New SHRP 2 Tools for Underground Utility Location, Data Collection, and Analysis

TRANSPORTATION RESEARCH BOARD

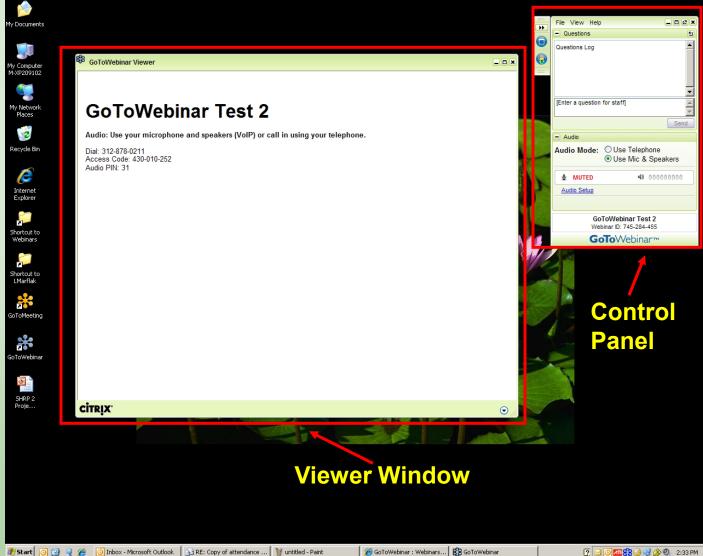
U.S. Department of Transportation Federal Highway Administration

New SHRP 2 Tools for Underground Utility Location, Data Collection, and Analysis

Technical Support

Patrick Zelinski

Communications Associate, SHRP 2


Moderator

Chuck Taylor Senior Program Officer, SHRP 2

STRATEGIC HIGHWAY RESEARCH PROGRAM

Your desktop during a webinar

Webinar control panel

Grab tab			
	File View Help		
Oliale armanus to	Questions	5	
open or minimize control panel	Questions Log		
View presentations		-	
full screen You will be muted during this session	[Enter a question for staff] Type your questions in this box Send		Don't forget to click "Send"
	- Audio		If you select this option,
	Audio Mode:	 ○ Use Telephone ● Use Mic & Speakers 	dial the number and audio pin
	🔮 MUTED	4) 00000000	
	Audio Setup		Select this option if
			you are listening
	GoToWebinar Test 2 Webinar ID: 745-284-455		through your computer speakers
	GoTo Webinar™		(free)

Commonly asked question: Can I receive a copy of the presentation slides?

- Answer: Yes
- You will receive an e- mail with:
 - A link to a recording of today's session
 - A link to a copy of the presenters' slides in PDF format

Attendance Poll Question

How many people are watching this webinar from your computer?

Webinar Objectives

What is SHRP 2 doing to reduce the impacts of underground utilities on highway construction projects?

How will I be able to use the products of this SHRP 2 research?

Some Background

- 35 Million Miles of underground utilities (CGA)
- More being installed daily, deeper, with less detectable materials
- Much of the data on location, composition, ownership, and status (active or abandoned) is missing, incorrect, or incomplete
- Current technology/tools can find 80-90%
- Getting the remaining 10- 20% requires new tools

Impacts on Highway Construction

- Redesign costs
- Delay costs
- Change orders
- Claims
- Damages
 - Human casualties
 - Environmental releases
 - Repairs

SHRP 2 Utilities Research

- Develop new tools to locate that remaining 10- 20%:
 - Multi- Sensor Platforms (R01- B)
 - Locating Deep Utilities (R01- C)
- Innovative system to store, retrieve, analyze, visualize 3- D utility location data (R01- A)
- Optimized Utility Conflict Matrix system to organize, track, manage utility conflicts (R15-B)

August 15, 2011 Webinar

- Preliminary info on the functional design and intended use of these new tools
- Most tool prototypes have now been designed, fabricated, and tested
- Today's webinar will include the preliminary results of those tests

Webinar Agenda

- Multi- Sensor Platforms Gary Young (UIT): slides 16-38 Colin Kennedy (UIT)
- Locating Deep Utilities Chris Ziolkowski (GTI): slides 39-59
- Storing & Using 3- D Data Bill Gale (GTI): slides 60- 83
- Utility Conflicts & Solutions Cesar Quiroga (TTI): slides 84-102
- Q&A and Wrap Up Chuck Taylor (SHRP 2)

Questions to be Addressed

- What's different about these new tools?
- What new capabilities will they provide?
- Will they be more difficult to use?
- Will they require special training or operation only by specially- trained people?
- How will the costs to use these tools compare with those of today's tools?
- When will these new tools likely be commercially available?

Presentation Format for the 4 Projects:

- Project Background/Objectives
- Project Products
- Schedule and Status
- Prototype Test Results
- Answers to the Six Questions

What is SHRP 2? (Strategic Highway Research Program)

- Authorized by Congress in 2005
- Conducted under a memo of understanding among AASHTO, FHWA, National Academies (TRB)
- Funds Provided through FHWA
- Program Recently Extended to March 2015
- Current Budget is \$232.5 million

Project Review

RO1-B: Utility Locating Technology Development Utilizing Multi-Sensor Platforms

Prime Contractor: Underground Imaging Technologies, LLC Gary N. Young, Principal Investigator Colin M. Kennedy, Project Manager

Colin M. Kennedy

- Geophysicist at Underground Imaging Technologies LLC
- SHRP 2 R01-B Project Manager
- 15 years of progressive experience in the execution and management of geophysical investigations across North America for both near-surface environmental related projects and deep subsurface natural resources exploration projects.

SHRP 2 R01-B Outline

1. Project Objective

- Current Systems
- Limitations

2. The New SHRP 2 R01-B Tools

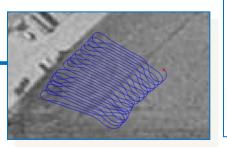
- Seismic System
- TDEMI System
- Software
- 3. Geophysical Service Costs
- 4. Availability of SHRP 2 R01-B Tools
- 5. Summary

Project Objective

"This project will support improvements in the detection and accurate determination of positions of buried utilities beyond Quality Level B as defined by CI/ASCE 38-02..." (from SHRP 2 RFP)

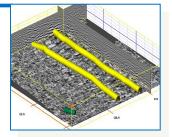
What does this mean?

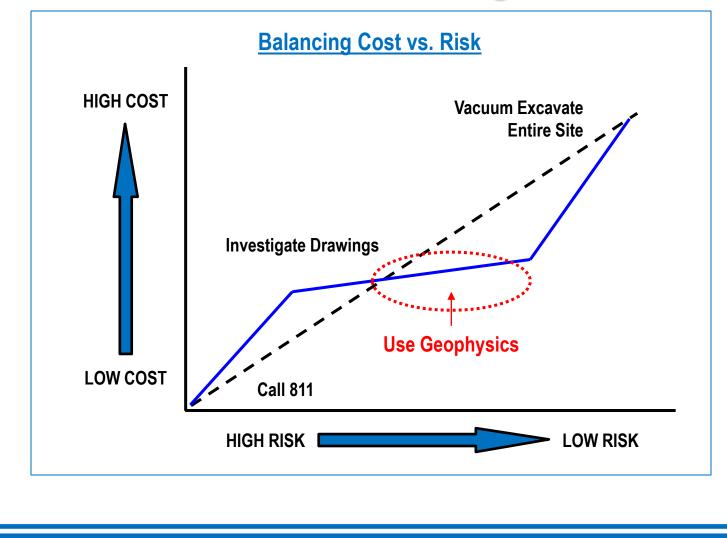
More Complete Quality Level B Investigations


Currently Used Advanced Geophysics

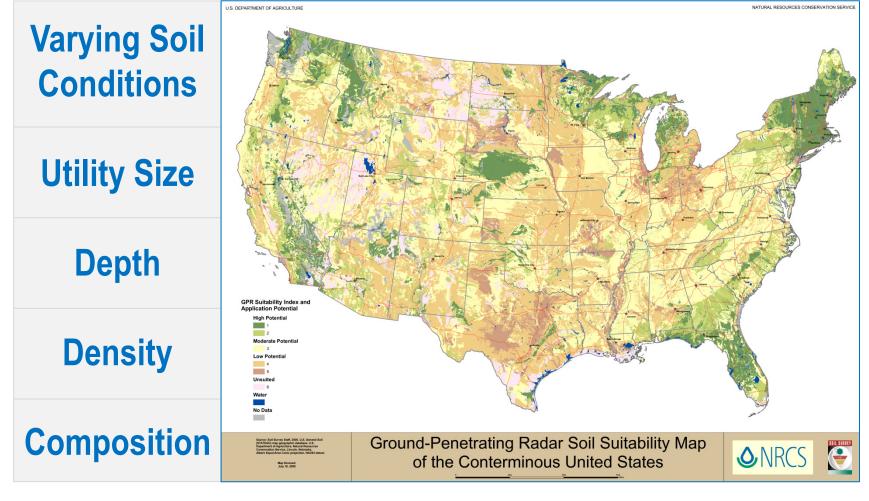
In addition to standard pipe & cable locators, etc.

