
SHRP 2 Capacity Project C10A

Start-up Guide for the Dynamic,

Integrated Model System:
Burlington-Area and Jacksonville-

Area Applications

SHRP 2 Capacity Project C10A

Start-up Guide for the Dynamic, Integrated
Model System: Burlington-Area and

Jacksonville-Area Applications

RSG
AECOM

Mark Bradley Research & Consulting
John Bowman Research & Consulting

Mohammed Hadi, FIU
Ram Pendyala, ASU

Chandra Bhat, UT Austin
Travis Waller, UT Austin

‘

TRANSPORTATION RESEARCH BOARD
Washington, D.C.

2014
www.TRB.org

© 2014 National Academy of Sciences. All rights reserved.

ACKNOWLEDGMENT
This work was sponsored by the Federal Highway Administration in cooperation with the
American Association of State Highway and Transportation Officials. It was conducted in the
second Strategic Highway Research Program, which is administered by the Transportation
Research Board of the National Academies.

COPYRIGHT INFORMATION
Authors herein are responsible for the authenticity of their materials and for obtaining written
permissions from publishers or persons who own the copyright to any previously published or
copyrighted material used herein.

The second Strategic Highway Research Program grants permission to reproduce material in this
publication for classroom and not-for-profit purposes. Permission is given with the
understanding that none of the material will be used to imply TRB, AASHTO, or FHWA
endorsement of a particular product, method, or practice. It is expected that those reproducing
material in this document for educational and not-for-profit purposes will give appropriate
acknowledgment of the source of any reprinted or reproduced material. For other uses of the
material, request permission from SHRP 2.

NOTICE
The project that is the subject of this document was a part of the second Strategic Highway
Research Program, conducted by the Transportation Research Board with the approval of the
Governing Board of the National Research Council.

The Transportation Research Board of the National Academies, the National Research Council,
and the sponsors of the second Strategic Highway Research Program do not endorse products or
manufacturers. Trade or manufacturers’ names appear herein solely because they are considered
essential to the object of the report.

DISCLAIMER
The opinions and conclusions expressed or implied in this document are those of the researchers
who performed the research. They are not necessarily those of the second Strategic Highway
Research Program, the Transportation Research Board, the National Research Council, or the
program sponsors. The information contained in this document was taken directly from the
submission of the authors. This material has not been edited by the Transportation Research
Board.

SPECIAL NOTE: This document IS NOT an official publication of the second Strategic
Highway Research Program, the Transportation Research Board, the National Research Council,
or the National Academies.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished
scholars engaged in scientific and engineering research, dedicated to the furtherance of science and
technology and to their use for the general welfare. On the authority of the charter granted to it by
Congress in 1863, the Academy has a mandate that requires it to advise the federal government on
scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National
Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its
administration and in the selection of its members, sharing with the National Academy of Sciences the
responsibility for advising the federal government. The National Academy of Engineering also sponsors
engineering programs aimed at meeting national needs, encourages education and research, and
recognizes the superior achievements of engineers. Dr. C. D. (Dan) Mote, Jr., is president of the National
Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the
services of eminent members of appropriate professions in the examination of policy matters pertaining to
the health of the public. The Institute acts under the responsibility given to the National Academy of
Sciences by its congressional charter to be an adviser to the federal government and, upon its own
initiative, to identify issues of medical care, research, and education. Dr. Victor J. Dzau is president of the
Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to
associate the broad community of science and technology with the Academy’s purposes of furthering
knowledge and advising the federal government. Functioning in accordance with general policies
determined by the Academy, the Council has become the principal operating agency of both the National
Academy of Sciences and the National Academy of Engineering in providing services to the government,
the public, and the scientific and engineering communities. The Council is administered jointly by both
Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. C.D. (Dan) Mote, Jr., are chair
and vice chair, respectively, of the National Research Council.

The Transportation Research Board is one of six major divisions of the National Research Council.
The mission of the Transportation Research Board is to provide leadership in transportation innovation
and progress through research and information exchange, conducted within a setting that is objective,
interdisciplinary, and multimodal. The Board’s varied activities annually engage about 7,000 engineers,
scientists, and other transportation researchers and practitioners from the public and private sectors and
academia, all of whom contribute their expertise in the public interest. The program is supported by state
transportation departments, federal agencies including the component administrations of the U.S.
Department of Transportation, and other organizations and individuals interested in the development of
transportation. www.TRB.org

www.national-academies.org

About This Guide
Project C10A developed an application of the DaySim activity-based demand model and a
TRANSIMS network for Burlington, Vermont, to test linking the demand and network
models in a relatively small environment. The research team did the design and
troubleshooting work on the Burlington model set to take advantage of quicker run times.
Once the integrated model system worked in Burlington, the model structure was transferred
to the larger Jacksonville, Florida, area.

This document contains two start-up guides, one for the Burlington model set and one
for the Jacksonville-area model set. They are similar for the reasons described above, but
they are not the same. The start-up guides describe the file structures and provide step-by
step instruction to get started on each set.

The model files are a “snapshot” of the final files developed under the project. The
files provided by SHRP 2 and FHWA for the project should be used rather than the latest
versions on the market. All of the software components continue to change in the open
source environment, so the final versions provided should be used as a starting point.
See the reports on the project—SHRP 2 C10A: Dynamic, Integrated Model System:
Jacksonville-Area Application and SHRP 2 C10A: Transferability of Activity-Based Model
Parameters—for more information.—Stephen J. Andrle, SHRP 2 Deputy Director

i

Contents for Part 1: Burlington, Vermont

2 CHAPTER 1 Introduction

3 CHAPTER 2 Model Directory Structure
3 2.1 SHRP2_C10A_v3-12-21-2012_Base
5 2.2 Burlington_Model Directory
8 2.3 RTE Directory
10 2.4 TRANSIMS

11 CHAPTER 3 Operating Systems and Hardware
11 3.1 Specifying Operating System
12 3.2 Specifying Partitioning Variables

14 CHAPTER 4 Running the Integrated Model System
19 4.1 Model Runtimes
19 4.2 File Naming Convention

ii

Contents for Part 2: Jacksonville, Florida

22 CHAPTER 1 Introduction

23 CHAPTER 2 Model Directory Structure
23 2.1 Jacksonville_Burlington_Daysim_TransiMs_V5_Studio_Model_V1
25 2.2 Burlington_Model And Jacksonville_Planning_Model Directories
29 2.3 Rte_Burl And Rt_Jax Directories
30 2.4 1_Software

32 CHAPTER 3 Operating Systems And Hardware
32 3.1 Specifying Operating System
33 3.2 Specifying Partitioning Variables

35 CHAPTER 4 Running The Integrated Model System
40 4.1 Model Runtimes
40 4.2 File Naming Convention

iii

PART 1: Burlington, Vermont

1

CHAPTER 1

Introduction

The primary objective of the C10A project is to make operational a dynamic, integrated
model—that is, an integrated, advanced travel demand model with a fine-grained, time-
sensitive network—and to demonstrate the model’s performance through validation tests and
policy analyses. This integrated model system is necessary because most current travel
models are not sufficiently sensitive to the dynamic interplay between travel behavior and
network conditions and are unable to reasonably represent the effects of transportation
policies such as variable road pricing and travel demand management strategies. The model
system was designed to capture changes in demand, such as time-of-day choice (i.e., peak
spreading), destination, mode, and route choice in response to capacity and operational
improvements such as signal coordination, freeway management, and variable tolls.

