### The "100 Car" Study: A Pilot for Large-Scale Naturalistic Driving Research



241 drivers
No instructions
80/20 own/leased
12-13 months
43,000 hours
2.0 MVMT



### **Naturalistic Data Collection Approach**

Highly capable instrumentation (well beyond EDRs)

- Five channels of digital, compressed video
- Four radar sensors front, rear (for all 100 cars), and side (for 20 cars)
- Machine vision-based lane tracker
- Many other sensors: GPS, glare, RF, acceleration, yaw rate, controls, etc.
- Cell phone, wireless internet, or hardwire download
- Ties into vehicle networks to obtain other information

Demonstrates the feasibility of the F-SHRP Safety instrumented vehicle approach



### **100 Car Instrumentation Mounted in Trunk**





## **Uses of Naturalistic Data**

- Detailed crash/near crash causation analysis
  - More pre-crash information than ever before available.
- Safety surrogate validation
  - The relationship between crashes and near crashes
  - The relationship to other surrogates like eye glances, lane departures, and other performance measures
- Model development and validation
  - Crash benefits estimation
  - Crash countermeasure assessment
- Countermeasure modeling example from follow-on project work in progress



## Next generation hardware/software

- Much smaller main unit and radars
  - Board-level
- Automatic reading of multiple-networks
- Machine vision-based sensing
- Greatly improved video compression
- Constantly evolving data reduction tools



# Use of Naturalistic Data for Crash Causation Assessment

- What is the advantage of the "Naturalistic" approach for crash/near crash causation assessment?
- Essentially, while existing tools are indispensable, they have major drawbacks.



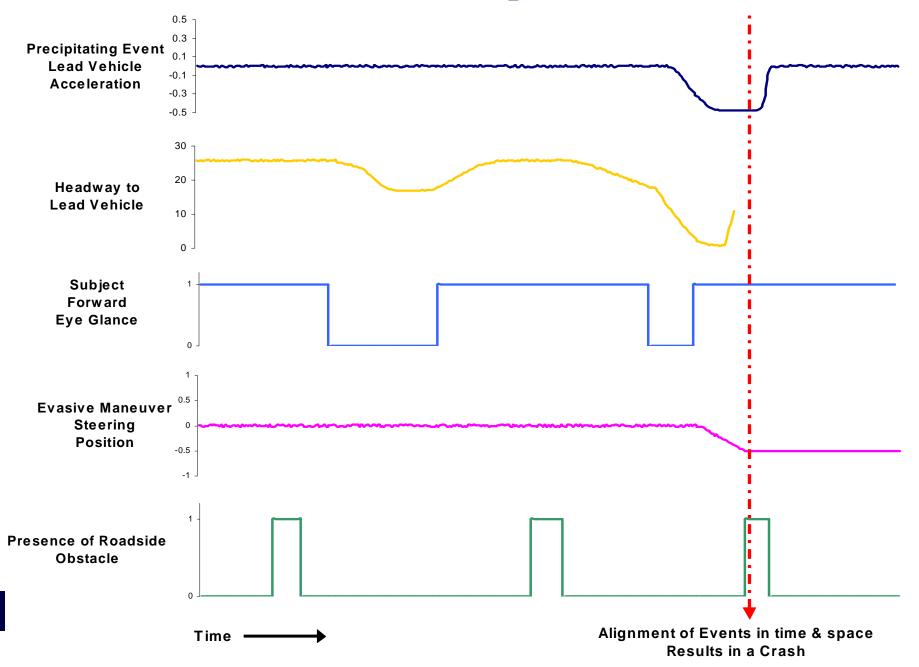
- Precise knowledge about crash risk
- Information about important circumstances and scenarios that lead to crashes

#### Epidemiological Data Collection

- Reactive
- Very limited pre-crash information

#### Large-Scale Naturalistic Data Collection

- "Natural" driver behavior in full driving context
- Detailed pre-crash/crash info including driver performance/ behavior, driver error and vehicle kinematics
- Can utilize combination of crash, near crash and other safety surrogate data


#### • Proactive

#### Provides important ordinal crash risk info

#### Empirical Data Collection

- Imprecise, relies on unproven safety surrogates
- Experimental situations modify driver behavior

#### **Multi-Linear Events Sequence: Pole Crash**



## **Example 100 Car Study Results**

The capture of crash/collision events that included minor, non-property-damage contact. Lower severity collisions provide very valuable information and occur much more frequently (i.e., 5 to 1) than more severe crashes. This has important implications for future naturalistic driving studies aimed at assessing driver-related crash causation.

