TRANSPORTATION RESEARCH BOARD
2010 EXECUTIVE COMMITTEE*

CHAIR
Michael R. Morris
Director of Transportation, North Central
Texas Council of Governments, Arlington

VICE CHAIR
Neil J. Pedersen
Administrator, Maryland State Highway
Administration, Baltimore

EXECUTIVE DIRECTOR
Robert E. Skinner, Jr.
Transportation Research Board

J. Barry Barker
Executive Director, Transit Authority of
River City, Louisville, Kentucky

Allen D. Biehler
Secretary, Pennsylvania Department of
Transportation, Harrisburg

Larry L. Brown Sr.
Executive Director, Mississippi Department of
Transportation, Jackson

Deborah H. Butler
Executive Vice President, Planning, and CIO,
Norfolk Southern Corporation, Norfolk, Virginia

William A. V. Clark
Professor, Department of Geography, University of
California, Los Angeles

Eugene A. Conti, Jr.
Secretary of Transportation, North Carolina
Department of Transportation, Raleigh

Nicholas J. Garber
Henry L. Kinnier Professor, Department of
Civil Engineering, and Director, Center for
Transportation Studies, University of Virginia,
Charlottesville

Jeffrey W. Hamiel
Executive Director, Metropolitan Airports
Commission, Minneapolis, Minnesota

Paula J. Hammond
Secretary, Washington State Department of
Transportation, Olympia

Edward A. (Ned) Helme
President, Center for Clean Air Policy,
Washington, D.C.

Adib K. Kanafani
Cahill Professor of Civil Engineering, University of
California, Berkeley (Past Chair, 2009)

Susan Martinovich
Director, Nevada Department of Transportation,
Carson City

Debra L. Miller
Secretary, Kansas Department of Transportation,
Topeka (Past Chair, 2008)

Sandra Rosenbloom
Professor of Planning, University of Arizona, Tucson

Tracy L. Rosser
Vice President, Corporate Traffic, Wal-Mart Stores,
Inc., Mandeville, Louisiana

Steven T. Scalzo
Chief Operating Officer, Marine Resources Group,
Seattle, Washington

Henry G. (Gerry) Schwartz, Jr.
Chairman (retired), Jacobs/Sverdrup Civil, Inc., St.
Louis, Missouri

Beverly A. Scott
General Manager and Chief Executive Officer,
Metropolitan Atlanta Rapid Transit Authority,
Atlanta, Georgia

David Seltzer
Principal, Mercator Advisors LLC, Philadelphia,
Pennsylvania

Daniel Sperling
Professor of Civil Engineering and Environmental
Science and Policy; Director, Institute of
Transportation Studies; and Interim Director, Energy
Efficiency Center, University of California, Davis

Kirk T. Steudle
Director, Michigan Department of Transportation,
Lansing

Douglas W. Stotlar
President and Chief Executive Officer,
Con-Way, Inc., Ann Arbor, Michigan

C. Michael Walton
Ernest H. Cockrell Centennial Chair in Engineering,
University of Texas, Austin (Past Chair, 1991)

Peter H. Appel
Administrator, Research and Innovative Technology
Administration, U.S. Department of Transportation
(ex officio)

J. Randolph Babbitt
Administrator Federal Aviation Administration,
U.S. Department of Transportation (ex officio)

Rebecca M. Brewster
President and COO, American Transportation
Research Institute, Smyrna, Georgia (ex officio)

George Bugliarello
President Emeritus and University Professor,
Polytechnic Institute of New York University,
Brooklyn; Foreign Secretary, National Academy of
Engineering, Washington, D.C. (ex officio)

Anne S. Ferro
Administrator, Federal Motor Carrier Safety
Administration, U.S. Department of Transportation
(ex officio)

LeRoy Gishi
Chief, Division of Transportation, Bureau of
Indian Affairs, U.S. Department of the Interior,
Washington, D.C. (ex officio)

Edward R. Hamberger
President and CEO, Association of American
Railroads, Washington, D.C. (ex officio)

John C. Horsley
Executive Director, American Association of State
Highway and Transportation Officials, Washington,
D.C. (ex officio)

David T. Matsuda
Deputy Administrator, Maritime Administration,
U.S. Department of Transportation (ex officio)

Victor M. Mendez
Administrator, Federal Highway Administration,
U.S. Department of Transportation (ex officio)

William W. Millar
President, American Public Transportation
Association, Washington, D.C. (Past Chair, 1992)

Tara O’Toole
Under Secretary for Science and Technology, U.S.
Department of Homeland Security (ex officio)

Robert J. Papp (Adm., U.S. Coast Guard)
Commandant, U.S. Coast Guard, U.S. Department
of Homeland Security (ex officio)

Cynthia L. Quartersman
Administrator, Pipeline and Hazardous Materials
Safety Administration, U.S. Department of
Transportation (ex officio)

Peter M. Rogoff
Administrator, Federal Transit Administration, U.S.
Department of Transportation (ex officio)

David L. Strickland
Administrator, National Highway Traffic Safety
Administration, U.S. Department of Transportation
(ex officio)

Joseph C. Szabo
Administrator, Federal Railroad Administration,
U.S. Department of Transportation (ex officio)

Polly Trottenberg
Assistant Secretary for Transportation Policy, U.S.
Department of Transportation (ex officio)

Robert L. Van Antwerp (Lt. General, U.S. Army)
Chief of Engineers and Commanding General, U.S.
Army Corps of Engineers, Washington, D.C. (ex officio)

* Membership as of September 2010.
EMERGING ANSWERS

THE SECOND STRATEGIC HIGHWAY RESEARCH PROGRAM
ACCELERATING SOLUTIONS FOR HIGHWAY SAFETY,
RENEWAL, RELIABILITY, AND CAPACITY

2009-2010 ANNUAL REPORT
The Strategic Highway Research Program (SHRP 2)

America’s highway system is critical to meeting the mobility and economic needs of local communities, regions, and the nation. Developments in research and technology—such as advanced materials, communications technology, new data collection technologies, and human factors science—offer a new opportunity to improve the safety and reliability of the nation’s highway system. Breakthrough resolution of some significant transportation problems requires concentrated resources. The second Strategic Highway Research Program (SHRP 2) has an intense, large-scale focus, integrates multiple fields of research and technology, and is fundamentally different from the broad, mission-oriented, discipline-based research programs that have been the mainstay of highway research for half a century.