The purpose of this start-up guide is to provide information necessary for an end user
to develop a working knowledge of the DaySim-TRANSIMS integrated model system
(referred to as “the model”). The end-user start-up guide is a technical document for travel
modeling practitioners who are interested in studying the configuration and specification of
the system and ultimately running the model.

The start-up guide does not represent and/or address the following:

• Technical DaySim software documentation,
• Technical TRANSIMS software documentation,
• Technical TRANSIMS Studio software documentation,
• Technical Python software documentation, and
• Technical integrated DaySim-TRANSIMS model system software

documentation.

Detailed software and technical documentation can be found elsewhere and has been

submitted as other stand-alone SHRP 2 C10A research project products. The start-up guide
does not require expert-level experience with the software used in the model system.
However, some familiarity with the software and, more important, the underlying concepts
associated with these tools is essential.

2

CHAPTER 2
Model Directory Structure

This section of the start-up guide describes the model system directory structure and briefly
explains the contents of each directory and subdirectory.

2.1 SHRP2_C10A_v3-12-21-2012_Base
When the zip-archive is unpacked, the main model directory is labeled as SHRP2_C10A_v3-
12-21-2012_Base (Figure 2.1). This archive contains DaySim Version 1.8.4 and TRANSIMS
Version 5. Older versions of the integrated model system used earlier releases of the DaySim
and TRANSIMS software.

Figure 2.1. Main model directory: SHRP2_C10A_v3-12-21-2012_Base.

2.1.1 Burlington_Master_Controls
The Burlington_Master_Controls directory contains 70 control files (*.ctl) which specify the
input and output files for each individual TRANSIMS tool used during the execution of the
integrated model system (Figure 2.2). The control files can be opened with any text editor.
The control files will look familiar to a practitioner familiar with the TRANSIMS software.
The control files contain a listing of the “keys” used by the program followed by an input
file, output file, parameter, and/or variable value.

Global (G) and assignment (N) iteration-specific control files are created on the fly
during the model execution from these master control files. As such the user will find that
most of the master control files contain “wildcards” that indicate where a variable
replacement is performed. For instance, results/@NEW@.@ALT@.Performance in the
master control file includes two variables (NEW and ALT)—identified by the @ symbols—
which will be replaced by actual values during the execution. In this case NEW could be
replaced by the value 1.50 and ALT could be replaced by the string Activity_Model.

3

Figure 2.2. Burlington_Master_Controls directory.

2.1.2 Burlington_Model
The Burlington_Model directory is the principal directory associated with the integrated
model system (Figure 2.3). This directory contains all the inputs, control files, and scripts
used during the model execution and is the location where final outputs are written. The
contents of this directory are described in more detail in Section 2.2.

Figure 2.3. Burlington_Model directory.

2.1.3 RTE_BURL Directory
The runtime-environment (RTE) directory contains the Python scripts which control the
integrated model system execution as well as model log files (Figure 2.4). The contents of
this directory are described in more detail in Section 2.3.

4

Figure 2.4. RTE_BURL directory.

2.1.4 TRANSIMS
The TRANSIMS directory contains the TRANSIMS executables (Figure 2.5). The contents of
this directory are described in more detail in Section 2.4.

Figure 2.5. TRANSIMS directory.

2.2 Burlington_Model Directory
The Burlington_Model directory contains 12 individual subdirectories in which input,
intermediate, and final output files from the integrated model system run are stored (Figure
2.6). Each individual subdirectory is described below.

5

Figure 2.6. Burlington_Model directory.

2.2.1. Analysis Directory
The analysis directory contains subdirectories associated with model pre- and postprocessing.
The analysis directory subdirectories are as follows:

• arcview\ contains shape file representations of the TRANSIMS network files.
• eventsum\ contains eventsum postprocessing outputs (schedule consistency

measures).
• eventsum_tod\ contains eventsum by time-of-day postprocessing outputs

(schedule consistency measures).
• gap_extraction\ contains trip gap and relative gap postprocessing outputs.
• RMSD_demand\ contains root mean square difference postprocessing outputs.

2.2.2 Controls Directory
The controls directory contains the run and TRANSIMS tool-specific control files which are
generated on the fly during the model execution from the inputs contained in the
Master_Controls directory.

2.2.3 DaySim Directory
The daysim directory contains the files, parameters, and controls required to run the
disaggregate demand estimation model, DaySim. The daysim directory contains three
subdirectories: input\, output\, and working\. For more information and technical
documentation details, the user should review the DaySim online documentation.

2.2.4 Demand_daysim_activities_plus_auxiliary_trips Directory
The demand_daysim_activities_plus_auxiliary_trips directory contains the disaggregate
demand estimate by DaySim as well as the auxiliary demand files (trucks, externals). The

6

directory contains three subdirectories: demand\, households\, and vehicles\, which is how
TRANSIMS inputs are typically split for input into the Router, Microsimulator, and related
toolbox tools.

Important demand files include the following:

• \Daysim\demand\activity.tab is the daily regional household-person activity list

estimated by DaySim.
• \Daysim\demand\auxiliary_trips is the daily regional truck and external trips not

estimated by DaySim.
• \Daysim\household\partitioned_all_households.t** is the regional household list

which is partitioned during model execution to support parallelization of the
model run.

2.2.5 Eventsum_data Directory
The eventsum_data directory is the location where outputs from the TRANSIMS tool
EventSum are written.

2.2.6 Network Directory
The network directory is the location where the TRANSIMS input network files are located.
A TRANSIMS network comprises a number of important input files: Activity Locations,
Nodes, Links, Lanes, Lane_Connectivity, Pocket_Lane, Parking_Locations, Process_Link,
Signal_Coordinator, Signalized_Nodes, Unsignalized_Nodes, Timing_Plan, Phasing_Plan,
and Zone_Table.

The user should refer to the TRANSIMS online documentation for more information
about network files.

2.2.7 Performance_data Directory
The performance directory contains the link performance output file produced by the
TRANSIMS Microsimulator. The performance file includes link-level attributes such as
volumes and congested travel times.

2.2.8 Plans Directory
The plans directory contains the travel plan output files produced by the TRANSIMS Router.
The plans represent all of the regional time-dependent shortest paths (TDSP) identified by
the Router for all the input regional travel demand, the daily activities from DaySim, and the
auxiliary truck and external trips estimated exogenously.

7

2.2.9 Results Directory
The results directory contains the Link_Delay output files produced by the TRANSIMS
PlanSum and Microsimulator tools. The link delay files contain key metrics used during the
assignment iteration process and used to assess model system performance.

