Ultra High Performance Fibre Reinforced Concrete (UHPFRC) for durable rehabilitation of bridges

Dr. Aljoša Šajna

Slovenian National Building and Civil Engineering Institute
0. OUTLINE

1. Motivation
2. UHPFRC materials
3. What is proposed?
4. Existing knowledge/experiences
5. Recent advances in Slovenia
6. Conclusions
7. Links and documents
1. Motivation ARCHES

- The goal of ARCHES (Assessment and Rehabilitation of Central European Highway Structures): reduce the gap in the standard of highway infrastructure between Central and Eastern European Countries (CEEC) and the rest of the EU.
- To develop more appropriate tools and procedures;
- To avoid unnecessary interventions (repairs/replacements) in structures;
- To prevent the development of corrosion by simpler, and less expensive techniques;
- To implement faster, more cost-effective, and longer lasting rehabilitation techniques (repair or strengthening) of substandard and unsafe bridges;
- To disseminate results and general best practice to the key stakeholders.
1. Motivation WP5

- Limited resources for management of road structures (time and money, including user’s costs)!
- Limit duration of construction sites
- Increase durability and efficiency
 - for rehabilitations
 - for new constructions
- Promote Strategy A
- Make best use of most advanced materials
- Combine materials in efficient composite structures!

![Graph showing performance and supply strategies](image)
1. Why UHFRPC

✔ Durable
✔ Outstanding protective properties
✔ Outstanding mechanical properties
✔ Tensile strain hardening
✔ Applicable on site
✔ Adoptable to site conditions
✔ Sustainable repair solution

Fractured surface of UHFRPC

10 mm
2. UHPFRC composition

✓ Ultra compact cementitious matrix

- Water/Binder = 0.125 to 0.140
- Cement: 1051 to 1434 kg/m³
- Silica fume: SF/C = 0.05 to 0.26 (mass)
- Superplasticizer: SP/C = 1 % (mass, dry extract)
2. UHPFRC composition

☑ Fibrous reinforcement

- Steel wool + steel fibres
- Total dosage 468 - 706 kg/m³ (6 to 9 % Vol.)

CEMTECmultiscale® developed by Rossi et al. (2002)
2. UHPFRC characteristics

- Selfleveling
- Outstanding protective properties

“Selfleveling”

“Low air permeability (Torrent)”
2. Tensile response

- Deformation capability > restrained shrinkage
- E modulus: 30% higher than usual concretes
- Tensile strength: 3 to 4 times higher than usual concretes!

UHPFRC results on 5 specimens, at 28 days, Mix CM23, cast on site

\[f_{ct} = 13.5 \text{ MPa (mean)} \]
\[\varepsilon_{\text{hardening}} = 1.5 \% \text{ (mean)} \]
3. What is proposed?

- Liquid water + Cl\(^-\) = XD2, XD3
- Most aggressive for structures!
 - Apply protective watertight UHPFRC overlay
 - Improve durability **without waterproofing membrane**
 - Increase load bearing capacity, if needed
3.2 Background

- Successful **structural rehabilitation** is a major challenge for engineers
- Cracking has both material and structural origins

![Diagram showing thermal and moisture interactions](image)

Major issues:
- Processing on site
- Monolithic behaviour
- Protective function
- Mechanical performance
- Durability
3.3 UHPFRC validation / application

• Numerous laboratory tests on UHPFRC materials and composite members, since 1999 at MCS/EPFL – EU Project SAMARIS.

Case 1: Bridge rehabilitation

Rehabilitation and widening of the Bridge over river La Morge – Wallis, CH

Execution: October – November 2004
Case 1: Bridge rehabilitation

Bridge over river « La Morge » - Wallis - CH

- No waterproofing membrane
- Protective function provided by UHPFRC
- Widening of the bridge
- Prefabricated UHPFRC kerb downstream
- Thin UHPFRC overlay (3 cm) applied on deck
- UHPFRC rehab. kerb upstream

Denarié et al. (2004)

Span 10 m
Case 2: Protection of a crash barrier

Owner: Canton Argovie, CH
Realisation: 2006

Challenge: Pouring of the UHPFRC in the limited space + high degree of restraint of the UHPFRC layer + batches of 1 m3

A1 Furtbachbrücke, Würenlos

Oesterlee et al. (2006)
Case 3: Protection of a bridge pier

- Heavily trafficked highway
- 4 cm thick prefabricated UHPFRC shell elements
- Joints glued on site with epoxy resin

Owner:
Canton Argovie, CH

Realisation: spring 2007

Oesterlee et al. (2007)
Case 4: Strengthening of a slab

Autumn 2007
Geneva, CH

- Increased traffic load
- Increase load-bearing capacity and improve protective functions
- Replacement of mortar overlay by 4 cm UHPFRC with rebars
- 720 m² (i.e. 36 m³) of UHPFRC
5. Recent advances in Slovenia

Challenges of ARCHES project

- Develop UHPFRC mixes from local components (overcome cement-superplasticiser compatibility issues)
- Make the mixes tolerant to slopes of 5 %
- Improve surfacing technique («barefoot walk»)
- Repair a bridge!
5.1 ARCHES WP 5 team

Dr. E. Denarié, MCS-EPFL (CH) – WP Leader

- MCS-EPFL (CH): Prof. E. Brühwiler, Dr. H. Sadouki, Mrs. A. Switek, Mr. H. Kamyab, Mrs. T. Noshiravani, Mr. C. Oesterlee, Dr. J. Wuest

