Integrated Operations
- experiences from Norway

Dr. Thore Langeland
Strategic adviser, EPIM
Email: tla@epim.no
Phone: +47-9095 1756

www.epim.no
Content

1. Introduction

2. Integrated Operations

3. Data integration

4. Common industry solutions

5. Looking ahead
1. Introduction
Digitalization of the oil and gas industry

Think GLOBAL, act LOCAL

Reference Data

Theorem 1
50% of the problems in the world result from people using the same words with different meanings.

Theorem 2
The other 50% of the problems results from people using different words with the same meaning.

Stan Kaplan (1925 - 2011)

www.epim.no
USA and Norway – Offshore petroleum exploitation

1. In Norway there is a trusted 3-party collaboration between unions, industry and authorities

2. USA regulations seems to be more detailed and in some areas stricter than the Norwegian regulations

3. In Norway the operator is responsible for any event related his Production License

4. In Norway, after an accident, the 3-party collaborate in improving regulations, systems and procedures (self-regulation)

Efficient information sharing will improve work processes with 20-25%.

Today’s activity: NOK 50 billion reduced cost.
Integrated Operations (IO) – but how?

- Intelligent systems and components
- Virtual model of reservoirs, wells, production process & facilities
- Distributed control & surveillance systems
- 4D and 4C seismic (sea bottom or conventional)
- Fiber cable
- Down hole sensors and processing equipment
- Collaboration tools
- Integrated, onshore-based operation centers
- Operators
- Vendors
Competitive suppliers – but how?

The news February 2014: Statoil’s cost reduction

Prime minister Erna Solberg:

Make your suppliers competitive!

CEO Helge Lund, Statoil

 Operators’ cost structure

Internal 20%
External 80%
Working Environment

Technology/Software

Documents

Laws & Regulations

Standards

Enterprise Governing Documents

www.epim.no
2. Integrated Operations (IO)

a) The idea
b) Business benefits
c) Organization
d) The plan
e) Some results
 ✓ HSE
 ✓ Drilling
 ✓ Production
 ✓ Operations
f) IO Generation 2

IO is safer, faster and better decisions
Integrated Operations - Idea

- External experts
- Vendor’s onshore operation centre
- Control room
- Collaboration rooms
- Real time communication
- Operator’s onshore operation centre

Better and faster decisions
Streamlined delivery chains
IT is moving into E&P

• The Norwegian Continental Shelf (NCS) has become a mature petroleum province
 o All major production areas but one opened
 o Competitive Norwegian oil & gas industry established
 o Logistical system in place
 oPlateau passed in 2004

• Two major technology leaps boosting production before year 2000
 o The first caused by falling oil prices
 o The second induced by falling finding rates

• Integrated Operations (IO) – deploying IT in E&P might be the third leap

• The economical potential of IO is high - 80% is related increased production and 20% is related reduced costs
Prioritized areas
The «high-cost» and «high-value added» areas

- High level description of processes
- Key technology, organizational, business model, and skill requirements

Main functional areas:
- Drilling & Completion
- Reservoir & Production Management
- Operation & Maintenance

Key work processes:
- Well planning & execution
 - Well placement
 - Drilling efficiency
- Well completion
 - Well productivity
 - Well maintenance
- Production optimization
 - Production & export capacity
- Maintenance management
 - Availability and costs

Key activities:
- Improvements
- Strategy
- Long term planning
- Mid term planning
- Short term planning
- Execution
- Reporting
In the Work Groups (WGs) participated all stakeholders: authorities, unions, universities, research institutions, associations, suppliers and operators on their own costs.
Integrated Operations (IO)

Generation 1 and 2

IO is integrated work processes across operations in real time

IO = RTM

Integration across onshore and offshore

- **Limited integration**

- **Integration across companies**

- **Potential**

Generation 1

- Integrated onshore and offshore centers
- Continuous onshore support
- Limited integration

Traditional processes

- Self-sustainable fields
- Specialized onshore units
- Periodic onshore support

Generation 2

- Integrated operation centers of operators and vendors
- Heavily automated processes
- 24/7 operation

www.epim.no

2005 2010 2015

Time
Integrated Operations - Structure

- Data acquisition and automation and autonomous systems
- Digital infrastructure and information security

Real Time Data

Operation Centre
- Analysis
- Visualization
- Knowledge
- Decisions
- Actions

Improved work processes and decisions

Information management (Information quality)