2.2.10 Skims Directory
The skims directory contains the zone-to-zone travel impedance skims produced by the
TRANSIMS PathSkim tool. Note that PathSkim is the only TRANSIMS Version 5 tool used
in the integrated model system. The skims are a critical input to the DaySim demand
estimation model.

2.2.11 Trips Directory
The trips directory contains the rescheduled, regional-demand trip files. Rescheduling
sensitivity testing was conducted as part of ongoing research efforts. The directory will not
be filled with output files when the model package is executed as delivered.

2.2.12 Visualize Directory
The visualize directory contains the output files associated with running the
VisualizerPrep.py script. The output files produced by the TRANSIMS tool ArcSnapshot
reside in this directory location. The user should refer to both the TRANSIMS and
TRANSIMS visualizer (VIS) online documentation for more information.

2.3 RTE Directory
The RTE directory contains the Python scripts that control the integrated model system
execution as well as model log files (Figure 2.7).

8

Figure 2.7. RTE directory.

2.3.1. Python (*.py) Files
The RTE directory contains the seven Python scripts that control the integrated model system
execution:

• AssembleSkims.py generates the travel impedance skims which are critical inputs
to the DaySim demand model.

• DaySim.py runs the DaySim demand model in addition to some pre- and
postprocessing associated with disaggregate demand estimation.

• Main.py controls the step-wise execution of the entire model system—
specifically, which tools are executed and when. The script contains important
model run specification variables such as the number of global iteration loops
(MaxFeedBackLoops) and assignment iteration loops (MaxAssignmentIterations).

• MsimIterations.py runs the supply-side iteration scheme that has been developed
to achieve a dynamic traffic assignment user equilibrium using the TRANSIMS
toolbox with input disaggregate demand estimated by DaySim.

• SysDef.py specifies a number of important system definitions. The relative paths
to software binaries, critical input files, geography-specific inputs, and system
control variables are specified.

• VisualizerPrep.py runs the visualizer preparation process so that regional
simulations can be viewed using TRANSIMSVIS, the TRANSIMS visualizer
software packaged with TRANSIMS Studio.

9

2.3.2 Main (Main.*) Files
The RTE directory also contains the 10 text files created during the model execution. Two of
the Main.* files of particular interest to end users are the following:

• Main.log is the main log file which documents the status of the model run. This
can be a useful file for debugging model execution failures.

• Main.res is the main “resume” file. Depending on how it is configured, the
integrated model system may have relatively long runtimes. Therefore,
functionality was added to support resuming the model at the point desired by the
end user. The model can be resumed from the last model step which was executed
successfully or from a user-specified step (assuming all the intermediate files
needed to launch from that point are present.) When the model is executed for the
very first time, this file must be removed or renamed.

2.4 TRANSIMS

2.4.1 TRANSIMS_Studio
The Transims_Studio directory contains the installer for the TRANSIMS Studio v0.9.9
software (TRANSIMS-Studio-0.9.9-Win.exe). The TRANSIMS Studio application is an
integrated development environment for the Transportation Analysis and Simulation System
(TRANSIMS). Components include a runtime environment to execute TRANSIMS in
parallel, as well as a full-featured graphical user interface (GUI). TRANSIMS Studio serves
as the runtime controller and GUI for the model system. This software will need to be
installed by the user. Note that the installer will also install the required version of Python.

2.4.2 TRANSIMS_v4_Windows_Executables_64bit
This directory contains the Version 4 TRANSIMS toolbox—specifically, the 22 Windows
64-bit compiled TRANSIMS tools which are used by the model system. Again, note that
each individual TRANSIMS executable has an associated version number (e.g.,
Microsimulator, Version 4.0.79).

2.4.3 TRANSIMS_v5_Windows_Executables_64bit
This directory contains the Version 5 TRANSIMS toolbox—specifically, the 17 Windows
64-bit compiled TRANSIMS tools which are used by the model system. Note that each
individual TRANSIMS executable has an associated version number (e.g., Microsimulator,
Version 4.0.79).

2.4.4 TRANSIMVIS_Visualizer
This directory contains the files to support the use of the TRANSIMS-VIS visualizer.

10

CHAPTER 3

Operating Systems and Hardware

The current model system is configured to run on Windows operating systems, although it
can also be set up to run in Linux. Runtimes for the model system are influenced by a
number of factors, including

• The computing resources available to run the simulation (such as the number and
performance of processors, the amount of memory available, and the speed of
storage drive input/output);

• The degree of convergence required for a given model application;
• The size of the synthetic population used as the basis for all choice making in the

model; and
• The level of detail of segmentation employed in the model system (such as the

number of time periods).

The Windows implementation of the model system typically is configured to use

between eight and 32 processing cores, although this can be flexibly set to exploit
TRANSIMS partitioning capabilities. The project team tested a number of alternative
configurations of the model system with respect to temporal detail and market segmentation
of the skims. As few as four time periods and as many as 22 time periods were used in the
model system; some configurations employed no value-of-time segmentation while other
configurations included up to 50 value-of-time segments. The simplest of these schemes
could be run with only 2 GB of RAM, while the most elaborate of the schemes required
approximately 20 GB of RAM. Data storage and access influence runtimes; so in addition to
having sufficient RAM, the model system (specifically, TRANSIMS) also benefits greatly
from the use of fast hard drives for storage—ideally, solid state drives (SSD). The project
team tested the model system using both the Transportation Research and Analysis
Computing Center (TRACC) Linux computing cluster located at Argonne National
Laboratory and local Windows-based servers.

3.1 Specifying Operating System
The integrated model system can be operating-system agnostic, although the current
distribution is configured for Windows only. The specification of the operating system can be
configured by the user by reviewing and/or modifying lines in system definition Python
script, SysDef.py. Lines 14 through 38 of the SysDef.py file are presented in Figure 3.1.

The operating system will be automatically identified using the os.name function. The
model package as delivered is configured to run in Windows and the software paths are
specified properly (var.BINDIR, var.BINDIR_v5, var.DAYSIM.EXE, and var.DAYSIM_CTL).

11

If the user wishes to run the integrated model system in Linux, a number of paths in
this section of the system definition Python file (Lines 26–31) need to be modified.
Specifically, the lines colored in green will need to be revised to point to the correct paths for
the Linux TRANSIMS binaries and the location of the TRANSIMS RTE where the Studio
installation places the TRANSIMS RTE directory. In addition, the Windows-compiled version
of the DaySim executable will need to be run through the WINE emulator.

Figure 3.1. SysDef.py lines for operating system specification.

3.2 Specifying Partitioning Variables
A number of tools in the TRANSIMS toolbox support partitioning to reduce model system
runtime. In particular, the TRANSIMS Router can be run with a partitioned regional
household list to expedite the processing using the computing resources available on the
modeling machine being used.

The number of partitions can be selected and set by the user on Line 64 of the system
definition, SysDef.py, Python script. The model package as delivered has the
NUM_PARTITIONS variable set to a value of eight (8). Therefore, the input household list
will be split into eight parts to facilitate eight simultaneous Router instances, each working
on a separate portion of the input demand files (activities and trips). Note that
NUM_PATHSKIM_THREADS should not be set higher than eight, as testing to date has
revealed instability with the program beyond eight threads. Thus,

12

• (Line 64) var.NUM_PARTITIONS = 8, and
• (Line 65) var.NUM_PATHSKIM_THREADS = 8.