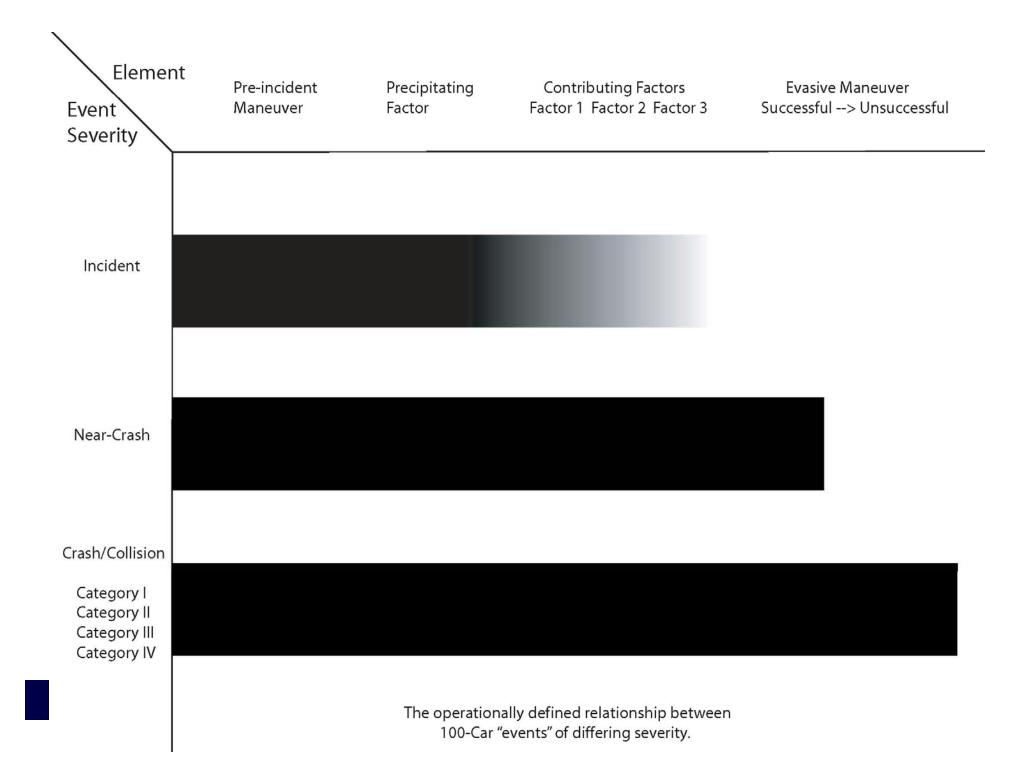


| Collision Category 1 (Police-reported and/or contains an airbag or injury) |   | Collision Category 2 (Police-reported with<br>property damage only) |    |
|----------------------------------------------------------------------------|---|---------------------------------------------------------------------|----|
| Left Turn Against Path                                                     | 1 | Lane Change                                                         | 1  |
| Rear-End Struck                                                            | 2 | Left Turn Against Path                                              | 1  |
| Run-Off-Road                                                               | 2 | Rear-End Struck                                                     | 2  |
|                                                                            |   | Rear-End Strike                                                     | 5  |
|                                                                            |   | Run-Off-Road                                                        | 2  |
| Subtotal                                                                   | 5 | Subtotal                                                            | 11 |

| Collision Category 3 (Non-police-reported,<br>physical contact/property damage) |    | Collision Category 4 (Non-police-reported, physical contact/no property damage) |    |
|---------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------|----|
| Backing                                                                         | 2  | Animal                                                                          | 2  |
| Object                                                                          | 4  | Backing                                                                         | 8  |
| Rear-End Strike                                                                 | 6  | Object                                                                          | 1  |
| Rear-End Struck                                                                 | 6  | Rear-End Strike                                                                 | 6  |
| Run-Off-Road                                                                    | 6  | Rear-End Struck                                                                 | 4  |
| Sideswipe                                                                       | 1  | Run-Off-Road                                                                    | 20 |
| Subtotal                                                                        | 25 | Subtotal                                                                        | 41 |

#### Total 82




~ Driving Transportation With Technology ~

INSTITUTE

## **Example 100 Car Study Results**

This study allowed the capture and assessment of near crash events in large numbers. Near crashes provide valuable information as a surrogate for crash events *and* as a tool for the assessment of the factors that contributed to the execution of a successful evasive maneuver.





