0.0584 0.7385 0.52!S

3 * 0.024 0.7565 0.0750 1.1377 0.2155
4 ** 0.035 --1.1253 0.0527 1.0233 -0.2654

5 0.003 0.2._64 0.0813 1.2203 0.0703
6 0.00! -0.1153 0.1681 1.3547 --0.0518

7 **** 0.498 -2.4613 0.1759 J 0.7207 --!.1369
8 * 0.0!9 0.6174 0.0894 1.1828 0.1935

9 0.026 0.4350 0.2089 1.3939 0.2236

10 * 0.041 0.7291 0.I_!7 J 1.2178 0.2839
!i

12 * 0.024 -0.8916 0.0554 1.0847 --0.2160

13 ** 0.040 1.1041 0.0629 1.0401 0.2860
14 0.002 0.2525 0.0675 1.201! 0.0679

15 0.006 -0.4796 0.0599 1.1671 -0.!2!!

16 0.002 -0.2222 0.0833 1.2239 --0.0670
17 * 0.022 -0.5602 0.1197 / 1.2336 -0.2066
iS ** 0.038 -1.0629 0.0634 1.0516 -0.2765

19 *** 0._76 1.6668 0.0_69 0.8690 0.4095
20 ** 0.279 -1.1892 0.2882 !.3389 -0.7567

F2,17 = 3.65 2D = 2(2) = .1053
n 19
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Table 7. Analysis of Influential Observations using DFBETAS

Obs INTERCEP Dfbetas LDELTA Dfbetas

I -0.0273 0.0210

2 0.3253 -0.1645

3 0.1728 -0.1177

4 -0.1004 0.0094

5 0.0587 -0.0418

6 0.0303 -0.430

7 0.6786 -0.9517

8 -0.0652 0.1241

9 -0.1428 0.1934

10 -0.1445 0.2199

11

12 -0.0273 -0.0483

13 -0.0180 0.1154

14 0.0507 -0.0319

15 -0.0788 0.0423

16 -0.0565 0.0406

17 -0.1924 0.1546

18 0.0199 -0.1139

19 0.2415 -0.1126

20 -0.7537 0.6841

Sum of Residuals: -2.08722E -14

Sum of Squared Residuals: 34. i970
Predicted Residual SS. (Press): 43.4585
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Table 8. Model Selection Using Rz and Mean Square Error.

Number in Model Rz C(p) Variables in Model

1 0.14041767 4.75999 X4
0.10471620 5.62223 X6
0.05915383 6.72262 X10LOG

0.03164997 7.38687 X2
0.02912569 7.44783 X11
0.02615253 7.51964 X8LOG
0.02039141 7.65878 X1

0.01154603 7.87240 X3
0.00632104 7.99859 X7
0.00475496 8.03642 X5
0.00359339 8.06447 X12
0.00108421 8.12507 X9

2 0.27599174 3.48571 X4 X6
0.21300391 5.00694 X2 X4
0.20452211 5.21179 X1 X4
0.20420051 5.21956 X4 X11

0.19622190 5.41225 X4 X10LOG
0.16616485 6.13817 X6 X10LOG
0.15696922 6.36025 X10LOG X12
0.15622501 6.37823 X4 X8LOG
0.15020104 6.52371 X5 X6
0.14835465 6.56830 X4 X5
0.14827520 6.57022 X3 X4
0.14760360 6.58644 X10LOG X11

3 0.36755082 3.27444 X6 X10LOG X12
0.34862110 3.73162 X2 X4 X6
0.34553724 3.80610 X4 X10LOG Xll
0.34049162 3.92796 X4 X6 Xll
0.33396977 4.08547 X4 X6 X10LOG
0.32860169 4.21511 X5 X6 X10LOG
0.30323452 4.82776 X4 X6 X8LOG
0.29352491 5.06226 X4 X6 X12
0.29116969 5.11914 X4 X5 X11
0.28816534 5.19170 X4 Xll X12
0.28783026 5.19979 X3 X4 X6
0.28692347 5.22169 X1 X4 X6

4 0.52049374 1.58068 X4 X6 X10LOG X12
0.48614949 2.41014 X4 X6 XIOLOG Xll

0.42566819 3.87083 X5 X6 X10LOG X12
0.40708906 4.31954 X2 X4 X6 X11
0.40245724 4.43141 X1 X4 X10LOG Xll
0.39998337 4.49116 X3 X6 XIOLOG X12
0.39995091 4.49194 X3 X4 X6 X10LOG
0.39593012 4.58905 X2 X4 X6 X7
0.39320081 4.65496 X2 X4 X6 X10LOG
0.39083765 4.71204 X4 X5 X6 X10LOG
0.38777065 4.78611 X6 X10LOG X11 X12
0.38740672 4.79490 X2 X4 X10LOG Xll
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5 0.57562240 2.24925 X2 X4 X6 X10LOG X12
0.54616070 2.96079 X3 X4 X6 X10LOG X12
0.53684093 3.18587 X2 X4 X6 X7 XI 1
0.53609602 3.20386 X1 X4 X6 X10LOG X12
0.52805927 3.39796 X4 X6 X9 X10LOG X12