The need for SHRP 2 was identified in TRB Special Report 260: Strategic Highway Research: Saving Lives, Reducing Congestion, Improving Quality of Life, published in 2001 and based on a study sponsored by Congress through the Transportation Equity Act for the 21st Century (TEA-21). SHRP 2, modeled after the first Strategic Highway Research Program, is a focused, time-constrained, management-driven program designed to complement existing highway research programs. SHRP 2 focuses on applied research in four focus areas, which were selected on the basis of their importance to the nation’s economy and quality of life, and because strategically targeted research in these areas promises to yield high payoffs. The focus areas are: Safety, to prevent or reduce the severity of highway crashes by understanding driver behavior; Renewal, to address the aging infrastructure through rapid design and construction methods that cause minimal disruptions and produce lasting facilities; Reliability, to reduce congestion through incident reduction, management, response, and mitigation; and Capacity, to integrate mobility, economic, environmental, and community needs in the planning and designing of new transportation capacity.

SHRP 2 was authorized in August 2005 as part of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). The program is managed by the Transportation Research Board (TRB) on behalf of the National Research Council (NRC). SHRP 2 is conducted under a memorandum of understanding among the American Association of State Highway and Transportation Officials (AASHTO), the Federal Highway Administration (FHWA), and the National Academy of Sciences, parent organization of TRB and NRC. The program provides for competitive, merit-based selection of research contractors; independent research project oversight; and dissemination of research results.

SHRP 2 takes a customer-oriented view of highway needs, addressing them from a system perspective, is open to research in nontraditional highway-related areas, and explicitly acknowledges the interdependence of highway research and technology programs. Special emphasis is placed on disseminating SHRP 2 results to the intended end-users of the research, and many SHRP 2 products may be adapted as standards, guides, and practices at the local, state, or federal level.
THE NATIONAL ACADEMIES
Advisers to the Nation on Science, Engineering, and Medicine

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, on its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both the Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council.

The Transportation Research Board is one of six major divisions of the National Research Council. The mission of the Transportation Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board's varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. www.TRB.org

www.national-academies.org
CONTENTS

Preparing for a New Perspective .. 1

Critical Issues, Emerging Answers, and Developing Products 3

 How can we renew the highway system with minimal disruption to traffic and communities? ... 3

 How can we deliver transportation projects faster? 4

 How can we reduce congestion? ... 6

 How can we reduce crashes? .. 8

Preparing for Implementation ... 9

Sharing the News .. 11

Research Project List .. 13

Note: Beginning this year the SHRP 2 Annual Report will cover activities that occur during our fiscal year, which runs from July 1 through June 30. The change was made to conform with other reporting requirements.
The Second Strategic Highway Research Program (SHRP 2) asks fundamental questions about critical transportation issues. Now, four years into the program, answers to those questions are emerging, giving shape to new tools and resources and reaffirming that our national transportation goals are not separable from each other or from our desire for thriving communities, a strong economy, and balanced natural environments.

Highway congestion, for example, is a critical transportation issue. Not only is congestion frustrating to drivers, it affects our personal safety (the risk of a secondary crash increases 3% for every minute of incident delay) as well as national environmental and economic factors. Congestion is expected to increase in line with the anticipated 40% growth in U.S. population by 2050.

Answers now emerging from SHRP 2 research indicate that opportunities to reduce congestion occur throughout the lifespan of highway projects and encompass not just technology, but institutional, human, and social factors as well. Products developing in each of the four areas of focused research contribute to reducing congestion at various points in the highway project process.

For example:

- **WE CAN** speed planning, design, and delivery of highway improvements with effective models and tools for collaborating across agencies and enterprises.
- **WE CAN** speed construction and extend the life of roads and bridges by standardizing the use of innovative materials, techniques, and tools.
- **WE CAN** improve mobility with robust tools for strategically managing highway operations.
- **WE CAN** learn how to reduce crashes by understanding driving behavior, improving both safety and mobility and reducing congestion.

It may take a new perspective to recognize these opportunities that lie outside of traditional work flows, but as products of SHRP 2 research develop, the reasons to do so become increasingly compelling.

Both the questions addressed in SHRP 2 and the emerging answers reflect the thinking of many knowledgeable transportation leaders and practitioners. More than 500 people with expertise in the research topic areas, including nearly 200 from state transportation agencies, serve as members of committees and groups that advise on the research and review its products. The program also benefits from the perspective and knowledge of leaders from related industries and from academia. Additionally, representatives of the Federal Highway Administration, the National Highway Traffic Safety Administration, and the American Association of State Highway and Transportation Officials are actively involved in the program. Eighty-one teams of researchers are hard at work to push through boundaries of knowledge and practice, and transportation leaders from a dozen other countries participate in various SHRP 2 activities.

In this report, readers will find early examples of developing products to help reduce crashes and congestion and to renew the highway infrastructure. The report also documents program activities and describes an evolving focus on pre-implementation activities during a pivotal year in this 7-year program. A list of research project titles begins on page 13.

ACTIVE STATUS OF RESEARCH PROJECTS *(July 2010)*

<table>
<thead>
<tr>
<th>FOCUS AREA</th>
<th>ANTICIPATED</th>
<th>ACTIVE</th>
<th>COMPLETED</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Reliability</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Renewal</td>
<td>0</td>
<td>22</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>Safety</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>48</td>
<td>22</td>
<td>83</td>
</tr>
</tbody>
</table>
How can we renew the highway system with minimal disruption to traffic and communities?

“Rapid renewal takes place while highway facilities are in service. That’s why, across the United States, thousands of roadways and bridges that connect communities and support the flow of commerce must be replaced or renewed with the least possible disruption. How to accomplish that is a focus of SHRP 2 research. The emerging answers point to the need for advances that shrink the time spent in work zones. These include advances not just in construction methods, but in design, management, testing and inspection as well. Products to support that goal took shape this year and some are highlighted here.

A: Develop rapid ground improvement techniques

Developing products: An electronic catalog of geotechnical solutions, including materials and systems, design procedures, quality assurance and quality control processes, and methods for estimating cost (Renewal project R02, active). These products are being beta tested and should be ready for implementation in 2012. Prototype performance specifications will be part of the final delivery.
A: Design for service life

Developing products: Preservation strategies for high traffic-volume roadways (Renewal project R26 completed, report S2-R26-RR-1 and Guide S2-R26-R-2 in publication) A “Bridges for Life” guide to using innovative systems to construct bridges and their components that will last more than 100 years (Renewal project R19-A active, Guide content about 25 percent complete).