- ZAG (Slovenia): Dr A. Šajna, Mrs J. Šuput, Mr V. Bras

- Salonit (Slovenia): Mrs L. Resčič

- IBDIM (Poland): Prof. M. Lagoda, Mr. A. Sakowski

- LCPC/FEHRL (France): Dr. P. Rossi
5.2 New UHPFRC matrices

Denarié - 2007

A: pure CEM I 52.5 cement (Salonit)

B: CEM I 52.5 cement (Salonit) blended with mineral addition

Similar recipes with Water/(Cement+Addition) ratio = 0.155

- **Case A**: impossible to achieve sufficient workability when fibres are added
- **Case B**: excellent workability, comparable to reference UHPFRC mixes with reference cement - adapted for addition of fibres at high dosages
5.3 Improved slope tolerance

Slovene based similar recipes with W/C = 0.170
New unconfined slope test from EPFL/MCS

- Case A: no slope tolerance to 3 %
- Case B: tolerance to slope of 3 %

ZAG confirmed results and extended to 5 % slope
5.4 Validation - protective function

Recipes with Slovenian components exhibit excellent protective properties comparable to reference mix (project SAMARIS).

Air permeability testing

- Recipes with Slovenian components exhibit excellent protective properties comparable to reference mix (project SAMARIS).
5.4 Validation - mechanical performance

- Recipes with Slovenian components exhibit excellent mechanical performance comparable to the reference mixes (SAMARIS).

- Flexural response under 4PB
- Plates 50 x 20 x 3 cm
- Span 42 cm
- Average curves on 5 to 10 specimens

MA = Mineral addition
5.4 Validation - durability

Recipes with Slovenian components exhibit excellent free-thaw-salt durability.

500 cycles passed >> 50 cycles required
5.5 Field trial tests - Salonit, SLO

300 litres batches
Total 900 litres
Loss = 50 litres

Slopes of 5+ % can be cast without difficulties
Application time:
10 m² = 10 minutes
5.6 Full scale application - SLOVENIA

Log Čezsoški bridge – Soča river, NW Slovenia
Assignment: rehabilitation of the sidewalk and deck, replacement of dilation

Owner: Municipality of Bovec

4.50 m
65 m
Slope 5 %
5.6 12,7 km detour

Challenge

- Limit site duration
- Increase durability and efficiency of rehabilitation

The bridge
Village of Log Čezsoški
5.6 No-joint “coat”

Application of a continuous watertight UHPFRC on the deck and footpaths
5.6 Improved UHPFRC surface

- Surfacing technique of UHPFRC using DuPont Zemdrain® formwork liner (ZAG-2009)
5.6 Preparation works

Low roughness requirements
5.6 Preparation works

Minimum preparation works needed
5.6 Execution

- Batches of 320 litres in 500 l concrete plant
- Mixing time = 12 minutes
- Only 2 or 3 batches per truck
5.6 Execution

- 12 m³ UHPFRC applied in 2.5 to 3 cm layers.
- Execution in 2 days with a transversal joint at mid-deck surface.
5.6 The bridge after rehabilitation
5.6 Owner, user, contractor

<table>
<thead>
<tr>
<th></th>
<th>Tradition repair</th>
<th>vs.</th>
<th>UHFPRC repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site duration</td>
<td>3 moths</td>
<td>></td>
<td>1 month</td>
</tr>
<tr>
<td>Costs</td>
<td>12 MM</td>
<td>></td>
<td>12 m³ UHPFRC</td>
</tr>
<tr>
<td>Durability and efficiency of</td>
<td>?</td>
<td><</td>
<td>Minimum the double</td>
</tr>
<tr>
<td>rehabilitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CO}_2) balance /</td>
<td>21 tons</td>
<td>🟢</td>
<td>23 tons</td>
</tr>
<tr>
<td>rehabilitation*</td>
<td></td>
<td>🟢</td>
<td></td>
</tr>
<tr>
<td>(\text{CO}_2) balance /</td>
<td>?</td>
<td>></td>
<td>Maximum the half</td>
</tr>
<tr>
<td>repair service life*</td>
<td></td>
<td>></td>
<td></td>
</tr>
<tr>
<td>(\text{CO}_2) balance due to</td>
<td>18 tons</td>
<td>></td>
<td>6 tons</td>
</tr>
<tr>
<td>difference in site duration*</td>
<td></td>
<td>></td>
<td></td>
</tr>
</tbody>
</table>

*) G. Habert, LCPC, France: ARCHES final seminar
6. Conclusions

- Focus on the conceptual approach – why and where are UHPFRC really needed
- Provide concepts for "portable mixes" with universally applicable components
- Develop cast-in situ applications in different countries
- Take advantage of combination with rebars
- Dare try and be creative
- **UHPFRC concept = durable/sustainable repair of bridges**
7. Links and documents

- EU 5th FP SAMARIS/WP 14, deliverables D22 and D25 on http://samaris.zag.si

- EU 6th FP ARCHES/WP 5, deliverables D06 and D14 on http://arches.fehrl.org

aljosa.sajna@zag.si
emmanuel.denarie@epfl.ch
Acknowledgements

Local partners of the application

Municipality of Bovec (Slovenia): Mr. D. Krivec (Mayor)

TKK Srpenica: Mrs. L. Černilogar (Admixtures)

Primorje: Mr. B. Ipavec (Designer)

CPG: Mr. M. Popović, Mr. Z. Jerkič, Mr. J. Brecelj (Contractor)
Thank you for your attention!