0.52767380 3.40727 X2 X4 X6 X10LOG X11
0.52606658 3.44609 X4 X6 X8LOG X10LOG X12
0.52341923 3.51002 X4 X5 X6 X10LOG X12
0.52187538 3.54731 X4 X6 X10LOG X11 X12
0.52112358 3.56547 X4 X6 X7 X10LOG XI2
0.50999945 3.83413 X3 X4 X6 X10LOG X11

0.49326628 4.23826 X4 X6 X9 X10LOG X11

6 0.61704154 3.24893 X2 X4 X6 X7 X10LOG X12
0.60772018 3.47405 X2 X3 X4 X6 X10LOG X12
0.59805021 3.70759 X2 X4 X6 X7 X10LOG X11

0.58875144 3.93217 X1 X2 X4 X6 X10LOG X12
0.58546208 4.01161 X2 X4 X6 X9 X10LOG X12
0.58074607 4.12551 X2 X4 X6 XSLOG X10LOG X12
0.57992858 4.14525 X2 X4 X6 X7 X9 X11
0.57597854 4.24065 X2 X4 X5 X6 X10LOG X12
0.57563081 4.24905 X2 X4 X6 X10LOG X11 X12
0.56398300 4.53036 X2 X4 X6 X7 X8LOG X11
0.55895326 4.65183 X2 X3 X4 X6 X10LOG Xll

0.55836548 4.66603 X1 X3 X4 X6 X10LOG X12

7 0.66337120 4.13001 X2 X3 X4 X6 X7 X10LOG X12
0.65748577 4.27215 X2 X4 X6 X7 X9 X10LOG X12
0.64744027 4.51476 X2 X4 X6 X7 X9 X10LOG X11
0.64130235 4.66300 X2 X3 X4 X6 X7 X10LOG X11
0.63648918 4.77924 X1 X2 X3 X4 X6 X10LOG X12

N = 20 Regression models for dependent variable Y1
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Table 10. Analysis of Variance for Discriminant Analysis

Source DF Sum of Mean Square F Value Prob > F
Squares

Model 12 4.19597 0.34966 2.979 0.0013

Error 106 12.44268 0.11738

C Total 118 16.63866

Root MSE 0.34261 R-square 0.2522
Dep Mean 0.00405 Adj R 2 0.1675
C.V. 8465.38180

Model: MODEL1 Dependent Variable: YIlP

Parameter Estimates

Variable DF Parameter Standard Error T for H0: Prob > ]TI Variance
Estimate Parameter = 0 Inflation

INTERCEP 1 1.518747 0.71037038 2.138 0.0348 0.00000000

X1 1 -0.008313 0.00339118 -2.451 0.0159 / 1.28473359

X2 1 -0.004231 0.00623298 -0.679 0.4987 1.32650530

X3 1 -0.004648 0.00195803 -2.374 0.0194 _¢ 1.20829616

X4 1 -0.030028 0.03680241 -0.816 0.4164 1.19155741

X5 1 -0.047232 0.01433407 -3.295 0.0013 / 1.65481066

X6 1 -0.131173 0.05091416 -2.576 0.0114 / 1.36065513

X7 1 -0.015705 0.01548284 -1.014 0.3127 1.17135716

X8LOG 1 -0.048839 0.06995496 -0.698 0.4866 1.19218210

X9 1 0.015770 0.00654470 2.410 0.0177 / 1.22658903

X10LOG 1 0.056736 0.06203130 0.915 0.3625 3.30498192

Xll 1 -0.002767 0.00497717 -0.556 0.5794 2.33804892

X12 1 0.000469 0.00038445 1.221 0.2248 3.04153336

T = Tests:

X1 = base + subgrade thickness
X3 = Subgrade stiff
X5 = asphalt thickness
X6 = % asphalt
X9 = age
Subset selection: adds X10 = AADT
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Bivariate Analyses

Multivariate Analyses

Figure 1. Flow chart for P-020 LTPP Analyses
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% Trucks Legend: A = 1 obs
B = 2 obs, etc.Xll
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Figure 3. Scatter Plot Percentable of Trucks versus kESALs per Year for Alligator
Cracking Less than 0
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Plot of LDI*LDELTA. Legend: A = 1 observation, B=2, etc.

Note: One observation had missing values
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Figure 4. Plot of Influential Observations
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Figure 5. Relation of F2 and Mean Square Error to the Number of Variables Used.
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Plot of FACTOR10*FACTOR12. Legend: A = 1 observation, B =2, etc.

Note: Seven observations had missing values
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Figure 6. Scatter Plot of Eigenanalysis
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