A: Prefabricate offsite

Developing products: A toolbox for accelerated bridge design and construction, including standardized plans, details, design examples, model specifications for design and construction, and training materials (Renewal project R04, construction of a demonstration project will begin in late 2010). Advances in modular pavement technology, including design and construction guidelines, draft specifications, and a long-term research plan.

A: Advance technologies for inspection and testing

Developing products: A suite of eight projects are under way to improve nondestructive testing tools and methods: measuring uniformity of new hot-mix asphalt layers; identifying deterioration of concrete bridge decks and delamination between HMA layers; evaluating field spectroscopy, infrared, and high-speed ground penetrating radar devices; performing quality control of construction materials; and mapping voids, bonding, or moisture in tunnel linings (Renewal projects R06 and R06-A through G, all active).

A: Make innovations standard

Developing products: Guidelines for managing risk on rapid renewal projects and training materials (Renewal project R09, completed); Design procedures for composite pavement systems (Renewal project R21, demonstration project constructed at MnROAD opened to traffic in June 2010); Model specifications and guidelines for measuring smoothness of portland cement concrete pavement in real-time during construction (Renewal project R06-E, active); Prototype performance specifications for rapid highway renewal (Renewal project R07, active); Strategies for planning renewal activities at corridor and network levels (Renewal project R11, active).

Q: How can we deliver transportation projects faster?

“I expect that this information will help our next major capacity project advance much more smoothly, helping us make decisions that hold, and keep us moving forward.”

—Neil Pedersen,
Administrator,
Maryland State Highway Administration

Gains from advanced design and construction methods and new technologies can speed some project phases, but achieving significant reductions in the time it takes to deliver transportation improvements will require a new perspective on preconstruction phases. Emerging answers emphasize the importance of early collaboration and integration across project phases to avoid the conflicts and impasses that delay delivery of transportation solutions that meet community needs and serve broader ecological and economic goals. For several products with potential to speed delivery in the preconstruction phases, this year was one of significant progress. These products are highlighted on the following page.
Collaborate on planning decisions

Developing products:
Transportation for Communities—Advancing Projects through Partnerships (TCAPP) is a web-based resource for collaborating at the right time and with the right people when making key decisions in planning highway capacity improvement projects. TCAPP will eventually deliver the results of more than a dozen research projects in the Capacity focus area. The current beta version includes: a performance measurement framework for decisions on capacity enhancement (C03); case studies in collaboration (C01); and a practitioner’s guide to link community visioning to capacity planning (C08). The beta version of TCAPP was made available in January 2010, at www.transportationforcommunities.com.

Know what’s underground

Developing products:
Tools for locating and characterizing underground utilities and for improving ways to collect and share 3-D data about them are addressed in four projects (Renewal projects R01 and R01A-C). The products include a web-based decision tool for selecting appropriate location technologies (the technology selection guide is in review, report S2-R01-RW is available on the SHRP 2 website), nondestructive testing tools for detecting and locating underground utilities and users manuals (due in 2012), guidelines for implementing a repository for 3-D data (due in 2012), and innovations in locating technologies for deep utilities (due 2012).

Coordinate with railroads and utilities

Developing products:
Model agreements for cooperation between DOTs and railroads, streamlined permitting procedures, and strategies for resolving policy issues (Renewal project R16 is completed, report S2-R16-RR-1 is in publication). A plan for testing innovative strategies for integrating highway and utility work (Renewal project R15 is completed, report S2-R15-RW is available on the SHRP 2 website) A web-based matrix for resolving utility conflicts in highway projects, along with training materials and a procedural manual (Renewal project R15-B, completion expected in 2011).

Integrate environmental goals with transportation planning

Developing products:
Web-based templates to help any group of involved parties assess and identify ecological priorities and strategies for success when planning transportation projects to increase capacity (Capacity project C06B completes in 2010 and will be available through TCAPP).

Guidelines for integrating conservation, planning, and environmental permitting into an ecosystem approach; model business plan and sample agreements for incorporating environmental concerns at the ecological scale in the early stages of transportation decision making (Capacity project C06A, completion in 2011, will be available through TCAPP).

A major transportation project can easily take 10 to 15 years from start to finish, even without controversial issues that can slow it down still further. A typical timeline for a major project might be:

- 2 to 3 years in planning, either as part of a long-range transportation planning effort or a corridor feasibility study,
- 4 to 6 years to address the National Environmental Policy Act (NEPA) requirements and produce a record of decision,
- 2 to 3 years for detailed design,
- 1 to 2 years for right-of-way acquisition and utility relocation, and
- 2 to 3 years for construction.

The schedule adds up to more than a decade.

Q: How can we reduce congestion?

Our 65,000 bus commuters tell us what is most important to them is not necessarily a fast trip, but a predictable one. The tools coming out of SHRP 2 will help us provide even more consistent and reliable service to our customers every day.

—Mark Muriello, Assistant Director of Tunnels, Bridges and Terminals for the Port Authority of New York and New Jersey.

A: Design for reliable travel times and long life

Developing products:
A compendium of road designs that can improve travel time reliability, along with an evaluation of their costs and effectiveness is in development (Reliability project L07, interim report due early 2011).

Structures designed to be rapidly installed and long-lasting reduce the frequency of road closures for renewal work, which reduces congestion. Renewal research will produce an array of products to help design and construct bridges and their various components to last beyond 100 years and to mainstream accelerated construction methods with model specifications. (Renewal projects R19-A completes December 2011, R19-B completes March 2012, and R04, completes October 2011).

A: Select tactical operational strategies

Developing products:
A guide to analyzing the impacts on travel-time reliability of various strategies to ease congestion has been developed and is in publication (Reliability project L03 completed, report in publication). Performance measures for operational strategies to improve travel time reliability and means to evaluate alternatives (Reliability project L11 completed, report in publication)

Web-based analysis tool for selecting management strategies that incorporate operations, technology, and design to address capacity needs (Capacity project C05, near completion).
A: Integrate highway operations with other agency functions

Developing products:

Both operational and institutional processes have great potential to benefit transportation network efficiency. Five projects will produce guides, analytic procedures, and other tools that agencies can use to improve highway operations. Two of these were completed this year and the products are in publication. (Reliability projects L01, completed; L04, due 2012; L05, due 2012; L06, completed; and Capacity project C05, due September 2010)

A: Plan for freight demands

Developing products:

A strategic plan for encouraging innovation and breakthroughs in freight demand modeling and data is in development, as are strategies for improving how freight demand is considered in transportation planning (Capacity projects C15 and C20, both due in 2011).