- Multi-channel GPR
 Produces 3-D subsurface images
- Multi-sensors EMI <-Aids in most soils No connection to utility
- Choice of positioning (GPS or RTS)
 Depends on needs of the job
- In-field system integration GPS with GPR and EMI
- 3D processing, visualization and interpretation
 Critical and difficult
- Final digital output
 CAD in client's format Dataset for Machine Control and Guidance





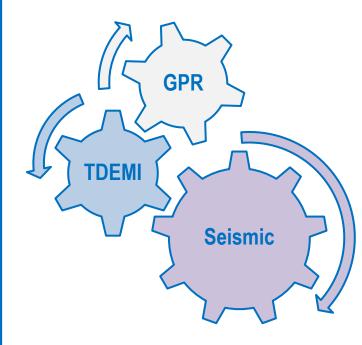
SHRP 2 R01-B Geophysical System(s) Cost Advantage



SHRP2

STRATEGIC HIGHWAT

What are the Limitations?

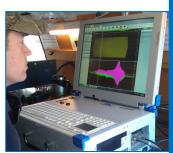


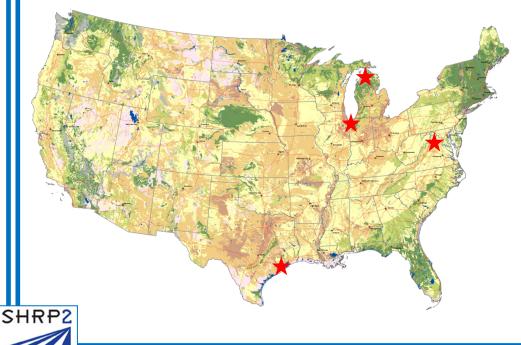
The New SHRP 2 R01-B Tools

GOAL: Continuous Mapping and 3D Results

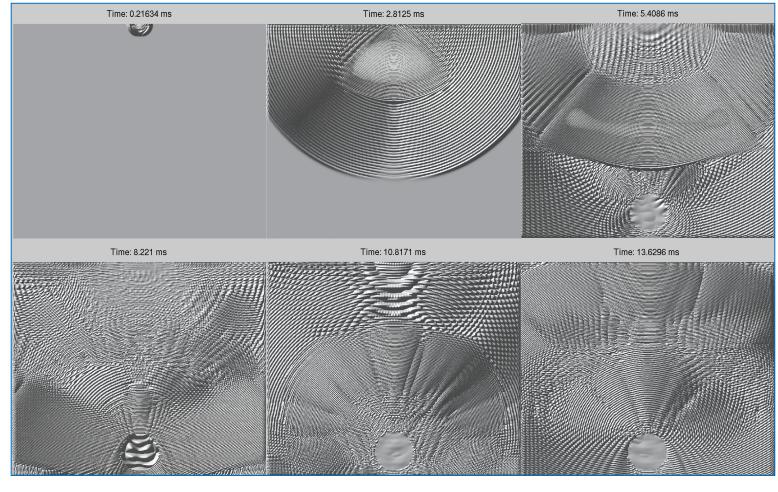
- 1. High Frequency Seismic (acoustic) Imaging System
- 2. Improved Time Domain Electromagnetic Induction System
- 3. Seismic Modeling Software
- 4. Improvements to Data Analysis Software

* Integration of precise and accurate positioning equipment


Seismic Soil Properties Testing

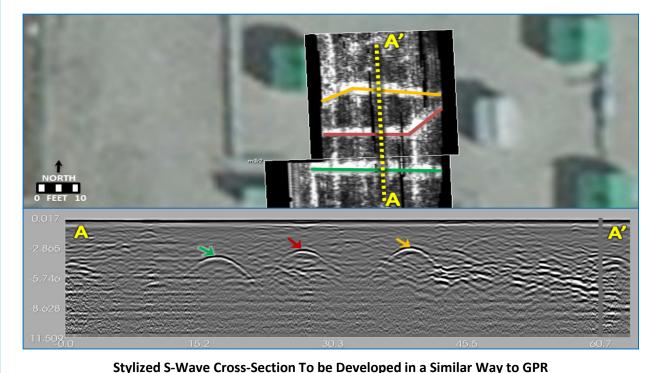


STRATEGIC HIGHWAT



Seismic Soil Properties Testing Locations Traverse City, MI Manteno, IL Houston, TX Manassas Park, VA

New Software: Seismic Modeling



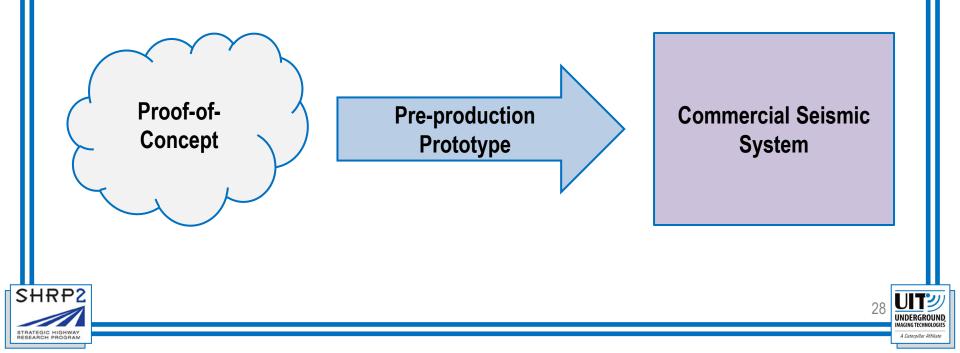
SHRP2 R01-B Webinar February 2012

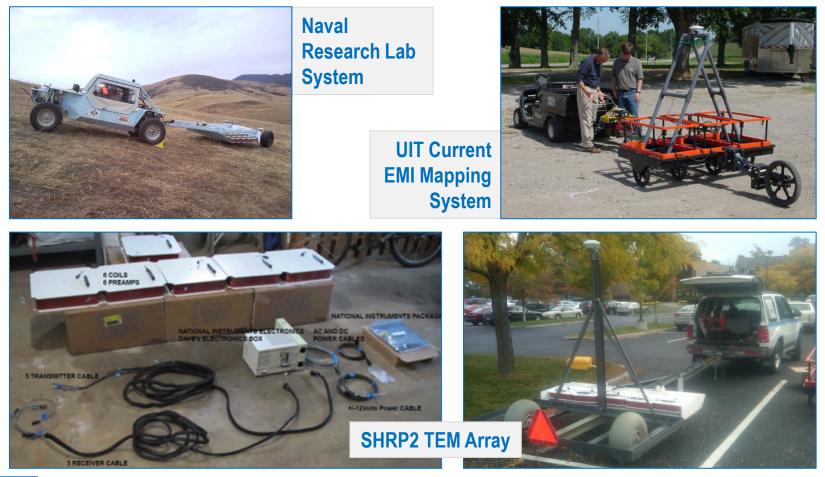
Seismic System and Today's Geophysical Tools

- No such system is available today.
- The prototype seismic system will have a detection footprint and data format comparable to that of a multi-channel GPR unit **but will be effective in clay soils**.