13

CHAPTER 4
Running the Integrated Model System

This section provides a list of instructions to run the integrated model system. The model
system requires at least 4 GB of RAM, although if additional spatial or temporal detail is
required this requirement will increase. The model does not explicitly require multiple
processing cores, though the availability and speed of multiple cores will reduce model
runtimes. The steps should be performed in the order they are presented.

1. Unzip the compressed archive SHRP2_C10A_v3-12-21-2012_Base.zip. The
model files can be unpacked anywhere on the user’s local machine (e.g.,
C:\Travel_Models).

2. Run the TRANSIMS Studio installer provided in the directory
..\SHRP2_C10A_v3-12-21-
2012_Base\TRANSIMS\TRANSIMS_Studio\TRANSIMS-Studio-0.9.9-Win.exe.
Simply double-click on the executable, click “run,” and follow the installation
instructions (Figure 4.1).

Figure 4.1. TRANSIMS Studio 0.9.9 setup wizard.

3. Locate the TRANSIMS Studio executable. Note that a desktop shortcut icon may

have been created during the installation. Double-click the shortcut icon to launch
the program (Figure 4.2).

14

Figure 4.2. TRANSIMS Studio.

4. Locate the TRANSIMS Studio project file (.prj) and open the file. Select File 

Open and select the file located at ..\ SHRP2_C10A_v3-12-21-
2012_Base\RTE_BURL\ C10A_DaySim_TRANSIMS_v5_Studio.prj.

5. When the C10A_DaySim_TRANSIMS_v5_Studio.prj file is opened, note that the
files related to the project will have been added in the Project Files window which
is positioned in the left-side panel of the GUI.

6. Click the plus sign (+) next to the Python Script Files to expand the list of the
Python script files. At least six Python scripts should be displayed:
AssembleSkims.py, DaySim.py, Main.py, MsimIterations.py, SysDef.py, and
VisualizerPrep.py (Figure 4.3).

15

Figure 4.3. TRANSIMS Studio with project files open (*.prj).

7. Select the Main.py script in the list of Python Script Files by clicking the file

name once to highlight the Main.py file. Then double-click the Main.py file.
8. A new tab containing the contents of the Main.py script file will be opened in the

main GUI window (Figure 4.4).

16

Figure 4.4. TRANSIMS Studio with Main.py displayed in GUI.

9. Define the model execution controls. The integrated model system can be run one

of two ways: (1) using a fixed number of global (G) iterations with a fixed
number of assignment (N) iterations, or (2) using relative gap and trip-gap
convergence closure criteria.

10. To run the integrated model system with a fixed number of iterations, the user
must set two variables:

a. MaxFeedBackLoops—the number of global feedback iterations, and
b. MaxAssignmentIterations—the number of assignment iterations

performed within each global iteration.
The integrated model was typically run with MaxFeedBackLoops = 3 (G = 3) and
MaxAssignmentIterations = 90 (N = 90). For initial testing by a new user it is
recommended that the number of iterations be reduced to first achieve a
successful complete run (e.g., G = 1 and N = 15).

11. To run the integrated model system with a gap-based quit closure criteria, the user
must set four variables:

a. MaxFeedBackLoops—the number of global feedback iterations.
b. MaxAssignmentIterations—the number of assignment iterations

performed within each global iteration. This variable should be set to zero
(N = 0).

17

c. TripGapTarget—the assignment process will terminate when the
maximum hourly trip-gap value is less than the TripGapTarget.

d. RelGapTarget—the assignment process will terminate when the maximum
hourly relative-gap value is less than the RelGapTarget.

The integrated model was typically run with a fixed number of assignment
iterations; therefore, the gap-based quit closure criteria were not often used once
this functionality was configured. Some user-sensitivity testing will be required to
select appropriate values for TripGapTarget and RelGapTarget, though values of
0.01 could be appropriate. New users are recommended to specify a fixed number
of assignment iterations before attempting to use the gap-based quit closure
criteria variables.

12. Remove or rename the Main.res file, which resumes the integrated model run
from an intermediate step. The Main.res file is located at ..\RTE_BURL \Main.res.
A new resume file will be generated every time the model is executed, so this file
must be removed as part of the model run preflight checklist if the user desires the
model to start from the first step in the model flow.

13. To run the model, make sure the Main.py script has been selected and is displayed
in the Studio GUI window. Double-check the model execution controls (iteration
values specified on Line 16 and Line 17 of the Main.py script).

14. To initiate the run, click the green “play” arrow on the GUI menu bar

(Figure 4.5). Click to start the run, and click to stop the run.

18

Figure 4.5. Run model by clicking green “play” button.

4.1 Model Runtimes
The project team extensively tested various iterative schemes to evaluate trade-offs between
network assignment and model system convergence and overall model system runtimes.
Generally, greater degrees of convergence are required for more spatially, temporally, or
behaviorally detailed analysis. However, the level of convergence required for any given
analysis is context specific, and the user is afforded many potential means with which to
configure the model system and investigate performance and runtime trade-offs. Keys and
parameters which affect DaySim and TRANSIMS runtimes can be easily configured by the
user via two primary control files.

Model runtimes are highly influenced by the computing resources (both the memory
and the number of processing cores). Runtimes in excess of 6 days were observed to run the
full integrated model system with three global iterations and 90 assignment iterations using
16 processing cores. As described earlier, the user is encouraged to specify fewer global and
assignment iterations to complete a successful run of the full integrated system. Local
runtimes can then be estimated by scaling the observed runtime accordingly if additional
iterations are desired.

4.2 File Naming Convention
Output files generated by the integrated model use a prefix in the file name to identify the
global iteration, assignment iteration, and model step for which the file was generated. For

19

example, the file 2.50.Activity_Model.Performance is the Microsimulator performance output
file produced at iteration G = 2 and N = 50 for the activity model. The wildcards
@NEW@.@ALT@.Performance file specified in the master control file were replaced with
NEW = 2.50 and ALT = Activity_Model.

Note that the integrated model system can also use a demand trip file developed from
the Burlington regional four-step model. The four-step model demand can be used instead of
the activity list estimated by DaySim by modifying a variable in the system definition
SysDef.py Python script file. Thus,

(Line 48) var.ALT = 'Activity_Model'
can be adjusted to

(Line 48) var.ALT = 'Trip_Model'.
With this change, the integrated model system will use the trip demand converted

from the four-step model. Output files will have file names with a different prefix, for
instance 2.50.Trip_Model.Performance. As stated earlier, the trip model was only used
during the early stages of the research to help guide the development and configuration of the
supply-side model while the DaySim model was still under development.