A: Cross-train incident responders

Developing products:

Core competencies for incident responders, a proposed curriculum, and a framework for national certification have been developed to improve safety, cooperation, and efficiency at roadway incident sites. Workshops held this spring to test and refine the training were enthusiastically received by participants and more are scheduled (Reliability project L12, completion December 2010).

A: Use advanced models to test alternative solutions

Developing products:

Public policy and investment questions require transportation modeling tools that are sensitive to the dynamic interplay between traveler behavior and actual operating conditions on the transportation network. Five projects in the Capacity area are developing products to address this need.

Advanced travel-demand models that can estimate motorist responses to transportation management strategies and public policy options (Capacity project C10A is being conducted by public agencies in Jacksonville, Florida; results will include a transit option. Public agencies in Sacramento, California, are pilot testing the network simulation and travel demand model in Capacity project C10B.)

Mathematical descriptions of motorist responses to congestion and pricing options were developed in Capacity project C04, which completed in June. Methods for evaluating capacity improvements achieved by specific management strategies were developed in Capacity project C05, which completes September 2010.

Resources for estimating the economic impact of projects to improve transportation capacity, including impacts on land use, land values, and the environment were developed in Capacity project C03, which completes in 2010.
Changes in the traffic environment, such as increasing volume, high-speed congestion, and new vehicle technologies both complicate and heighten the need for fundamental research in traffic safety. SHRP 2 research asks if developing an understanding of how drivers interact with and adapt to the challenges of these dynamic conditions can significantly reduce roadway crashes. Progress in the Safety focus area this year finalized some of the complex foundational work that will support the naturalistic driving study and refined preparations for field data collection to begin at six sites later in 2010.

A: Study driver behavior
A field study of about 3000 drivers in 6 regions of the United States will yield the largest database of information on driver behavior ever collected. It will provide data critical to establishing objective estimates of crash risk, which can then be used to develop safety improvements. Preparing to accomplish these goals required a program of 14 research projects, of which 8 are now completed.

This year, the design of the field study of driving behavior was completed. That effort included devising a management plan, developing technical specifications for hardware and software, and creating both a data reduction manual and a data dictionary specific to the study. In addition, contractors were selected for the six data collection sites, which are being readied for operation. At the six sites, study participants will complete assessments of their visual perception, reaction time, driving knowledge, and other factors while their personal cars are being equipped with data acquisition systems. The systems, which were designed and manufactured this year, include video cameras, sensors of various types, radar, and a computer hard drive for encrypted data storage.

A plan for analyzing the data collected in the naturalistic driving study was completed as well; the plan integrates features of methods developed in four earlier projects.

Another aspect of the study requires knowledge of the characteristics of roadways that study participants will travel. Collection of data about factors such as edge-marking, rumble strips, lane width, shoulder type and width, curvature, grade, signing, and sight distance involves three projects. The first was completed this year; it assessed the state of practice for mobile roadway data collection and evaluated features of the technologies related to the safety analysis.

Work continues on a project to design a site-based study in which a system of overhead video cameras collects data on the trajectory and relative position of vehicles as they move through an intersection or a specified road segment. Automating the video processing to derive trajectory data is a particularly challenging aspect of the project.

Q: How can we reduce crashes?

We know that nearly all collisions are caused by driver behavior. If we could really see what a driver is doing in the seconds before an accident or a near miss, it would open up an entirely new world of opportunities to help stop collisions before they happen.

—Kenneth Campbell, Chief Program Officer, SHRP 2 Safety Research.
While SHRP 2’s mission is to design and carry out a program of strategic research, this fourth year of program operation brought a considerable expansion of responsibilities. Continuing resolutions passed by the U.S. Congress in 2010 extended The Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users, which resulted in additional funds and a 2-year extension of SHRP 2. Although long-term responsibility for managing the implementation of SHRP 2 products will likely fall to others, including state and local transportation agencies, AASHTO, and the USDOT, the SHRP 2 Oversight Committee has decided to devote most of the additional time and money to early implementation-related activities. Until a long-term program is in place, the current SHRP 2 program will provide the focal point for implementation planning and for funding of pre-implementation activities.

At their meetings this year, the four Technical Coordinating Committees identified actions that would move the results of the most mature research projects to the next step of readiness for implementation. The Oversight Committee, at its June meeting, then selected and approved a slate of activities to refine and strengthen research results and move them toward practice. No new research was approved; rather, activities were selected to identify knowledge gaps and other barriers to implementation, conduct pilot tests, construct demonstration projects, and undertake similar efforts to advance research results along the developmental continuum to produce tools and products that are useful to transportation practitioners.

Some of these pre-implementation activities are under way in cooperation with state and local transportation agencies, metropolitan planning organizations, resource agencies, and other entities. The map indicates states where these activities are taking place.
16 States Participate in 22 SHRP 2 Activities
as of July 2010

Washington: Seattle vicinity - Safety Naturalistic Driving Study site; Puget Sound Regional Council-pilot test TCAPP (project C18); Planning for freight demand focus group (project C20)

Oregon: Pilot test of TCAPP (project C18)

California: Sacramento - pilot test the integration of advanced travel demand model and network simulation (project C10B)

Colorado: Colorado Springs, Pikes Peak- Pilot test of TCAPP (Transportation for Communities—Advancing Projects through Partnerships website (project C18))

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Indiana: Bloomington vicinity - Naturalistic Driving Study site; Indianapolis-Pilot test for incident responder training (project L12)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Minnesota: Renewal modular pavement demonstration (project R05); pilot test TCAPP, Grand Rapids (project C18); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)

Iowa: Accelerated bridge construction demonstration (project R04)

Ohio: Planning for freight demand focus group (project C20)

Pennsylvania: State College vicinity- Naturalistic Driving Study site

New York: Buffalo - Naturalistic Driving Study site

New Jersey: Planning for freight demand focus group (project C20)