New System will use S-Wave Seismic With Reflection Imaging Processing To Make the Data the Same Format as GPR

SHRP 2 R01-B Seismic System Prototype(s)

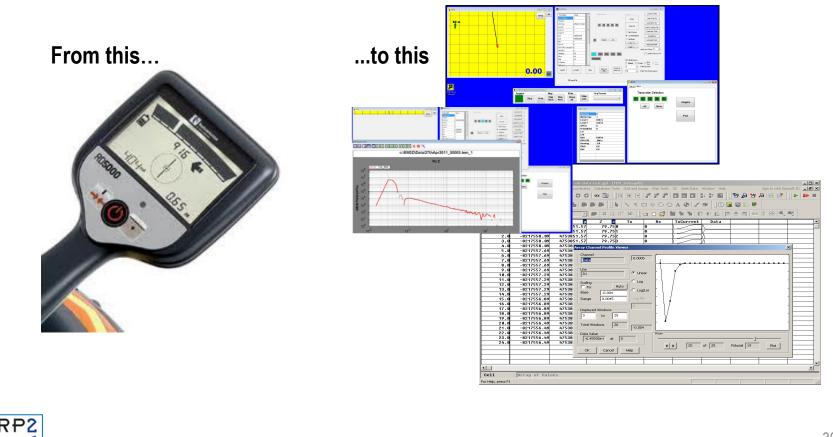

- The seismic prototype system will be complex.
- Data acquisition, data processing and data interpretation will require speciallytrained operators and analysts.
- The seismic prototype will be relatively slow in acquiring data, difficult to transport/maneuver, and rely on several codependent components.



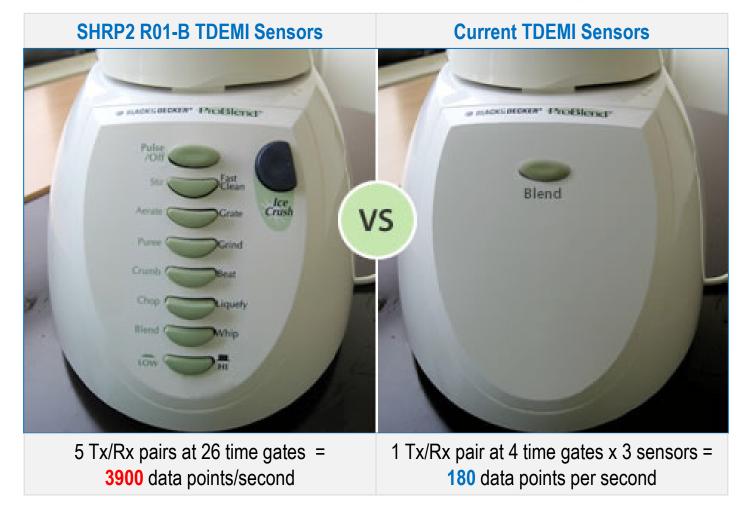
SHRP 2 R01-B Seismic Prototype(s) Development

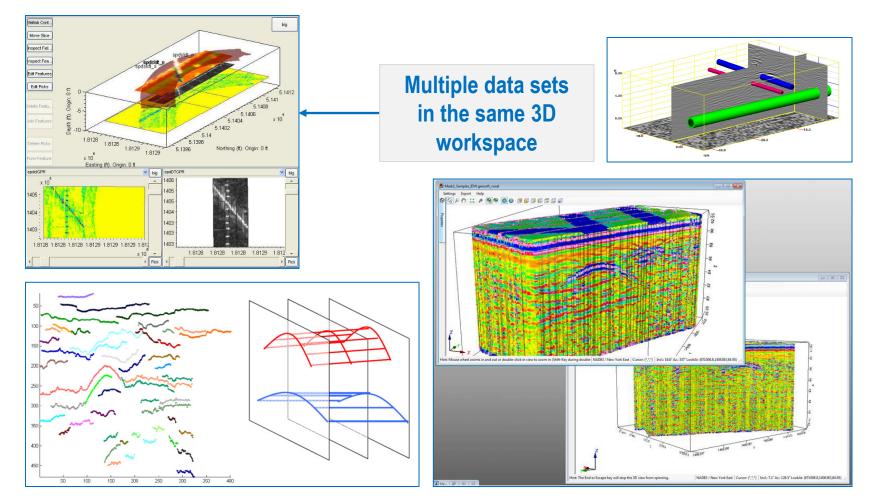
- Proof of concept testing required for utility detection.
- The production system will be the 3rd step of development.

New Sensor: Improved Time Domain EM

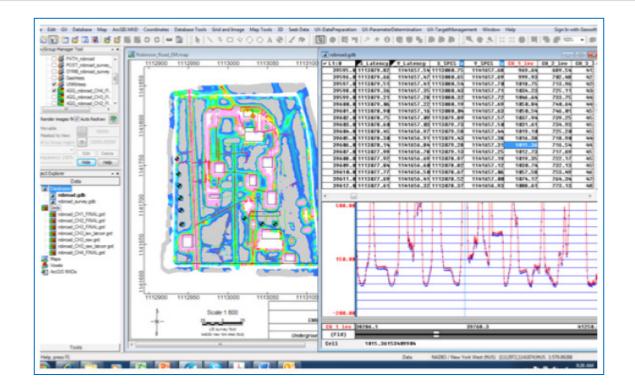


SHRP 2 R01-B Time Domain EMI System Software


Standard Locators Display vs. EM3D Program


Comparison of SHRP 2 R01-B EMI System vs. Current EMI System

3-D Software Interpretation Environment



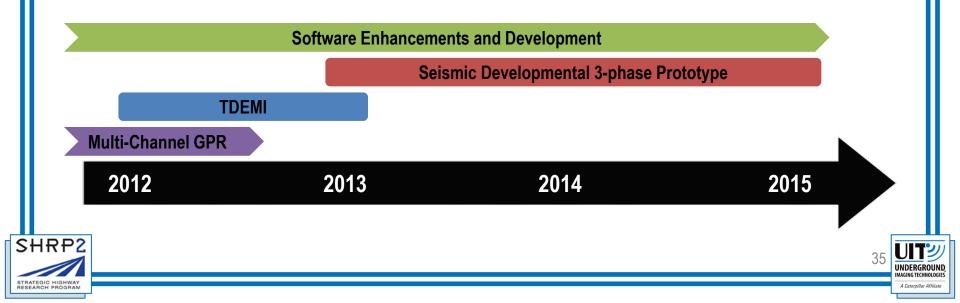
Software Usability and Progression

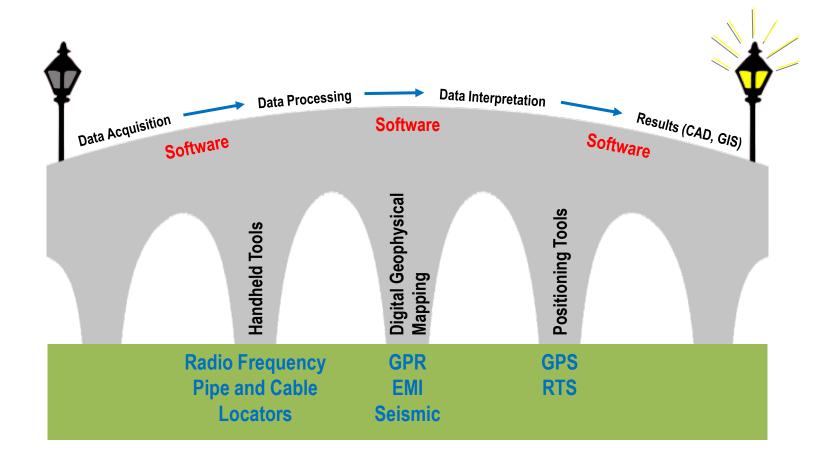
- These software tools should not be any more difficult to use than those used today
- They should offer a more user friendly graphical interface and automate the most tedious processes.
- Special training will be required to utilize these software tools effectively.

UNDERGROUND

SHRP2 R01-B Products Costs

- System field costs will be comparable to other Utility Mapping Systems.
- Geophysical service providers will use these tool in the context of Subsurface Utility Engineering.
- The larger the project and the greater the lead time the better the Return on Investment.