20

PART 2: Jacksonville, Florida

21

CHAPTER 1
Introduction

The primary objective of the C10A project is to make operational a dynamic, integrated
model—an integrated, advanced travel-demand model with a fine-grained, time-dependent
network—and to demonstrate the model’s performance through validation tests and policy
analyses. This integrated model system is necessary because most current travel models are
not sufficiently sensitive to the dynamic interplay between travel behavior and network
conditions and are unable to reasonably represent the effects of transportation policies, such
as variable road pricing and travel demand management strategies. The model system was
designed to capture changes in demand, such as time of day choice (i.e., peak spreading),
destination, mode, and route choice, in response to capacity and operational improvements
such as signal coordination, freeway management, and variable tolls.

The purpose of this start-up guide is to provide information necessary for an end user
to develop a working knowledge of the DaySim-TRANSIMS Integrated Model System (“the
model”). The start-up guide is a technical document for travel modeling practitioners who are
interested in studying the configuration and specification of the system and ultimately
running the model.

The end-user start-up guide does not represent and/or address the following:

• Technical DaySim software documentation;
• Technical Transportation Analysis Simulation System (TRANSIMS) software

documentation;
• Technical TRANSIMS Studio software documentation;
• Technical Python software documentation; and
• Technical Integrated DaySim-TRANSIMS Model System software documentation.

Detailed software and technical documentation can be found elsewhere and has been
submitted as other stand-alone SHRP 2 C10A research project products. The end-user start-
up guide does not require expert-level experience with the software utilized in the model
system. However, some familiarity with the software and, more importantly, the underlying
concepts associated with these tools is essential.

22

CHAPTER 2
Model Directory Structure

This section of the start-up guide describes the model system directory structure and briefly
explains the contents of each directory and subdirectory.

2.1 Jacksonville_Burlington_DaySim_TRANSIMS_v5_Studio_Model_v1
When the zip-archive is unpacked, the main model directory (Figure 2.1) is labeled as
Jacksonville_Burlington_DaySim_TRANSIMS_v5_Studio_Model_v1. This archive contains
DaySim version 1.8.3 and TRANSIMS version 5. Older versions of the integrated model
system used earlier releases of the DaySim and TRANSIMS software, which are also
included in the archive.

Figure 2.1. Main model directory: SHRP2_C10A_v3-12-21-2012_Base.

2.1.1 Burlington_Master_Controls and Jacksonville_Master_Controls
The Burlington_Master_Controls and Jacksonville_Master_Controls directories (Figure 2.2)
contain 62 control files (*.ctl) which specify the input and output files for each individual
TRANSIMS tool used during the execution of the integrated model system. The control files
can be opened with any text editor. The control files will look familiar to a practitioner used
to working with the TRANSIMS software. The control files contain a listing of the keys used
by the program, followed by an input file, output file, parameter, and/or variable value.

Global (G) and Assignment (N) iteration-specific control files are created on the fly
during the model execution from these master control files. As such, the user will find that
most of the master control files contain wildcards that indicate where a variable replacement
is performed. For instance, results/@NEW@.@ALT@.Performance in the master control file
includes two variables (NEW and ALT) identified by the @ symbols, which will be replaced
by actual values during the execution. In this case NEW could be replaced by the value 1.50
and ALT could be replaced by the string Activity_Model.

23

Figure 2.2. Burlington_Master_Controls and Jacksonville_Master_Control directories.

2.1.2 Burlington_Model and Jacksonville_Planning_Model
The Burlington_Model and Jacksonville_Planning_Model directories (Figure 2.3) are the
principal directories associated with the integrated model system. These directories contain
all the inputs, control files, and scripts used during the model execution and is the location
where final outputs are written. The contents of this directory are described in more detail in
Section 2.2.

Figure 2.3. Burlington_Model and Jacksonville_Planning_Model directories.

24

2.1.3 RTE_BURL and RTE_JAX Directories
The RTE (runtime environment) directory contains the Python scripts that control the
integrated model system execution as well as model log files (Figure 2.4). The contents of
this directory are described in more detail in Section 2.3.

Figure 2.4. RTE_BURL and RTE_JAX directories.

2.1.4 1_Software
The 1_Software directory contains the TRANSIMS executables (Figure 2.5). The contents of
this directory are described in more detail in Section 2.4.

Figure 2.5. 1_Software directory

2.2 Burlington_Model and Jacksonville_Planning_Model
Directories
The Burlington_Model and Jacksonville_Planning_Model directories contain 16 individual
subdirectories where input, intermediate, and final output files from the integrated model
system run are stored (Figure 2.6). Each individual subdirectory is described below.

25

Figure 2.6. Burlington_Model and Jacksonville_Planning_Model Directories

2.2.1 Analysis Directory
The analysis directory contains subdirectories associated with model pre- and
postprocessing. The analysis directory contains these subdirectories:

• arcview\ contains shapefile representations of the TRANSIMS network files.
• eventsum\ contains eventsum postprocessing outputs (schedule consistency

measures).
• eventsum_tod\ contains eventsum by time of day postprocessing outputs (schedule

consistency measures).
• gap_extraction\ contains trip gap and relative gap postprocessing outputs.
• RMSD_demand\ contains root mean square difference postprocessing outputs.

2.2.2 Controls Directory
The controls directory contains the run and TRANSIMS tool-specific control files, which are
generated on the fly during the model execution from the inputs contained in the
Master_Controls directory.

2.2.3 DaySim Directory
The daysim directory contains the files, parameters, and controls required to run the
disaggregate demand estimation model, DaySim. The daysim directory contains four

26

subdirectories: \Daysim_1_8_3, \output, \skims, and \working. For more information and
technical documentation details, please review the DaySim documentation.

2.2.4 DaySim-OLD Directory
The daysim-OLD directory contains the files, parameters, and controls required to run the
older version of the disaggregate demand estimation model, DaySim. The daysim-OLD
directory contains four subdirectories: input\, output\, working\, and \PopGen. For more
information and technical documentation details, please review the DaySim documentation.

2.2.5 Demand_daysim_activities_plus_auxiliary_trips Directory
The demand_daysim_activities_plus_auxiliary_trips directory contains the disaggregate
demand estimate by DaySim, as well as the auxiliary demand files (trucks, externals). The
directory contains three subdirectories: demand\, households\, and vehicles\, which is how
TRANSIMS inputs are typically split for input into the router, Microsimulator, and related
toolbox tools.

Important demand files include

• \Daysim\demand\activity.tab: the daily regional household-person activity list
estimated by DaySim;

• \Daysim\ demand\auxiliary_trips: the daily regional truck and external trips not
estimated by DaySim; and

• \Daysim\household\partitioned_all_households.t**: the regional household list which
is partitioned during model execution to support parallelization of the model run.

2.2.6 Demand_regional_model_trips Directory
The demand_regional_model_trips directory contains the original regional trip-based model
demand, including the auxiliary demand files (trucks, externals). The directory contains three
subdirectories: demand\, households\, and vehicles\, which is how TRANSIMS inputs are
typically split for input into the router, Microsimulator, and related toolbox tools.

2.2.7 Eventsum_data Directory
The eventsum_data directory is the location where outputs from the TRANSIMS tool
EventSum are written.