Virginia: Field rodeo for nondestructive testing techniques for bridge decks (R06-A)

North Carolina: Raleigh/Durham vicinity - Naturalistic Driving Study site

Georgia: Pilot test for incident responder training (project L12)

North Dakota: Naturalistic Driving Study site

South Dakota: Naturalistic Driving Study site

Nebraska: Naturalistic Driving Study site

Kansas: Naturalistic Driving Study site

Oklahoma: Naturalistic Driving Study site

Texas: Nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06-C)

Florida: Jacksonville - pilot test site for the integration of advanced travel demand model and network simulation (project C10A); nondestructive testing demonstration for quality control of new hot-mix asphalt pavement (project R06)
Webinars
Over the past year, SHRP 2 has hosted five Webinars in which researchers presented an overview of findings that are presented in detail in the final reports published for each project. This model has been effective for presenting technical information in a way that is timely, interactive, and independent of geography. The average Webinar attracts an audience of about 150, although some of the relatively less arcane topics have had nearly twice that number. Attendees receive the presentations in an email following the Webinar; others can view a summary of the presentations or purchase the recorded Webinar from TRB. SHRP 2 has also used this technology to present pre-bid information of interest to researchers who may be considering submitting a proposal to conduct research.

SHRP 2 in Motion
When SHRP 2 activities can be captured in a way that is visually interesting, video is posted on the website in a section named SHRP 2 in Motion. Interviews, presentations, and project demonstrations are posted there. The website is a reliable source for news and a host of resources related to the program.

Conferences, symposia, workshops and other meetings
SHRP 2 research contractors and staff made presentations at 67 meeting venues other than our own between July 2009 and June 2010. Presenters traveled to 27 states and 9 foreign countries to interact with various communities of interest, contributing what we’ve learned so far and benefitting from the synergy and knowledge of others working in these areas of practice and investigation.

Reports and other publications
Four research reports were published this year, along with 9 of an expected 23 case studies that document real-world best practices, pitfalls, and lessons learned about the use of collaboration in a wide range of activities in the transportation planning process.

FIRST FRUITS
First Fruits are products that emerge from the early stages of SHRP 2 research projects. They may include case studies, annotated bibliographies, survey results, compilations of practices and technologies, and other information developed in support of the larger research objectives. The first such document was published this year. It reports the findings of a survey of composite pavements throughout Europe that was conducted as an early phase of research to advance the design and construction of such pavements in the U.S.
Speakers Bureau
A Speakers Bureau is in development, expected to be active in late 2010. A section of the SHRP 2 website is being developed to support requests from committees, professional associations and other interested groups. Subject matter experts, many of whom have been active with SHRP 2 as research products developed, are being invited to speak on our behalf to inform their peers across the transportation community about the emerging products as plans for implementation evolve.

Subscriber News Alerts
Now it is easier to stay informed about upcoming events and the release of SHRP 2 products in your area of interest. Through our News subscription service, viewers can click a link on the SHRP 2 homepage to subscribe to news about any or all of the research focus areas. Subscribers receive occasional email announcements with links to detailed information targeted to their areas of interest. So far, nearly 1,200 people have subscribed.
RESEARCH PROJECT LIST

RENEWAL PROJECTS

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R01)</td>
<td>Encouraging Innovation in Locating and Characterizing Underground Utilities</td>
</tr>
<tr>
<td>(R01-A)</td>
<td>3-D Utility Location Data: Technologies for Storage, Retrieval, and Utilization</td>
</tr>
<tr>
<td>(R01-B)</td>
<td>Multi-Sensor Platforms for Locating Underground Utilities</td>
</tr>
<tr>
<td>(R01-C)</td>
<td>Innovation in Location of Deep Utilities</td>
</tr>
<tr>
<td>(R02)</td>
<td>Geotechnical Solutions for Soil Improvement, Rapid Embankment Construction, and Stabilization of the Pavement Working Platform</td>
</tr>
<tr>
<td>(R03)</td>
<td>Identifying and Reducing Worker, Inspector, and Manager Fatigue in Rapid Renewal</td>
</tr>
<tr>
<td>(R04)</td>
<td>Innovative Bridge Designs for Rapid Renewal</td>
</tr>
<tr>
<td>(R05)</td>
<td>Modular Pavement Technology</td>
</tr>
<tr>
<td>(R06)</td>
<td>A Plan for Developing High-Speed, Nondestructive Testing Procedures for both Design Evaluation and Construction Inspection</td>
</tr>
<tr>
<td>(R06-A)</td>
<td>Nondestructive Testing to Identify Concrete Bridge Deck Deterioration</td>
</tr>
<tr>
<td>(R06-B)</td>
<td>Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials</td>
</tr>
<tr>
<td>(R06-C)</td>
<td>Using Both Infrared and High-Speed Ground Penetrating Radar for Uniformity Measurements on New HMA Layers</td>
</tr>
<tr>
<td>(R06-D)</td>
<td>Nondestructive Testing to Identify Delaminations between HMA Layers</td>
</tr>
<tr>
<td>(R06-E)</td>
<td>Real-Time Smoothness Measurements on Portland Cement Concrete Pavements During Construction</td>
</tr>
<tr>
<td>(R06-F)</td>
<td>Development of Continuous Deflection Device</td>
</tr>
<tr>
<td>(R06-G)</td>
<td>NDT Techniques for Mapping Voids, Bonding, and Moisture Behind or Within Tunnel Linings</td>
</tr>
<tr>
<td>(R07)</td>
<td>Performance Specifications for Rapid Highway Renewal</td>
</tr>
<tr>
<td>(R09)</td>
<td>Risk Manual for Rapid Renewal Contracts</td>
</tr>
<tr>
<td>(R10)</td>
<td>Innovative Project Management Strategies for Large, Complex Projects</td>
</tr>
<tr>
<td>(R11)</td>
<td>Strategic Approaches at the Corridor and Network Level to Minimize Disruption from the Renewal Process</td>
</tr>
<tr>
<td>(R15)</td>
<td>Strategies for Integrating Utility and Transportation Agency Priorities in Renewal Projects</td>
</tr>
<tr>
<td>(R15-B)</td>
<td>Identification of Utility Conflicts and Solutions</td>
</tr>
<tr>
<td>(R16)</td>
<td>Railroad-DOT Institutional Mitigation Strategies</td>
</tr>
<tr>
<td>(R19-A)</td>
<td>Bridges for Service Life beyond 100 Years: Innovative Systems, Subsystems, and Components</td>
</tr>
</tbody>
</table>
(R19-B) Durable Bridges for Service Life beyond 100 Years: Service Limit State Design