SHRP 2 R01-B Products Availability

- The new TDEMI System: ~ 1 year (2013)
- The Seismic System: ~ 3 years (2015)
- The Multi-channel GPR System: Available
 - Improvements to data analysis functions
- Software enhancements are produced continuously with user feedback and the prototype(s) evolution.

Summary of Service - Bridging the Elements

Research Team

Team Lead: Underground Imaging Technologies, LLC, A Corporate Affiliate of Caterpillar

Team Members	Task
Owen Engineering Services (OES)	Seismic development
Psi-G and Bay Geophysical	Seismic development
SAIC	EMI development
Sagentia	Software development
Louisiana Tech Univ.	Seismic model development
University of Birmingham (MTU)	Consulting on all phases
University of Southampton (MTU)	Consulting on seismic
J. H. Anspach Consulting	Coordination with MTU, with in-service testing sponsors, and A, C projects
Geomedia Research & Development	Consulting on seismic
Radar Solutions International	Field support in testing
Dr. Tom Iseley	Consulting on outreach and in-service testing

END OF SLIDES

the Energy to Lead

SHRP 2 Project R01-C Encouraging Technology Innovation to Improve the Extent of the Locatable Zone

Chris Ziolkowski Principle Investigator Gas Technology Institute

Biography

- R&D Manager, Sensors and Automation Group at Gas Technology Institute
- Group focus on electronics and physics
- Mission of adapting new technologies to utility applications
- Multiple projects in utility and feature location

R01-C Presentation

What will we cover:

- Background and motivation for project
- The schedule and status of project
- Updates of 4 distinct technology products
- Anticipated product for each of these
- Suggested next steps for each technology

R01-C Background

- Modern installation processes go deeper
- Depth can lead to "stacked" infrastructure
- Modern materials are less easily detected
- We need to improve both:
 - Our means to locate deep infrastructure
 - Our means of maintaining location data

R01-C Objective

- To test prototype technologies for <u>locating</u> buried facilities that are:
 - Of diverse composition
 - At depths of up to 20 feet
 - Obstructed or "stacked"
 - In the challenging, road construction environment

R01-C Schedule

- The R01-C was initiated in Q4 of 2009.
- A state of the art assessment and literature review was prepared.
- Prototype Development was initiated in Q2 of 2010.
- Initial field testing began in Q4 of 2011.
- Testing at an active DOT site is anticipated for April-May of 2012.
- Final Report anticipated end of July.

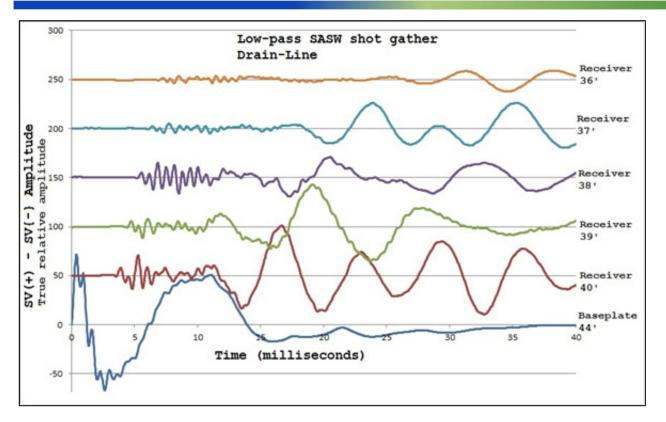
Anticipated Technology Products

- UIT: Seismic Reflection Locator
- GTI: Active & Passive Acoustic Locator
- VAI: Long-Range RFID Tags
- GTI: Scanning Electromagnetic Locator

UIT 2D Seismic Reflection Technology

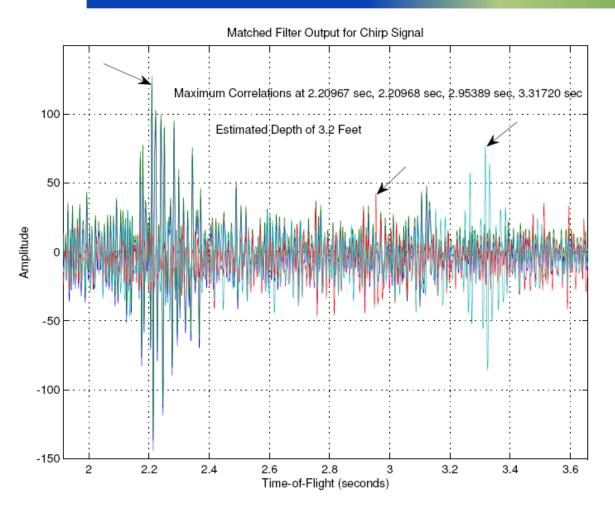
- Targets all pipe materials
- Method staged completely above ground
- Shear waves have ability to resolve smaller targets
- Works in clay soils where GPR does not
- Current seismic techniques are suited for large/deep targets.

UIT 2D Seismic Reflection Technology


Receivers

Single Receiver

UIT 2D Seismic Reflection Technology

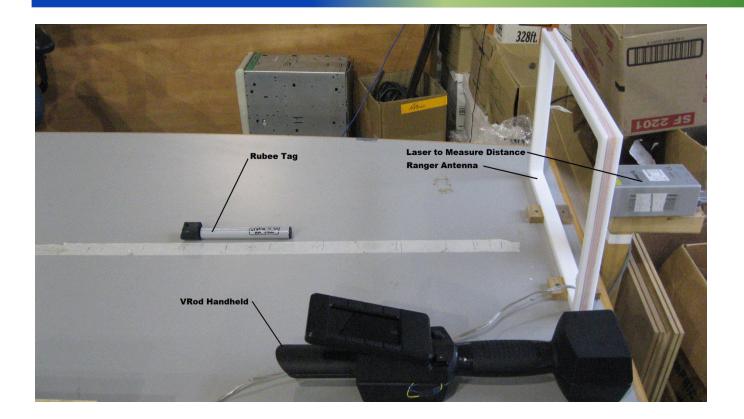

Initial test data shows the surface wave propagates and attenuates more rapidly than the sub-surface wave. This is a positive result for the location of buried structures.

GTI Acoustic Method

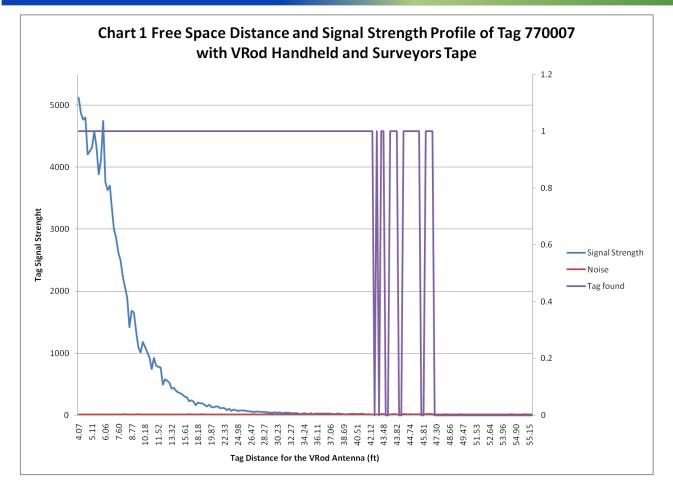
- Target can be any pipe material
- A tailored acoustic on the pipe eliminates round trip
- Improves discrimination amongst facilities
- Active requires a connection to the pipe
- Passive uses intrinsic signal; i.e. 60 cycle hum
- Multiple wireless sensors automate depth estimate

GTI Active Acoustic Method

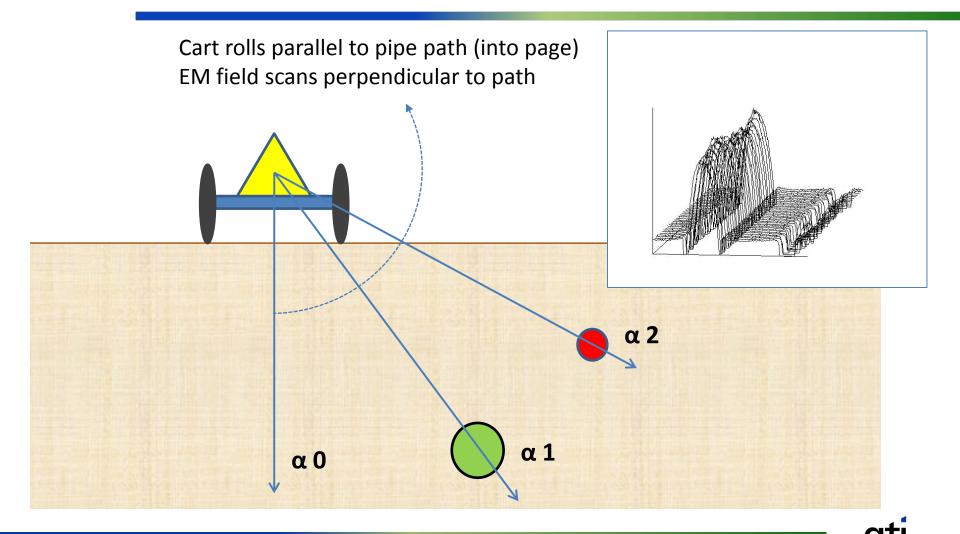
Cross correlation of multiple sensor returns gives an accurate time of flight. The TOF is then further processed to estimate pipe location and depth.