2.2.8 Network Directory
The network directory is the location where the TRANSIMS input network files are located.
A TRANSIMS network is composed of a number of important input files:
Activity Locations, Nodes, Links, Lanes, Lane_Connectivity, Pocket_Lane,
Parking_Locations, Process_Link, Signal_Coordinator, Signalized_Nodes,
Unsignalized_Nodes, Timing_Plan, Phasing_Plan, and Zone_Table.

27

The user should refer to the TRANSIMS online documentation for more information
about network files.

2.2.9 Performance_data Directory
The performance directory contains the link performance output file produced by the
TRANSIMS Microsimulator. The performance file includes link-level attributes such as
volumes and congested travel times.

2.2.10 Plans Directory
The plans directory contains the travel plan output files produced by the TRANSIMS router.
The plans represent all of the regional time-dependent shortest paths (TDSP) identified by
the router for all the input regional travel demand, the daily activities from DaySim, and the
auxiliary truck and external trips estimated exogenously.

2.2.11 Results Directory
The results directory contains the Link_Delay output files produced by the TRANSIMS
PlanSum and Microsimulator tools. The link delay files contain key metrics utilized during
the assignment iteration process and used to assess model system performance.

2.2.12 Skims Directory
The skims directory contains the zone-to-zone travel impedance skims produced by the
TRANSIMS PathSkim tool. Note that PathSkim is the only TRANSIMS Version 5 tool
utilized in the integrated model system. The skims are a critical input to the DaySim demand
estimation model.

2.2.13 Trips Directory
The trips directory contains the rescheduled regional demand trip files. Rescheduling
sensitivity testing was conducted as part of ongoing research efforts. The directory will not
be filled with output files when the model package is executed as delivered.

2.2.14 V4_demand_regional_model_trips Directory
The v4_demand_regional_model_trips directory contains the demand from the regional trip-
based model in TRANSIMS v4 format.

2.2.15 V4_network Directory
The v4_network directory contains the original TRANSIMS v4 networks developed as part
of the project, which were succeeded by the TRANSIMS v5 networks.

28

2.2.16 Visualize Directory
The visualize directory contains the output files associated with running the
VisualizerPrep.py script. The output files produced by the TRANSIMS tool ArcSnapshot
reside in this directory location. The user should refer to both the TRANSIMS and
TRANSIMS-VIS online documentation for more information.

2.3 RTE_BURL and RT_JAX Directories
The RTE (runtime environment) directory (Figure 2.7) contains the Python scripts that
control the integrated model system execution, as well as model log files.

Figure 2.7. RTE directory.

2.3.1 Python (*.py) Files
The RTE (runtime environment) directory contains the seven Python scripts that control the
integrated model system execution. Each Python script is described briefly below.

• AssembleSkims.py generates the travel impedance skims which are critical inputs to
the DaySim demand model.

• Daysim.py runs the DaySim demand model in addition to some pre- and
postprocessing associated with disaggregate demand estimation.

• Main.py controls the step-wise execution of the entire model system—specifically,
which tools are executed and when. The script contains important model run
specification variables, such as the number of global iteration loops
(MaxFeedBackLoops) and assignment iteration loops (MaxAssignmentIterations).

29

• MsimIterations.py runs the supply-side iteration scheme that has been developed to
achieve a dynamic traffic assignment user equilibrium using the TRANSIMS toolbox
with input disaggregate demand estimated by DaySim.

• SysDef.py specifies a number of important system definitions. The relative paths to
software binaries, critical input files, geography-specific inputs, and system control
variables are specified.

• VisualizerPrep.py runs the visualizer preparation process, so that regional simulations
can be viewed using TRANSIMS-VIS, the TRANSIMS visualizer software packaged
with TRANSIMS Studio.

2.3.2 Main (Main.*) Files
The RTE (runtime environment) directory contains the 10 text files created during the model
execution. Two of the Main.* files of particular interest to end users are these:

• Main.log is the main logfile which documents the status of the model run. This can be
a useful file for debugging model execution failures.

• Main.res is the main resume file. Depending on how it is configured, the integrated
model system may have relatively long runtimes. Therefore, functionality was added
to support resuming the model where desired by the end user. The model can be
resumed from the last model step which was executed successfully or from a user-
specified step (assuming all the intermediate files needed to launch from that point
are present.) When the model is executed for the very first time, this file must be
removed or renamed.

2.4 1_Software

2.4.1 TRANSIMS_Studio
The Transims_Studio directory contains the installer for the TRANSIMS Studio v0.9.9
software (TRANSIMS-Studio-0.9.9-Win.exe). The TRANSIMS Studio application is an
integrated development environment for the Transportation Analysis and Simulation System
(TRANSIMS). Components include a runtime environment to execute TRANSIMS in
parallel, as well as a full-featured graphical user interface (GUI). TRANSIMS Studio serves
as the runtime controller and graphical user interface for the model system. This software
will need to be installed by the user. Note that the installer will also install the required
version of Python.

2.4.2 TRANSIMS_v4_Windows_Executables_32bit
This directory contains the Version 4 TRANSIMS toolbox—specifically, the 22 Windows
32-bit compiled TRANSIMS tools which are utilized by the model system. Again, note that

30

each individual TRANSIMS executable has an associated version number (e.g.,
Microsimulator, Version 4.0.79)

2.4.3 TRANSIMS_v4_Windows_Executables_64bit
This directory contains the Version 4 TRANSIMS toolbox—specifically, the 22 Windows
64-bit compiled TRANSIMS tools, which are utilized by the model system. Again, note that
each individual TRANSIMS executable has an associated version number (e.g.,
Microsimulator, Version 4.0.79).

2.4.4 TRANSIMS_v5_Windows_Executables_32bit
This directory contains the Version5 TRANSIMS toolbox—specifically, the 17 Windows 32-
bit compiled TRANSIMS tools, which are utilized by the model system. Note that each
individual TRANSIMS executable has an associated version number (e.g., Microsimulator,
Version 4.0.79).

2.4.5 TRANSIMS_v5_Windows_Executables_64bit
This directory contains the Version5 TRANSIMS toolbox—specifically, the 17 Windows 64-
bit compiled TRANSIMS tools, which are utilized by the model system. Note that each
individual TRANSIMS executable has an associated version number (e.g. Microsimulator,
Version 4.0.79).

2.4.6 TRANSIM-VIS_Visualizer
This directory contains the files to support the use of the TRANSIMS-VIS visualizer.

31

CHAPTER 3

Operating Systems and Hardware

The current model system is configured to run on Windows operating systems, although it
can also be set up to run on Linux as well. Runtimes for the model system are influenced by a
number of factors, including

• The computing resources available to run the simulation (such as the number and
performance of processors, the amount of memory available, and the speed of storage
drive input/output);

• The degree of convergence required for a given model application;
• The size of the synthetic population used as the basis for all choice-making in the

model; and
• The level of detail of segmentation employed in the model system (such as the

number of time periods).