(R21) Composite Pavement Systems

(R23) Using Existing Pavement in Place and Achieving Long Life

RELIABILITY PROJECTS

(L01) Integrating Business Processes to Improve Reliability

(L02) Establishing Monitoring Programs for Travel Time Reliability

(L03) Analytic Procedures for Determining the Impacts of Reliability Mitigation Strategies

(L04) Incorporating Reliability Performance Measures in Planning and Operations Modeling Tools

(L05) Incorporating Reliability Performance Measures into the Transportation Planning and Programming Processes

(L06) Institutional Architectures to Advance Operational Strategies

(L07) Evaluation of Costs and Effectiveness of Highway Design Features to Improve Travel Time Reliability

(L08) Incorporation of Nonrecurring Congestion Factors into the Highway Capacity Manual Methods

(L09) Incorporation of Nonrecurring Congestion Factors into the AASHTO Policy on Geometric Design

(L10) Feasibility of Using In-Vehicle Video Data to Explore How to Modify Driver Behavior that Causes Nonrecurring Congestion

(L10A,B,C) Feasibility of Using In-Vehicle Video Data to Explore How to Modify Driver Behavior that Causes Nonrecurring Congestion

(L11) Evaluating Alternative Operations Strategies to Improve Travel Time Reliability

(L12) Training and Certification of Traffic Incident Responders

(L13) Requirements and Feasibility of a System for Archiving and Disseminating Data from SHRP 2 Reliability and Related Studies

(L13A) Design and Implement a System for Archiving and Disseminating Data from SHRP 2 Reliability and Related Studies

(L14) Effectiveness of Different Approaches to Disseminating Traveler Information on Travel Time Reliability

(L15) Reliability Innovations Deserving Exploratory Analysis (IDEA)

(L16) Assistance to Contractors to Archive Their Data for Reliability

(L17) A Framework for Improving Travel Time Reliability

CAPACITY PROJECTS

(C01) A Framework for Collaborative Decision Making on Additions to Highway Capacity

(C02) System-Based Performance Measurement Framework for Highway Capacity Decision Making

(C03) Interactions between Transportation Capacity, Economic Systems, and Land Use Merged with Integrating Economic Considerations in Project Development

(C04) Improving Our Understanding of Highway Users and the Factors Affecting Travel Demand (emphasis on pricing and congestion)

(C05) Understanding the Contribution of Operations, Technology, and Design to Meet Highway Capacity Needs

(C06A) Integrating Conservation, Highway Planning, and Environmental Permitting Using an Outcome-Based Ecosystem Approach

(C06B) Development of an Ecological Assessment Process and Credits System for Enhancements to Highway Capacity
(C07) Integrating SHRP 2 products into the Collaborative Decision-Making Process. This project has been added to project C01.

(C08) Linking Community Visions and Highway Capacity Planning

(C09) Incorporating Greenhouse Gas Emissions into the Collaborative Decision-Making Process

(C10A–B multiple awards) Partnership to Develop an Integrated, Advanced Travel Demand Model and a Fine-Grained, Time-Sensitive Network

(C11) Development of Improved Economic Analysis Tools Based on Recommendations from project C03

(C15) Integrating Freight Considerations into Collaborative Decision Making for Additions to Highway Capacity

(C16) The Effect of Smart Growth Policies on Travel Demand

(C18) Pilot Test the Collaborative Decision-Making Framework with Three DOTS,Including a Self-Assessment Method

(C19) Add Expedited-Schedule Case Studies to Collaborative Decision-Making Framework Database

(C20) Freight Demand Modeling and Data Improvement Strategic Plan

(C21) Pilot Test the C06A and C06B Products: the Ecological Approach to Environmental Protection

(C22) Decision Maker’s Guide to the Collaborative Decision-Making Framework

SAFETY PROJECTS

(S01A-E multiple awards) Development of Analysis Methods Using Existing Data

(S02) Integration of Analysis Methods and Development of Analysis Plan

(S03) Roadway Measurement System Evaluation

(S04A) Roadway Information Database Development and Technical Coordination and Quality Assurance of the Mobile Data Collection Project

(S04B) Mobile Data Collection

(S05) Design of the In-Vehicle Driving Behavior and Crash Risk Study

(S06) Technical Coordination and Independent Quality Assurance for Field Study

(S07A-F multiple awards) In-Vehicle Driving Behavior Field Study

(S08A-Xmultiple awards) Analysis of Driving Behavior Field Study Data and Countermeasure Implications

(S09) Site-Based Video System Design and Development

(S12) Data Acquisition System (DAS) Procurement
TRB Oversight Committee for the Strategic Highway Research Program 2

MEMBERS

H. Norman Abramson
Executive Vice President (Retired), Southwest Research Institute

Anne P. Canby
President, Surface Transportation Policy Partnership

Alan C. Clark
MPO Director, Houston-Galveston Area Council

Frank L. Danchetz
Vice President, ARCADIS G&M, Inc.

Dan Flowers
Director, Arkansas State Highway and Transportation Department

Stanley Gee
Acting Commissioner, New York State Department of Transportation

Michael P. Lewis
Director, Rhode Island Department of Transportation

Susan Martinovich
Director, Nevada Department of Transportation

John R. Nord
Executive Director, Utah Department of Transportation

Charles F. Potts
Chief Executive Officer, Heritage Construction and Materials

Gerald Ross
Chief Engineer, Georgia Department of Transportation

George E. Schoener
Executive Director, I-95 Corridor Coalition

Kumares C. Sinha
Olson Distinguished Professor of Civil Engineering, Purdue University

EX OFFICIO MEMBERS

Víctor M. Méndez
Administrator, Federal Highway Administration

Ron Medford
Acting Administrator, National Highway Traipsation Safety Administration

John C. Horsley
Executive Director, American Association of State Highway and Transportation Officials

LIAISON MEMBERS

FHWA

Jeffrey F. Paniati
Executive Director, Federal Highway Administration

Michael F. Trentacoste
Associate Administrator, Research, Development, and Technology, Federal Highway Administration