VAI Long Range RFID Tags

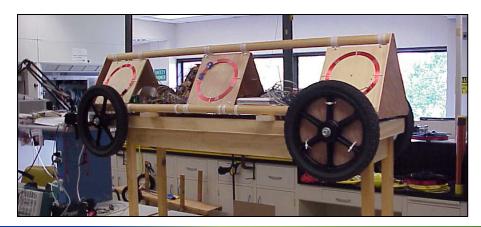
- Visible Assets Inc. is producing active RFID tags and handheld readers for testing
 - Range of up to 40 feet with hand held reader
 - Battery life of 20+ years
 - IEEE 1902.1 public protocol communication
 - VAI in-house testing of first batch of 20 complete
- Current Smart Tags have ranges of about 8 feet and use proprietary protocols.


VAI Current State of Prototypes

Tag and hand held reader under test



VAI Prototype Test Data


Positive acquisition of Smart Tag to greater than 40 feet

GTI Scanning EM Concept

GTI Scanning EM Prototype

- Low frequency EM for depth of penetration
- Inducer and differential pick up moves with the cart
- Unresolved signal strength issues delaying testing
- May be dropped from testing program
- Scan angle provides added location data with fewer passes

Anticipated Product Characteristics

- What is different about these new tools?
 - Explicitly designed for extended depths
- What new capabilities will they provide?
 - Acoustics and low-frequency EM both work in wet and mineral laden soils that stop GPR
- Will they be more difficult to use?
 - The extended depth tools require more effort than basic locators; they are intended for difficult locates.
- Will they require special training and/or operators?
 - The prototypes; definitely. The productized versions can be made easier to use.

SHRP 2 R01-C Products Availability

- Long Range RFID Tags: ~ 1 year (2013)
- Active/Passive Acoustic Locator: ~ 2years (2014)
- 2D Seismic System: ~ 3 years (2015)
- Scanning Electromagnetic system: minimum of 3 years

Anticipated Product Availability

- The Smart Tags are closest to commercialization; VAI would like to license. The tags could be sub-\$10 in volume.
- Acoustic Methods could be licensed out as hardware is well defined. Additional field testing could be useful in raising awareness in manufacturers and the user community.

Anticipated Product Availability

- The Seismic Reflection will likely require another generation of prototype after the R01-C testing. A hardened prototype and additional testing would raise industry awareness of this technology.
- The signal strength issues for the Scanning EM technology must be resolved before basic testing can be completed. This will require additional funding for hardware modifications.

the Energy to Lead

SHRP2 Project R01-A: Technologies for the Storage, Retrieval, and Utilization of 3-Dimensional Utility Location Data

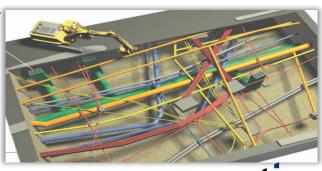
Bill Gale Team Technical Lead Gas Technology Institute

Presenter – Mr. Bill Gale/GTI

Principal Investigator on multiple GPS/GIS based R&D efforts at GTI. Joined GTI in 2010 after 32 Years with a private Utility (New York State Electric & Gas).

Past experience includes:

- Expertise in the design and development of several large scale enterprise GIS based systems and led the design , development and implementation of the first GIS based Electric Outage Management System .
- Over two decades of experience implementing GIS, document management systems and mobile computing as primary technologies for both the gas and electric utility industry.
- > Over 15 years of experience in managing engineering and field construction activities.


Education : BS Wood Products Engineering SUNY Environmental Science and Forestry at (Syracuse University). Completed 3 years of a 5 year Masters program in theology as part of a Diaconal studies.

- >Background
- Industry Problem
- >Project Objective
- >Expected Outcome
- >Research Approach
- >Research Products
- Schedule and Status
- >System and Work Flow Diagrams

Background

- > DOTs need accurate and up-to-date utility information during project development in order to consider the impact on utilities.
- > Designers are usually provided with this information at the beginning of a project, but do not have a mechanism to ensure it is kept up-to-date.
- > There is currently no system in place to track utility changes during a project and notify designers of the changes.
- > DOTs need to completely re-map utilities for every new project.

Project Objective

Create a system that provides a single, up-todate repository for 3-D utility location data within a project boundary

- >Leverage existing permitting and one-call processes to create a change notification system
- >Develop supporting administrative procedures
- >Utilize existing DOT 2-D and 3-D CAD design software

Expected Outcome

- >Reduce re-design work resulting from utility changes unknown to the DOT designers
- >Reduce project delays in the design and construction phase
- >Reduce excavation damage to utility lines