The Windows implementation of the model system typically was configured to use

between 8 and 32 processing cores, although this can be flexibly set to exploit the
partitioning capabilities of TRANSIMS. The project team tested a number of alternative
configurations of the model system with respect to temporal detail and market segmentation
of the skims. As few as four time periods and as many as 22 time periods were used in the
model system; while some configurations employed no value of time segmentation, other
configurations included up to 50 value of time segments. The simplest of these schemes
could be run with only 2 GB of RAM, while the most elaborate of the schemes required
approximately 20 GB of RAM. Data storage and access influence runtimes, so in addition to
having sufficient RAM, the model system (specifically, TRANSIMS) also benefits greatly
from the use of fast hard drives for storage—ideally, solid state drives (SSD). The project
tested the model system using the TRACC Linux computing cluster located at Argonne
National Laboratory, as well as using local Windows-based servers.

3.1 Specifying Operating System
The integrated model system can be operating-system agnostic, although the current
distribution is configured for Windows only. The specification of the operating system can be
configured by the user by reviewing and/or modifying lines in system definition Python
script, SysDef.py. Lines 14 through 38 of the SysDef.py file are presented in Figure 3.1.

The operating system will be automatically identified using the os.name function. The
model package as delivered is configured to run in Windows, and the software paths are
specified properly (var.BINDIR, var.BINDIR_v5, var.DAYSIM.EXE, and var.DAYSIM_CTL).

32

If the user wishes to run the integrated model system in Linux, a number of paths in
this section of the system definition Python file (Lines 26–31) need to be modified.
Specifically, the lines colored in green will need to be revised to point to the correct paths for
the Linux TRANSIMS binaries and the location of the TRANSIMS RTE where the Studio
installation places the TRANSIMS RTE directory. In addition, the Windows-compiled version
of the DaySim executable will need to be run through the WINE emulator.

Figure 3.1. SysDef.py lines for operating system specification.

3.2 Specifying Partitioning Variables
A number of tools in the TRANSIMS toolbox support partitioning in order to reduce model
system runtime. In particular, the TRANSIMS router can be run with a partitioned regional
household list to expedite the processing, using the computing resources available on the
modeling machine being used.

The number of partitions can be selected and set by the user on Line 64 of the system
definition SysDef.py Python script. The model package as delivered has the
NUM_PARTITIONS variable set to a value of eight (8). Therefore, the input household list
will be split into eight parts to facilitate eight simultaneous router instances, each working on
a separate portion of the input demand files (activities and trips). Note that
NUM_PATHSKIM_THREADS should not be set higher than eight, as testing to date has
revealed instability with the program beyond eight threads.

(Line 64) var.NUM_PARTITIONS = 8

33

(Line 65) var.NUM_PATHSKIM_THREADS = 8

34

CHAPTER 4

Running the Integrated Model System

This section provides a list of instructions to run the integrated model system. The model
system requires at least 4 GB of RAM, although if additional spatial or temporal detail is
required, this requirement will increase. The model does not explicitly require multiple
processing cores, though the availability and speed of multiple cores will reduce model
runtimes. The steps should be performed in the order they are presented.

1. Unzip the compressed archive
Jacksonville_Burlington_DaySim_TRANSIMS_v5_Studio_Model_v_1_1.zip. The
model files can be unpacked anywhere on your local machine (e.g.,
C:\Travel_Models).
2. Run the TRANSIMS Studio installer provided in the directory
..\Jacksonville_Burlington_DaySim_TRANSIMS_v5_Studio_Model_v_1_1\1_Softwar
e\TRANSIMS_Studio\TRANSIMS-Studio-0.9.9-Win.exe. Simply double-click on the
executable, click “run,” and follow the installation instructions (Figure 4.1).

Figure 4.1. TRANSIMS Studio 0.9.9 setup wizard.

3. Locate the TRANSIMS Studio executable. Note that a desktop shortcut icon may
have been created during the installation. Double-click the shortcut icon to launch the
program (Figure 4.2).

35

Figure 4.2. TRANSIMS Studio.

4. Locate the TRANSIMS Studio project file (.prj) and open the file. Select File 
Open and select the file located at ..\
Jacksonville_Burlington_DaySim_TRANSIMS_v5_Studio_Model_v_1_1\RTE_BURL\
JAX_BURL_TRANSIMS_v5_Studio.prj or
..\
Jacksonville_Burlington_DaySim_TRANSIMS_v5_Studio_Model_v_1_1\RTE_JAX\
JAX_BURL_TRANSIMS_v5_Studio.prj
5. When the JAX_BURL_TRANSIMS_v5_Studio.prj file is opened, note that the files
related to the project will have been added in the Project Files window, which is
positioned in the left-side panel of the GUI (Figure 4.3).
6. Click the ‘+’ sign next to the Python script files to expand the list of the Python
script files. At least six Python scripts should be displayed: AssembleSkims.py,
DaySim.py, Main.py, MsimIterations.py, SysDef.py and VisualizerPrep.py.

36

Figure 4.3. TRANSIMS Studio with project file open (*.prj).

7. Select the Main.py script in the list of Python script files by clicking the filename
once. This will highlight the Main.py file. Then double-click the Main.py file.
8. A new tab containing the contents of the Main.py script file will be opened in the
main GUI window (Figure 4.4).

37

Figure 4.4. TRANSIMS Studio with Main.py displayed in the GUI.

9. Define the model execution controls. The integrated model system can be run in
one of two ways: (1) using a fixed number of global (G) iterations with a fixed
number of assignment (N) iterations or (2) using relative gap and tripgap convergence
closure criteria.
10. To run the integrated model system with a fixed number of iterations the user
must set two variables:

a. MaxFeedBackLoops: the number of global feedback iterations, and
b. MaxAssignmentIterations: the number of assignment iterations performed

within each global iteration.
The integrated model was typically run with MaxFeedBackLoops=3 (G=3) and
MaxAssignmentIterations=90 (N=90). For initial testing by a new user, it is
recommended that the number of iterations be reduced to first achieve a
successful complete run (e.g. G=1 and N=15).

11. To run the integrated model system with a gap-based quit closure criteria, the user
must set four variables:

a. MaxFeedBackLoops: the number of global feedback iterations.
b. MaxAssignmentIterations: the number of assignment iterations performed
within each global iteration. This variable should be set to zero (N=0).
c. TripGapTarget: the assignment process will terminate when the maximum

hourly trip gap value is less than the TripGapTarget.

38

d. RelGapTarget: the assignment process will terminate when the maximum
hourly relative gap value is less than the RelGapTarget.

The integrated model was typically run with a fixed number of assignment
iterations, and therefore the gap-based quit closure criteria was not often utilized,
once this functionality was configured. Some user sensitivity testing will be
required in order to select appropriate values for TripGapTarget and
RelGapTarget, though values of 0.01 could be appropriate. New users are
recommended to specify a fixed number of assignment iterations before
attempting to use the gap-based quit closure criteria variables.