Margie Sheriff
Director, SHRP 2 Implementation Team, Office of Corporate Research, Technology, and Innovation Management, Federal Highway Administration

AASHTO

Tony Kane
Director, Engineering and Technical Services, American Association of State Highway and Transportation Officials

CANADA

John Pearson
Program Director, Council of Deputy Ministers Responsible for Transportation and Highway Safety

LIAISONS

Janet P. Oakley
Director, Policy and Government Relations, American Association of State Highway and Transportation Officials

David Yang
Highway Research Engineer; Felicia B. Young Research & Financial Service Team Leader;

Jack Jernigan
Legislation and Budget Analyst; Federal Highway Administration

Thérèse A. Trépanier
Direction de la recherche et de l’environnement, Ministère des Transports du Québec

Martine A. Micozzi
Management and Policy Specialist; Nanda Srinivasan Senior Program Officer; Transportation Research Board

Co-chair:

Neil J. Pedersen
Administrator, Maryland State Highway Administration

Co-chair:

Mary Lynn Tischer
Director, Multimodal Transportation Planning Office, Virginia Department of Transportation

MEMBERS

Kome Ajise
Acting Deputy Director for Planning and Modal Program, California Department of Transportation

Jacquelyn D. Grimshaw
Vice President for Policy, Center for Neighborhood Technology

Kris Hoellen
Director, Conservation Leadership Network, The Conservation Fund

Charles E. Howard, Jr.
Director, Transportation Planning, Puget Sound Regional Council

Carolyn H. Ismart
Florida Department of Transportation (Retired)

Thomas J. Kane
Executive Director, Des Moines Area MPO

J. Michael Kelley
Chief Sustainability Officer, YRC Worldwide, Inc.

Keith L. Killough
Assistant Director, Travel Demand Modeling & Analysis, Arizona Department of Transportation

T. Keith Lawton
Keith Lawton Consulting, Inc.

Gary McVoy
Director, Operations Division, New York State Department of Transportation

Edward A. Mierzejewski
Director, Center for Urban Transportation Research, University of South Florida

Joseph L. Schofer
Professor of Civil Engineering and Environmental Engineering and Associate Dean, McCormick School of Engineering & Applied Science, Northwestern University

BARRY SEYMOUR
Executive Director, Delaware Valley Regional Planning Commission

Brian J. Smith
Director, Strategic Planning and Programming, Washington State Department of Transportation

John V. Thomas
Office of Policy, Economics and Innovation, Environmental Protection Agency

Gary Toth
Project for Public Spaces

Mark Van Port Fleet
Director, Bureau of Highway Development, Michigan Department of Transportation

Jeff Welch
Director, Knoxville Regional Transportation Planning Organization

LIAISONS

Janet P. Oakley
Director, Policy and Government Relations, American Association of State Highway and Transportation Officials

David Yang
Highway Research Engineer; Felicia B. Young Research & Financial Service Team Leader;

Jack Jernigan
Legislation and Budget Analyst; Federal Highway Administration

Thérèse A. Trépanier
Direction de la recherche et de l’environnement, Ministère des Transports du Québec

Martine A. Micozzi
Management and Policy Specialist; Nanda Srinivasan Senior Program Officer; Transportation Research Board
SHRP2 Reliability Capacity Technical Coordinating Committee (TCC)

Chair: John F. Conrad
Director, Highway/Bridge Market Segment, Transportation Business Group, CH2M HILL

MEMBERS

Stephen Albert
Director, Western Transportation Institute

Stephen P. Austin
Project Manager, Cumberland Valley Volunteer Firemen’s Association

Emergency Response Safety Institute

Malcolm E. Baird
Consultant

Kevin W. Burch
President, Jet Express, Inc.

John Corbin
State Traffic Engineer, Wisconsin DOT

Henry DeVries
Operations Program Coordinator, I-95 Corridor Coalition/NYSP

Leslie S. Fowler
ITS Program Manager, Bureau of Transportation Planning, Kansas Department of Transportation

Steven Gayle
Executive Director, Binghamton (NY) Metropolitan Transportation Study

Bruce R. Hellinga
Associate Professor, Department of Civil & Environmental Engineering, University of Waterloo

Lap Thong Hoang
President, Lap Thong Hoang, LLC

Patricia S. Hu
Director, Center for Transportation Analysis, Oak Ridge National Laboratory

Sarah C. Joshua
ITS and Safety Program Manager, Maricopa Association of Governments

Mark F. Muriello
Assistant Director, Tunnels, Bridges & Terminals, The Port Authority of New York and New Jersey

Richard J. Nelson
Assistant Director, Operations, Nevada Department of Transportation

Richard Phillips
Incident Response Program Manager, Washington State Department of Transportation

Constance S. Sorrell
Chief of Systems Operations, Virginia Department of Transportation

Jan van der Waard
Strategic Advisor, Ministry of Transport, Water Management and Public Works

Directorate General Rijkswaterstaat

Centre for Transport and Navigation

John P. Wolf
Assistant Division Chief, Traffic Operations, California Department of Transportation

Margot Yapp
Vice President, Nichols Consulting Engineers, Chtd.

FHWA LIAISONS

Robert Arnold
Director of Transportation Operations, Federal Highway Administration Office of Operations

David Yang
Highway Research Engineer, Federal Highway Administration Office of Operations R&D

AASHTO LIAISON

Mark S. Bush
Program Manager for Transportation Operations, American Association of State Highway and Transportation Officials

CANADA LIAISON

Andrew Beal
Manager, Traffic Office, Highway Standards Branch, Ontario Ministry of Transportation

TRB LIAISONS

NCHRP

B. Ray Derr
Senior Program Officer, Transportation Research Board

TRB TECHNICAL ACTIVITIES

Richard A. Cunard
Engineer of Traffic and Operations, Transportation Research Board

Renewal Technical Coordinating Committee

Membership as of May 2010

Chair:
Randell H. Iwasaki
Executive Director, Contra Costa Transportation Authority

MEMBERS

Rachel Arulraj
Director of Virtual Design & Construction, Parsons Brinckerhoff

Michael E. Ayers
Director of Pavement Technology Services, American Concrete Pavement Association

Thomas E. Baker
State Materials Engineer, Washington State Department of Transportation

John E. Breen
Al-Rashid Chair in Civil Engineering, The University of Texas at Austin

Daniel D’Angelo
Director and Deputy Chief Engineer, Office of Design, New York State Department of Transportation

Rocco A. DePrimo
Manager of Quality Assurance, Utility Manager, Keith and Schnars, PA.