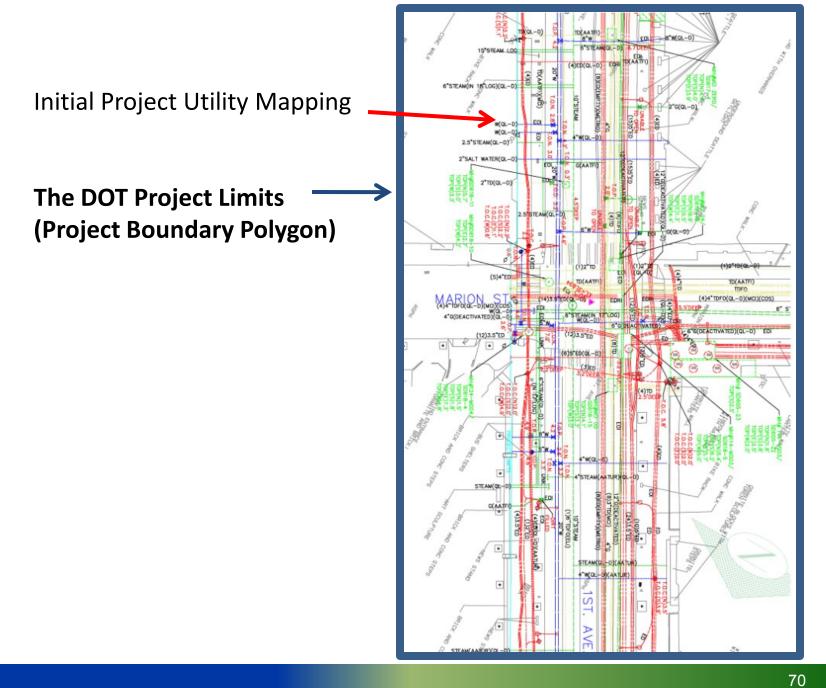
Research Approach

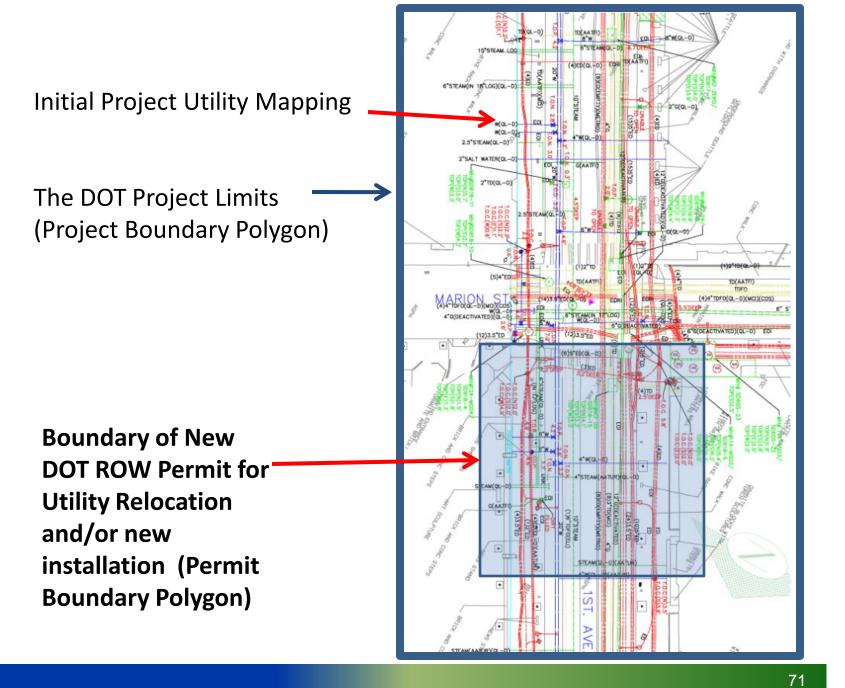
- >Adopt and adapt a 3-D utility data model (Proprietary Model or Industry Standard)
- >Utilize a spatial document management system
- >Leverage existing 3-D software tools
- >Create administrative procedures
- Incorporate supporting best practices

3-D Utility Data Model

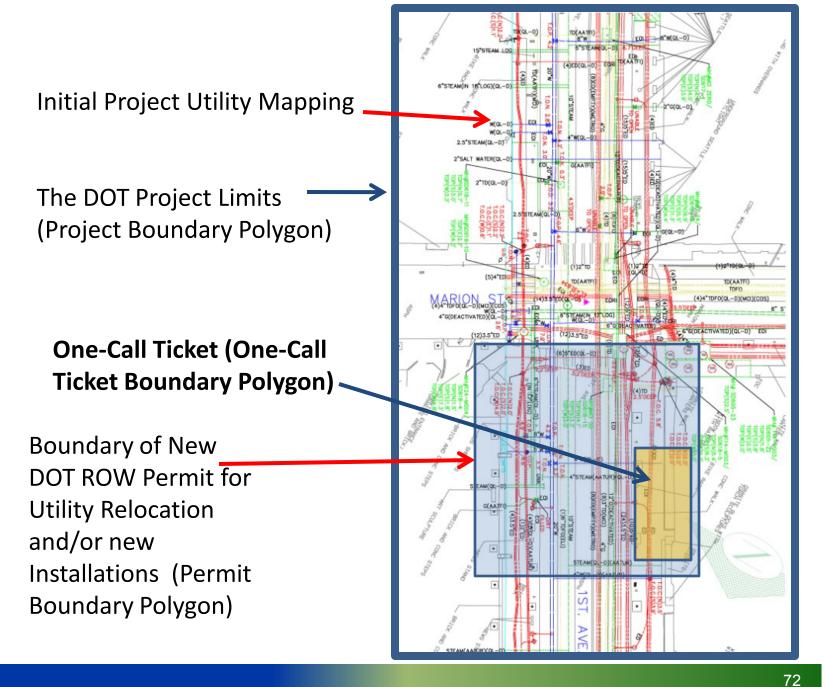
- Sufficient detail to allow designers to model Utility:
 - -Location (x, y, z)
 - -Attributes (size, material, owner, etc.)
 - -Feature Quality and accuracy (ASCE Quality Level)
 - -Administrative controls (security, access, etc.)

Spatial Document Management System

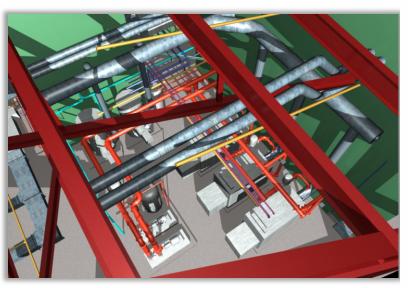

- Stores all project documents, raster and vector drawings, spreadsheets, survey data, etc.
- >Spatial features allow administrative controls
 - Project Boundary Polygon
 - Right of Way (ROW) Permit Boundary Polygon
 - One-call Ticket Boundary Polygon


Administrative Procedures

- Integration with (ROW) permit and one-call process
- >Quality and accuracy management
 - -Gatekeeper function
 - -Certified Record Drawing
- >Balancing security with access



gti.



gți

Visualization and Notification

>Utilize existing 3-D visualization tools>Change and notification system

EMAIL

Date: September 10, 2012 To: All Project T-31 Task Designers From: Utility Gatekeeper

There is a change to the existing utilities on the referenced project.

Location: At Project GPS Coordinates 38.54.47.13N ; 77.13.35.98W What: Washington Gas has relocated their 10" HP gas line

Please view document UM 21.6 for details of the change.

The Master Utility Map has been updated as of 9/10/12, 10:42AM EST.

Supporting Best Practices

- > RFID marker ball and smart tag technology
- > Certified Record Drawings for new installations
- > Electronic DOT ROW permit Feature
- > Electronic one-call boundary "white-lining" Feature
- > ASCE 38 Utility Quality Levels on GIS attribute and CAD file metadata
- > Geo-stamping photos and other data collection activities
- Incorporation of data resulting from advanced tools developed under SHRP B&C technologies
- > Incorporation of CSA S250

Research Products

- >3-D Utility Data Model
- >Implementation Strategy
- Proof of Concept System
- >Pilot Project

- Virginia DOT, VUPS, participating utility companies
- Implementation with existing tools
- Inclusive of RFID marker ball program
- Evaluation of administrative controls
- Evaluation of administrative control processes

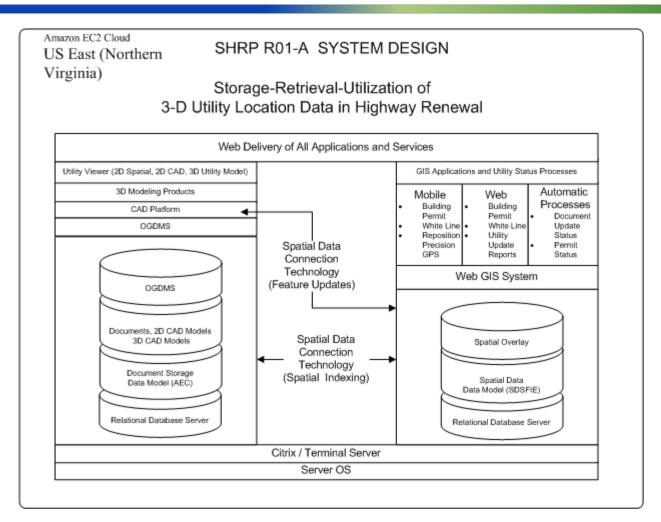
Research Products/Audience

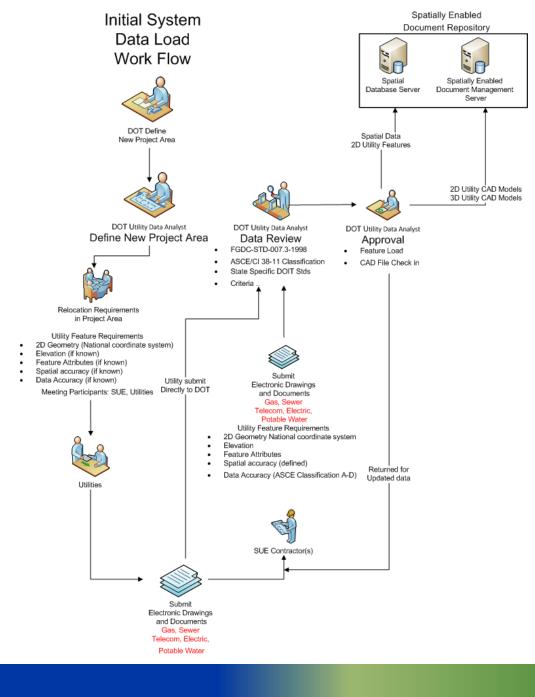
>Final Report

- Recommendations for further implementation
- Technology and administrative best practices