12. Remove or rename the Main.res file, which resumes the integrated model run
from an intermediate step. The Main.res file is located at ..\RTE_BURL \Main.res. A
new resume file will be generated every time the model is executed. So this file must
be removed as part of the model run preflight checklist, if the user desires the model
to start from the very first step in the model flow.
13. To run the model, make sure the Main.py script has been selected and is displayed
in the Studio GUI window. Double-check the model execution controls (iteration
values specified on Line 16 and Line 17 of the Main.py script).
14. To initiate the run, click the green “play” arrow on the GUI menu bar

(Figure 4.5). Click to start the run. Click to stop the run.

39

Figure 4.5. Run the model by clicking the green “play” button.

4.1 Model Runtimes
The project team extensively tested various iterative schemes to evaluate trade-offs between
network assignment and model system convergence and overall model system runtimes.
Generally, greater degrees of convergence are required for more spatially, temporally, or
behaviorally detailed analysis. However, the level of convergence required for any given
analysis is context specific, and the user is afforded many potential means with which to
configure the model system and investigate performance and runtime tradeoffs. Keys and
parameters which affect DaySim and TRANSIMS runtimes are easily user-configurable via
two primary control files.

Model runtimes are highly influenced by the computing resources (both the memory
and the number of processing cores). Runtimes in excess of 6 days were observed to run the
full integrated model system with three global iterations and 90 assignment iterations using
16 processing cores. As described earlier, the user is encouraged to specify fewer global and
assignment iterations in order to complete a successful run of the full integrated system.
Local runtimes can then be estimated by scaling the observed runtime accordingly, if
additional iterations are desired.

40

4.2 File Naming Convention
Output files generated by the integrated model use a prefix in the filename to identify the
global iteration, assignment iteration, and model step for which the file was generated. For
example, the file 2.50.Activity_Model.Performance is the Microsimulator performance output
file produced at iteration G=2 and N=50 for the Activity Model. The wildcards
@NEW@.@ALT@.Performance file specified in the master control file were replaced with
NEW=2.50 and ALT=Activity_Model.

Note that the integrated model system can also use a demand trip file developed from
the Burlington regional four-step model. The four-step model demand can be used instead of
the activity list estimated by DaySim by modifying a variable in the system definition
SysDef.py Python script file. Thus,

(Line 48) var.ALT = 'Activity_Model'
can be adjusted to

(Line 48) var.ALT = 'Trip_Model'.
With this change, the integrated model system will use the Trip demand converted

from the four-step model. Output files will have filenames will a different prefix—for
instance, 2.50.Trip_Model.Performance. As stated earlier, the Trip Model was only utilized
during the early stages of the research to help guide the development and configuration of the
supply-side model while the DaySim model was still under development.

41

	Cover
	2014.11.03 C10A Startup Guide Combined Formatted
	3 2.1 SHRP2_C10A_v3-12-21-2012_Base
	5 2.2 Burlington_Model Directory
	11 3.1 Specifying Operating System
	12 3.2 Specifying Partitioning Variables
	19 4.1 Model Runtimes
	19 4.2 File Naming Convention
	22 Chapter 1 Introduction
	23 Chapter 2 Model Directory Structure
	32 Chapter 3 Operating Systems And Hardware
	35 Chapter 4 Running The Integrated Model System

	2.1 SHRP2_C10A_v3-12-21-2012_Base
	Figure 2.1. Main model directory: SHRP2_C10A_v3-12-21-2012_Base.
	2.1.1 Burlington_Master_Controls
	Figure 2.2. Burlington_Master_Controls directory.
	2.1.2 Burlington_Model
	Figure 2.3. Burlington_Model directory.
	2.1.3 RTE_BURL Directory
	Figure 2.4. RTE_BURL directory.
	Figure 2.5. TRANSIMS directory.

	2.2 Burlington_Model Directory
	Figure 2.6. Burlington_Model directory.
	2.2.1. Analysis Directory
	2.2.2 Controls Directory
	2.2.3 DaySim Directory
	2.2.4 Demand_daysim_activities_plus_auxiliary_trips Directory
	2.2.5 Eventsum_data Directory
	2.2.6 Network Directory
	2.2.7 Performance_data Directory
	2.2.8 Plans Directory
	2.2.9 Results Directory
	2.2.10 Skims Directory
	2.2.11 Trips Directory
	2.2.12 Visualize Directory

	Figure 2.7. RTE directory.
	2.3.1. Python (*.py) Files
	2.3.2 Main (Main.*) Files

	2.4 TRANSIMS
	2.4.1 TRANSIMS_Studio
	2.4.2 TRANSIMS_v4_Windows_Executables_64bit
	2.4.3 TRANSIMS_v5_Windows_Executables_64bit
	2.4.4 TRANSIMVIS_Visualizer

	3.1 Specifying Operating System
	Figure 3.1. SysDef.py lines for operating system specification.

	3.2 Specifying Partitioning Variables
	Figure 4.1. TRANSIMS Studio 0.9.9 setup wizard.
	Figure 4.2. TRANSIMS Studio.
	Figure 4.3. TRANSIMS Studio with project files open (*.prj).
	Figure 4.4. TRANSIMS Studio with Main.py displayed in GUI.
	Figure 4.5. Run model by clicking green “play” button.

	4.1 Model Runtimes
	4.2 File Naming Convention
	Chapter 1
	Introduction
	Chapter 2
	Model Directory Structure
	2.1.1 Burlington_Master_Controls and Jacksonville_Master_Controls
	2.1.2 Burlington_Model and Jacksonville_Planning_Model
	2.1.3 RTE_BURL and RTE_JAX Directories
	2.1.4 1_Software

	2.2 Burlington_Model and Jacksonville_Planning_Model Directories
	2.2.1 Analysis Directory
	2.2.2 Controls Directory
	2.2.5 Demand_daysim_activities_plus_auxiliary_trips Directory
	2.2.6 Demand_regional_model_trips Directory
	2.2.7 Eventsum_data Directory
	2.2.8 Network Directory
	2.2.9 Performance_data Directory
	2.2.10 Plans Directory
	2.2.11 Results Directory
	2.2.13 Trips Directory
	2.2.14 V4_demand_regional_model_trips Directory
	2.2.15 V4_network Directory
	2.2.16 Visualize Directory
	Figure 2.7. RTE directory.
	2.3.1 Python (*.py) Files
	2.3.2 Main (Main.*) Files

	2.4 1_Software
	2.4.1 TRANSIMS_Studio
	2.4.2 TRANSIMS_v4_Windows_Executables_32bit
	2.4.3 TRANSIMS_v4_Windows_Executables_64bit
	2.4.4 TRANSIMS_v5_Windows_Executables_32bit
	2.4.5 TRANSIMS_v5_Windows_Executables_64bit
	2.4.6 TRANSIM-VIS_Visualizer
	Chapter 3
	Operating Systems and Hardware

	3.2 Specifying Partitioning Variables
	Figure 4.2. TRANSIMS Studio.
	Figure 4.3. TRANSIMS Studio with project file open (*.prj).
	Figure 4.4. TRANSIMS Studio with Main.py displayed in the GUI.
	Figure 4.5. Run the model by clicking the green “play” button.

	4.1 Model Runtimes