### **Example 100 Car Results: Relative Risk Estimates**

#### for Crash/Near Crash Inattention Events

| <b>Reaching for moving object</b>                   | 8.3           | L.C.I. > 1.0      | Long eye-off-road time      |
|-----------------------------------------------------|---------------|-------------------|-----------------------------|
| Fatigue (moderate to severe)                        | 4.6           |                   | and/or                      |
| Looking at specific external object                 | 3.6           |                   | Multi-step/complex manual   |
| (longer glance)                                     |               |                   | task.                       |
| Reading                                             | 3.2           |                   |                             |
| Applying makeup                                     | 2.9           |                   |                             |
| <b>Dialing cell phone (manual)</b>                  | 2.6           |                   |                             |
| Eating without utensils                             | 1.5           | C.I. contains 1.0 | Shorter glances and/or      |
| <b>Reaching for non-moving object</b>               | 1.3           |                   | Simpler tasks and/or        |
| Cell phone talking/listening (hand held)            | 1.2           |                   | Cognitive distraction only. |
| Cognitive – general (e.g., "lost in thought", etc.) | 0.8           |                   |                             |
| Simple radio tasks (volume/pre-set select)          | 0.7           |                   |                             |
| Driving related glance – left window                | 0.5           | U.C.I. < 1.0      | Driver actively engaged in  |
| Passenger in adjacent seat (not                     |               |                   | scanning.                   |
| looking at passenger)                               | 0.4           |                   | Safer driving due to        |
| Driving related glance – center                     |               |                   | passenger presence.         |
| mirror                                              | 0.1           |                   | Virginia                    |
|                                                     |               |                   | Tech                        |
| ~ Driving Transp                                    | ortation Witl | ו Technology ~    | TRANSPORTATION              |
|                                                     |               |                   | INSTITUTE                   |

### **Preliminary Results from 100-Car Study**

| Type of Secondary Task                | Population<br>Attributable<br>Risk % | Lower CL | Upper CL |
|---------------------------------------|--------------------------------------|----------|----------|
| Fatigue                               | 22.2                                 | 21.7     | 22.7     |
| Reaching for a moving object          | 1.1                                  | 0.97     | 1.3      |
| Insect in vehicle                     | 0.4                                  | 0.3      | 0.4      |
| Looking at external object            | 0.9                                  | 0.8      | 1.1      |
| Reading                               | 2.9                                  | 2.6      | 3.1      |
| Applying make-up                      | 1.4                                  | 1.2      | 1.6      |
| Dialing hand-held device              | 3.6                                  | 3.3      | 3.9      |
| Inserting/retrieving CD               | 0.2                                  | 0.2      | 0.3      |
| Eating                                | 2.2                                  | 1.9      | 2.5      |
| Reaching for non-moving object        | 1.2                                  | 1.0      | 1.5      |
| Talking/listening to hand-held device | 3.6                                  | 3.1      | 4.1      |
| Drinking from open container          | 0.04                                 | -0.1     | Virginia |

~ Driving Transportation With Technology ~

TRANSPORTATION INSTITUTE

#### **Crash Risk Estimate for Inattentive Drivers for Differing LOS**

|    | Type of Traffic<br>Density                                                           | Odds<br>Ratio | Lower CI | Upper CI |
|----|--------------------------------------------------------------------------------------|---------------|----------|----------|
| 1. | LOS A: Free Flow                                                                     | 0.76          | 0.62     | 0.94     |
| 2. | LOS B: Flow with Some<br>Restrictions                                                | 0.92          | 0.73     | 1.14     |
| 3. | LOS C: Stable Flow –<br>Maneuverability and Speed are more<br>Restricted             | 2.74          | 2.08     | 3.63     |
| 4. | LOS D: Flow is Unstable –<br>Vehicles are unable to pass with<br>temporary stoppages | 4.53          | 2.47     | 8.30     |
| 5. | LOS E: Unstable Flow-<br>Temporary restrictions, substantially<br>slow drivers       | 4.88          | 3.19     | 7.48     |
| 6. | LOS F: Forced Traffic Flow<br>Conditions with Low Speeds                             | 0.82          | 0.20     | 3.33     |

~ Driving Transportation With Technology ~

TRANSPORTATION INSTITUTE

Tech

# **100 Car Study Summary**

- The 100 car study demonstrates the feasibility of the naturalistic approach for a large-scale study.
- The resulting data can be used to answer many causation and countermeasure questions.
- The combination of near-crash, detailed pre-crash, lower severity crash, and higher severity crash data make this a very powerful tool.
- Both epidemiological and empirical techniques can be used to conduct risk-based and performance based analyses.



# Additional Naturalistic Driving Studies

- Newly licensed teen driver study (40 cars)
- Older driver study (75+)
- Long haul/line haul trucks (46 trucks DDWS FOT + 8 additional trucks)



## Lessons to consider

- Growing body of evidence that near-crash is an effective surrogate
- Data reduction effort = Data collection/10
- Goal should be to collect as much raw data as possible
- Exposure is reasonable: 20,000 samples = 3 months
- Data on all types of crashes will be present



lech

Virginia

### **Lessons to consider**

- Uses of data = a priori X 10
- Crashes = police-reported X 4
- Privacy issues are not show stoppers
- What data do you really need to share?