>DOTs, one-call centers, vendors, and service providers can use the process model and best practices to support further implementation

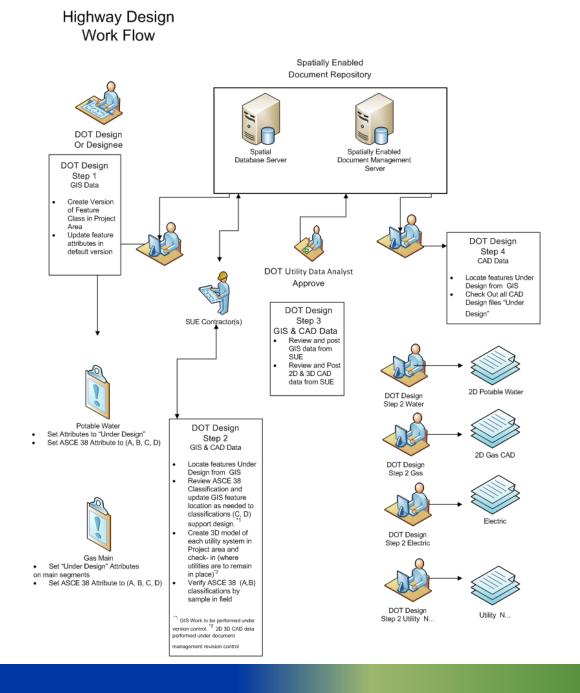
Schedule and Status

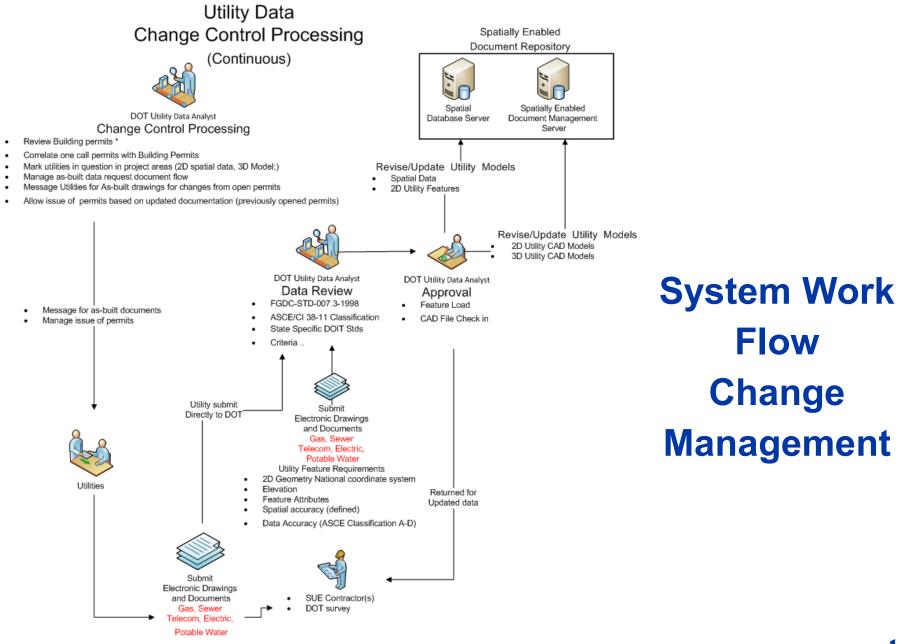

- Completed Phase 1 Report January 2012
- Starting Proof of Concept End of 1st Quarter 2012
- >Pilot Project Mid 2012
- >Project Completion December 2012


Questions?

Questions and Answers

- > 1. The new tools will provide a automated means of understanding change within a project area.
- > 2. New 3-D and 2-D views of utility change and data quality available without laborious research time.
- > 3. The tools will require additional training and understanding of the system nomenclature and work flow. DOT organizations should restructure their work practices.
- > 4. New software products may need to be purchased or extensions added to existing systems.
- > 5. The Prototype has not been developed for pricing. Additional information will be available mid Summer 2012.


Proof of Concept & Pilot System



System Work Flow Data Load

g1

System Work Flow Design

SHRP 2 Project R15-B: Identification of Utility Conflicts and Solutions

Cesar Quiroga

Texas Transportation Institute

New SHRP 2 Tools for Underground Utility Location,

Data Collection, and Analysis

SHRP 2/FHWA Webinar, February 15, 2012

Cesar Quiroga's Profile

- Senior Research Engineer and Manager, San Antonio Office at TTI
- Current research work:
 - Project development process optimization
 - Utility coordination and ROW acquisition
 - Spatial data technologies
 - Impacts of energy developments on the transportation infrastructure and ROW
- MSCE and Ph.D. from Louisiana State University
- Member ASCE, ITE, IRWA
- Co-Chair, TRB Spatial Data Committee
- Secretary, TRB Utilities Committee

Presentation Outline

- Background and research objectives
- Research products
- Anticipated value and implementation cost
- Answers to today's questions
- Pilot implementation

Utility Conflict Solution Strategies

- Remove, abandon, or relocate utilities in conflict
 - Relocating utilities NOT ALWAYS the best or most cost-effective solution
- Modify transportation facility
- Protect-in-place utility installation
- Accept an exception to policy

Research Objectives

- Utility conflict matrix (UCM): Important tool for managing utility conflicts
- Objectives:
 - Review trends and identify best UCM practices
 - Develop a recommended UCM approach and document related processes
 - Develop training materials
 - Develop implementation guidelines

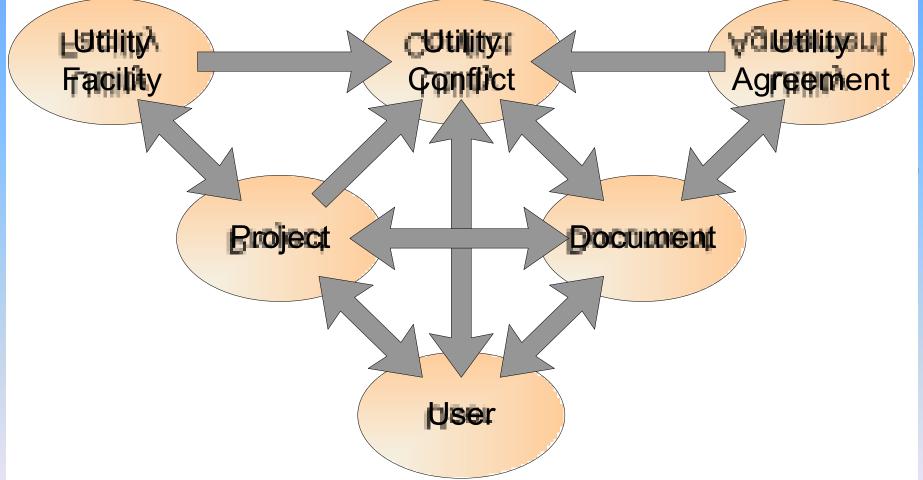
SHRP 2 R15-B Research Products

- Prototype 1: Compact, standalone UCM
- Prototype 2: Utility conflict data model and database
- One-day UCM training course
- Implementation guidelines

Prototype 1: Utility Conflict Matrix

• MS Excel format, includes drop-down lists

and/or	Utility Owner and/or Contact Name		ct	Drawing or Sheet No.	Utility Type		Size and/or Material		Utility Conflict Description		Start Station
AT	ſ&T	1		U-1	Telephon	e	Fiber Optic		ct with constru ntage road wid		21+00
End Station	Start Offset	End Offset		Utility vestigation vel Needed	Test Hole		Recomment Action or Resolutio	r	Estimated Resolution Date		olution tatus
22+00	45' Lt	45' LT		QLC			elocation before the second seco	ore	3/8/2010	Utility identifi	conflict ed.