Steven D. DeWitt
Chief Engineer, North Carolina Turnpike Authority

Tom Donovan
Senior Right of Way Agent (retired), California Department of Transportation

Alan D. Fisher
Manager, Construction Structures Group, Cianbro Corporation

Michael Hemmingsen
Davison Transportation Service Center Manager, Michigan Department of Transportation

Bruce Johnson
State Bridge Engineer, Oregon Department of Transportation, Bridge Engineering Section

Leonnie Kavanagh
PhD Candidate, Seasonal Lecturer, Civil Engineering Department, University of Manitoba

Thomas W. Pelnik III
Director, Innovative Project Delivery Division, Virginia Department of Transportation

Mary Lou Ralls
Principal, Ralls Newman, LLC

John J. Robinson, Jr.
Assistant Chief Counsel, Pennsylvania Department of Transportation, Governor’s Office of General Counsel

Michael Ryan
Vice President, Michael Baker Jr., Inc.

Cliff J. Schexnayder
Eminent Scholar Emeritus, Arizona State University

Ted M. Scott, II
Director, Special Projects, American Trucking Associations, Inc.

Gary D. Taylor
Professional Engineer

Thomas R. Warne
President, Tom Warne and Associates, LLC

Gary C. Whited
Program Manager, Construction and Materials Support Center, University of Wisconsin–Madison

AASHTO LIAISON

James T. McDonnell
Associate Program Director for Engineering, American Association of State Highway and Transportation Officials

FHWA LIAISONS

Cheryl Allen Richter
Infrastructure Research Program Manager, Office of Infrastructure Research and Development, Federal Highway Administration

Steve Gaj
Leader, System Management and Monitoring Team, Office of Asset Management, Federal Highway Administration

CANADA LIAISON

Lance Vigfusson
Assistant Deputy Minister of Engineering & Operations, Manitoba Infrastructure and Transportation
Chair:
FORREST M. COUNCIL
Senior Research Scientist, Highway Safety Research Center, University of North Carolina

MEMBERS

DAVID L. BANKS
Professor, Practice of Statistics, Department of Statistical Science, Duke University

JAMES A. BONNESON
Senior Research Engineer, Texas Transportation Institute, Texas A&M University

RICHARD K. DEERING
President, RK Deering & Associates, Inc.

LEANNA DEPUE
Director, Highway Safety Division, Missouri Department of Transportation

JOANNE L. HARBLUK
Human Factors Specialist, Transport Canada

JAMES H. HEDLUND
Principal, Highway Safety North

BRUCE A. IBARGUEN
Engineer of Traffic, Maine Department of Transportation

MAVIS JOHNSON
President, Canadian Traffic Safety Institute

LAWRENCE H. ORCUTT
Chief, Division of Research and Innovation, California Department of Transportation

J. SCOTT OSBERG
Principal, Social Science Ink

ROBERT W. SCHOMBER
Regional Manager, Florida Power & Light Company

DAVID SHINAR
Professor, Department of Industrial Engineering and Management, Ben Gurion University of the Negev

ALISON SMILEY
President, Human Factors North, Inc.

THOMAS M. WELCH
State Transportation Safety Engineer, Office of Traffic and Safety, Iowa Department of Transportation

TERECLA W. WILSON
Strategic Highway Safety Plan Program Manager, South Carolina Department of Transportation

AASHTO LIAISONS

KELLY HARDY
Safety Program Manager, American Association of State Highway and Transportation Officials

KEN F. KOBETSKY
Program Director for Engineering, American Association of State Highway and Transportation Officials

FHWA LIAISONS

MICHAEL GRIFFITH
Director, Office of Safety Integration, Federal Highway Administration

MONIQUE EVANS
Director, Office of Safety Research and Development, Federal Highway Administration

AUTO INDUSTRY LIAISONS

MICHAEL CAMMISA
Director, Safety, Association of International Automobile Manufacturers, Inc.

SCOTT SCHMIDT
Director, Safety and Regulatory Affairs, Alliance of Automobile Manufacturers

CANADA LIAISON

KENT SPEIRAN
Manager, Road Safety, Nova Scotia Department of Transportation and Infrastructure Renewal

EUROPEAN SAFETY LIAISON

FRED WEIGMAN
Managing Director, SWOV Institute for Road Safety Research, Netherlands

FMCSA LIAISON

MARTIN WALKER
Chief, Research Division, Federal Motor Carrier Safety Administration

NHTSA LIAISONS

RICHARD COMPTON
Director, Office of Behavioral Safety Research, National Highway Traffic Safety Administration

TIM JOHNSON
Director, Office of Human-Vehicle Performance Research, National Highway Traffic Safety Administration
SHRP 2 STAFF

Neil F. Hawks
Director

Ann M. Brach
Deputy Director

Kizzy Anderson
Senior Program Assistant, Implementation, Publications, and Communications

Stephen Andrle
Chief Program Officer, Capacity

James Bryant
Senior Program Officer, Renewal

Kenneth Campbell
Chief Program Officer, Safety

JoAnn Coleman
Senior Program Assistant, Capacity

Walter Diewald
Senior Program Officer, Safety

Jerry DiMaggio
Implementation Coordinator

Charles Fay
Senior Program Officer, Safety

Carol Ford
Senior Program Assistant, Safety

Elizabeth Forney
Assistant Editor

Jo Allen Gause
Senior Program Officer, Capacity

Ralph Hessian
Visiting Professional

Andy Horosko
Special Consultant, Safety Field Data Collection

William Hyman
Senior Program Officer, Reliability

Linda Mason
Communications Officer

Michael Miller
Senior Program Assistant, Reliability

David Plazak
Senior Program Officer, Capacity and Reliability

Robert Raab
International Coordinator

Monica Starnes
Senior Program Officer, Renewal

Noreen Stevenson-Fenwick
Senior Program Assistant, Renewal

Chrystyne Talley
Financial Associate

Charles Taylor
Special Consultant, Renewal

Dean Trackman
Managing Editor

Hans van Saan
Visiting Professional

Pat Williams
Administrative Assistant

Connie Woldu
Administrative Coordinator

Patrick Zelinski
Communications Associate