Evaluating Road Departure Crashes Using Naturalistic Driving Study Data

Strategic Highway Research Program 2
Transportation Research Board
Third Safety Research Symposium
July 17 & 18, 2008

Research Team: The Center for Transportation Research and Education (CTRE) at Iowa State University and the University of Iowa

Shauna Hallmark, Tom Maze, Linda Boyle, Reginald Souleyrette, Neal Hawkins, Tom McDonald, Omar Smadi, Alicia Carriquiry
Scope of the problem

- Nationally, SVROR account for 28.9% of fatalities (Neumann et al, 2003)
- 52% of Iowa’s fatalities are related to lane departure
- 39% of Iowa’s fatal crashes are single-vehicle ROR crashes
Research Objectives

- Analyze ROR crashes using data from existing naturalistic driving studies and other sources.
- Develop analytical tools for use in full scale in-vehicle driving study to answer research questions related to road departure.
- Provide feedback to improve full scale naturalistic driving study data collection and analysis and mobile mapping data collection so that road departures can be fully addressed.
Datasets

- **VTTI 100-Car Naturalistic Study**
 - Virginia road database
 - Virginia crash database
 - Aerial imagery

- **UMTRI Field Tests**
 - Michigan road database
 - Michigan crash database
 - Aerial imagery

- **University of Iowa Naturalistic Study of Teenage Drivers**

- **Iowa DOT Crash Database**

- **Iowa DOT Geographic Information Management System (GIMS) Roadway Database**

- **FARS**

Center for Transportation Research and Education at ISU and University of Iowa
8 Research Questions (Summarized)

Evaluate and quantify relationship between driver behavior, roadway, environmental, and vehicle factors for pre- and post-road departures

- What roadway, environmental, driver, and vehicle factors lead to road departures

Rural single vehicle run-off-road crashes in Iowa by pavement surface condition (2005 crash data)

Center for Transportation Research and Education at ISU and University of Iowa
Summarized Research Questions

- Once a vehicle initially leaves the roadway, how do roadway, environmental, vehicle, and driver factors influence subsequent events and outcomes after a vehicle initially leaves the roadway?
- What factors led to positive rather than negative outcomes?
Summarized Research Questions

- Can a meaningful relationship between crash surrogates and crashes/near crashes be developed?
Analysis Plan

Define crash surrogates

- Non-departure lateral drift
- Non-conflict road departure
- Road departure conflict
- Road departure crash

Surrogate depends on potential hazard:
- Time to collision
- Time to lane departure
- Time to hazard (on-coming vehicle, adverse slope, fixed object)

Center for Transportation Research and Education at ISU and University of Iowa
Define kinematic signatures for each surrogate

- Lateral acceleration, forward acceleration, speed, brake,
- Develop algorithm to flag incidents

Vehicle trace of non-departure lateral drift (Data source: UMTRI)

Vehicle trace of Non-conflict road departure (Data source: UMTRI)

Center for Transportation Research and Education at ISU and University of Iowa
Distribution of Vehicle Activity (Data source: UMTRI)

Distance to right lane edge (m)

Lateral acceleration (m/s²)

Lateral speed (m/s)

Yaw rate (degrees/second)

Center for Transportation Research and Education at ISU and University of Iowa
Select exposure-based risk variables

- AADT
- Driver VMT
- Induced exposure
- Traffic operation from naturalistic driving study data
 - Level of service
 - Headway
 - Traffic density

Center for Transportation Research and Education at ISU and University of Iowa
Develop Analytical Tool to Extract Variables

Center for Transportation Research and Education at ISU and University of Iowa
Extract independent variables

Driver

- Driver distraction
 - Conversation, grooming, cell phone use, eating, drinking, smoking
 - Time into trip
 - % of time or number of times driver glances away, amount of time or number of times driver engages in non-driving behaviors
- Aggressiveness
 - % of time driver exceeds speed limit by a certain threshold
 - Number of hard braking or hard acceleration
 - Headway—example: percent time spent following at certain distance
 - Aggressiveness indices

Environmental

- Source of information
 - Naturalistic driving study video
 - Meteorological data
- Potential variables
 - Presence of lighting
 - Roadway surface condition
 - Weather

Center for Transportation Research and Education at ISU and University of Iowa
Extract independent variables

Roadway

- Source of information
 - Roadway data files
 - Naturalistic driving study video

- Potential variables
 - Characteristics of horizontal curves (degree of curve, length of curve, etc)
 - Shoulder characteristics (type, width, condition)
 - Roadway cross-section (lane width, type and presence of medians, etc)
 - Pavement markings and signings
 - Rumble strips
 - Sight distance
 - Number of access points
Event begin | Event end

Center for Transportation Research and Education at ISU and University of Iowa
Develop statistical models of relationships

For each specific research question

- Determine feasibility of extracting data
- Determine sample size needed to answer question
- Address limitations in data
- Address sample size limitations
- make recommendations for full-scale in-vehicle field study
Example: What is the relationship between vehicle speed and safe curve speed (posted/advisory curve speed) and crash risk?

1. How feasible is it to measure curve radius and estimate safe curve speed if posted/advisory speed is not available? Other related variables?

2. How many “normal” events are necessary?

3. How many conflict/near-crash/crash events are necessary?
Develop statistical models of relationships

- Statistical model to assess probability associated with each possible category as a function of driver, vehicle, road and environment attributes.
 - Generalized linear model, Bayesian, etc
 - Account for correlations between observations on the same subject
 - Account for confounders that can obscure the effect of a driver, vehicle, road or environmental factor on the probability of an event.
 - Apply model diagnostics

Center for Transportation Research and Education at ISU and University of Iowa
Develop statistical models of relationships

Develop tools that they can be applied to full-scale
Questions?