Prototype 1: Cost Estimate Analysis

Alternative Number	Engineering Cost (Utility)	Direct Cost (Utility)	Engineering Cost (DOT)	Direct Cost (DOT)	Total Cost	Feasibility	Decision
0	\$ 10,375.00	\$ 63,875.00	\$ -	\$ -	\$ 74,250.00	Yes	Selected
1	\$ 7,875.00	\$ 32,375.00	\$-	\$-	\$ 40,250.00	No	Rejected
2	\$-	\$-	\$ 95,375.00	\$ -	\$ 95,375.00	No	Rejected
3	\$-	\$-	\$-	\$-	\$-	No	Rejected
4	\$ 10,375.00	\$ 63,875.00	\$ -	\$ -	\$ 74,250.00	No	Rejected

Prototype 2: Data Model and Database

Prototype 2: Example (Prototype 1)

Utility Conflict Matrix Developed/Revised By:	Date:	
Reviewed By:	Date:	

	End Offset	Utility Investigation Level Needed	Test Hole No.	Recommended Action or Resolution	Responsible Party	Estimated Resolution Date	Resolution Status	Cost Analysis
¢.	45' Lt	QLC		Relocation before construction.	U	3/8/2010	Utility conflict identified	<u>Detail</u>
ł	37' Rt	QLC		Relocation before construction.	U	3/8/2010	Utility conflict identified	<u>Detail</u>
k	48' Rt	QLC		Relocation before construction.	U	3/8/2010	Utility conflict identified	<u>Detail</u>
k	48' Rt	QLC		Relocation before construction.	U	3/8/2010	Utility conflict identified	<u>Detail</u>
k	49' Lt	QLB		Design change.	D	3/8/2010	Utility owner informed of utility conflict	<u>Detail</u>

Prototype 2: Example (Prototype 1)

		utio	n Alternativ	/es					Transportation Institute
Project Owner:	Texas Department of	e Ana	lysis					Date: 1	1/24/2010
Project No.:	1234-56-789		2						
Project Description:	Road construction pr	r							
Highway or Route:	I-10 Katy Freeway								
Conflict ID:	1								
Utility Owner:	AT&T								
Utility Type:	Telephone								
Size and/or Material:	Fiber Optic								
Project Phase:	60% Design								
		·							
Alternative Alternat Number	tive Description	Party	Engineering Cost (Utility)	Direct Cost (Utility)	Engineering Cost (DOT)	Direct Cost (DOT)	Total Cost	Feasibility	Decision
0 Relocation be	fore construction. No o no a		\$10,375.00	\$63,875.00	\$0.00	\$0.00	\$74,250.00	Yes	Selected

0	Relocation before construction. No on a	1 1	\$63,875.00	\$0.00	\$0.00	\$74,250.00	Yes	Selected
1	Protect in-place.	\$7,875.00	\$32,375.00	\$0.00	\$0.00	\$40,250.00	No	Rejected
2	Design change.	\$0.00	\$0.00	\$95,375.00	\$0.00	\$95,375.00	No	Rejected
3	Exception to policy.	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	No	Rejected

SHRP 2 Project R15-B: Identification of Utility Conflicts and Solutions 94

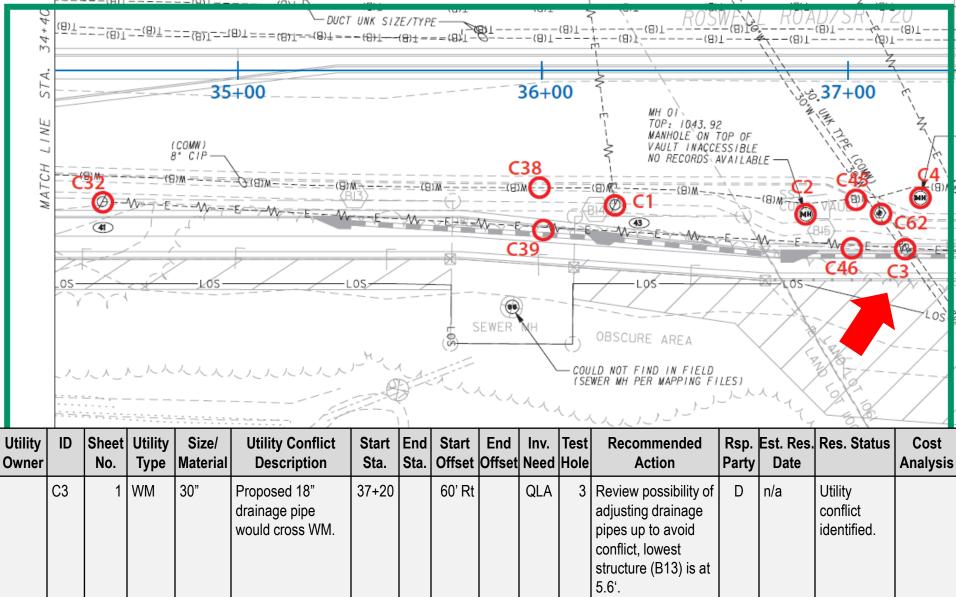
Texas

Prototype 2: Other Potential Reports

- All utility conflicts associated with company X (project, corridor, or timeframe)
- Average conflict resolution time for electric utilities
- All utility conflicts with resolution time >100 days
- Customized UCMs for individual utility companies
- Utility certification for inclusion in PS&E package

Utility Conflict Event Tracking

0	Utility conflict identified	15	Required adjustment completion
1	Comment created	16	Estimated adjustment completion
2	Utility owner informed of utility conflict	17	Scheduled adjustment completion
3	Utility conflict resolved	18	Notice to proceed to utility owner
4	Utility owner acknowledges receipt of	19	Adjustment construction start
	document	20	Adjustment construction end
5	Document requested	21	Permit application
6	Document sent	22	Permit approved
7	Document received	23	Exception requested
8	Document reviewed	24	Exception approved
9	Document certified	25	Plans sufficient sent to utility owner
10	Document approved	26	30-day notice submitted
11	Document uploaded	27	90-day notice submitted
12	Document review, comment, and appro	28	Utility conflict resolution strategy selected
13	Utility coordination meeting	29	Utility relocation under construction
14	ROW cleared for adjustment	30	Utility conflict archived



One-Day UCM Training Course

- Lesson plan (6 lessons)
- Presentation materials (PowerPoint)
- Presenter notes
- Participant handouts
 - Handouts, sample project plans, UCM templates
- Companion CD
 - All training materials, including UCM
 - Prototype utility conflict database

Hands-on Utility Conflict Analysis

Anticipated Value and Implementation Cost

Implementation Product	Value	Cost
Prototype 1 (standalone UCM in	20	\$
Excel format)		
UCM training course	40	\$\$
Prototype 2 (standalone database	50	\$\$\$
implementation in Access format)		
Prototype 2 (enterprise-level	80	\$\$\$\$
implementation)		

Today's Questions

- What's different about these new tools?
- What new capabilities will they provide?
- Will they be more difficult to use?
- Will they require special training or operation only by specially-trained people?
- How will the costs to use these tools compare with those of today's tools?
- When will these new tools likely be commercially available?

Answers to Today's Questions

- Systematic treatment of utility conflicts
- More effective project development process integration
- Easy to use given a correct implementation
- Training for all stakeholders is highly recommended to realize benefits of UCM implementation
- Slightly higher front-end costs but potentially much lower costs at the end
- Research products available as soon as SHRP 2 publishes them

Pilot Implementation

- Four tasks over a 14-month period
 - Schedule meeting with key stakeholders
 - Select state DOT and assemble agency-wide task force
 - Conduct UCM training course for selected users
 - Assist users with full implementation of Prototype 1 and limited implementation of Prototype 2

Webinar Objectives

What is SHRP 2 doing to reduce the impacts of underground utilities on highway construction projects?

How will I be able to use the products of this SHRP 2 research?

Question and Answer Session

	File View Help
	Questions
Please type your questions into this	Questions Log
box	[Enter a question for staff]
	Send
	- Audio
We will answer as	Audio Mode: OUse Telephone OUse Mic & Speakers
many of your	▲ MUTED 49 000000000
questions as time	Audio Setup
allows	
	GoToWebinar Test 2 Webinar ID: 745-284-455
	GoTo Webinar™

Thank you for attending the webinar!

Chuck Taylor ctaylor@nas.edu

Join our mailing list: www.TRB.org/SHRP2/News

Visit our website: www.TRB.org/SHRP2