Computing and software

Data Integration (ISO 15926)

Data acquisition and automation and autonomous systems

www.epim.no
Data acquisitions

- Regrettable acquisition was not a part of the IO project

- Instrumentation has increased **5-10 times** in new offshore developments the last 20 years providing a lot more real time data from equipment and processes

- Optimization and condition based maintenance requires condition and performance monitoring (not all data through the PCU)
 - Wells
 - Processes
 - Turbines
 - Compressors
 - Motors
 - Pumps
 - Valves

Ormen Lange

The Flow Assurance System (FAS) receives data from both subsea and surface instrumentation through the control system. Data from pressure and temperature sensors, multiphase flow meters, chokes, rates, etc. is reconciled in a tuned model. Through a comparison between modeled data and actual data, anomalies can be detected in real time at any point in the production system, with an immediate visual notification.
Digital Infrastructure on the Norwegian Continental Shelf

Everything is connected to everything else

Fiber optics on NCS

Oil companies

Vendors

Authorities
Wireless Communications Offshore

- **Satellite communications**
 Has up to 600 ms latency and is costly

- **Radio Link Connectivity**
 Point-to-point radio link connectivity is a well proven technology that provide temporary connections of drilling rigs

- **Long Term Evolution (4G)**
 A process has been started for an offshore wireless broadband access network/services
To manage identified risks satisfactorily, common security requirements and guidelines are needed
- Control of ICT equipment brought offshore
- Security requirements for ICT solutions on production networks
- Criticality analysis and classification of ICT systems
- Reporting of ICT incidents

OLF has now defined these requirements in guidelines based on ISO 27 000+

Three guidelines have been developed (No.104, 110, 123) (http://www.norskoljeoggass.no/en/)
Today huge amounts of data can be transferred to onshore in real time and the capacities for deploying them are gradually increasing.
Information quality: IO require an oil and gas ontology (conceptual model)

Field data
- Health, safety, environment
- Seismic
- Drilling
- Completion
- Reservoir & production
- Operation & maintenance

Generation 1
Terminologies for single domains
The basis for XML schemas for automatic transferal of data between applications in same domain

Generation 2
Complete ontologies supporting automated reasoning or inference of data using logical rules
Taxonomies for multiple domains

Real-time collaboration rooms

Automatic optimization

Intelligent facilities

Oil & gas ontology

Traditional facilities

Health, safety, environment
Seismic
Drilling
Completion
Reservoir & production
Operation & maintenance

Field data

www.epim.no
Information quality

- Information quality
 - A common ontology with good definitions of the concepts (HSE, drilling, development, production, logistics, operation and maintenance)

- Deployments
 - Daily Drilling Report
 - Daily Production Report
 - Monthly Production Report
 - Yearly Environmental Report
 - RFID deployment
 - Personnel
 - Container
 - Drill string
 - Equipment
 - EqHub - a common database for standard equipment
 - ReportingHub

Harmonizing the E&P terminology

Integrating the terminology from the different business domains in E&P

Contains dictionaries, taxonomies and ontologies for relevant business processes in E&P sector

www.epim.no
Quality information: An example from the CBM* area

Traditional

- Many applications are used, even on the same installation, for the same purpose, e.g., vibration monitoring and compressor control.
- There are many screens per domain, e.g., many for monitoring and analysis of vibrations, and data are “locked” in the various applications.

* CBM = Condition based maintenance
Quality information: An example from the CBM area

Generation 1

• Common definition of concepts
• Common XML schemas are implemented for the various domains
• There is one screen per domain, e.g., for analysis of vibration data
• The opportunity for concurrent analysis of vibration and compressor control data still is limited
Quality information: An example from the CBM area

Generation 2

- A common ontology ensuring that concepts are consistently defined across domains is implemented
- Reasoning software using data from several domains, automatically monitor and control equipment, order spare parts and prepare maintenance plans

Reference Data Library

- Definitions of concepts (XML tags)
- Definitions of relations, properties and rules

Vibration monitor
Compressor control system
In projects (Greenfield, Brownfield and major modifications) a common communication platform reduce costs and increase flexibility.

Integrated work processes require data integration.

Operations philosophy drives the asset management solution.

Data Integration

Automatic Identification and Data Capture (AIDC)
Drilling operations (IO G2)

Planning and execution

✓ Virtual support by vendors and specialists
✓ The decision process is automated - systems give prognosis and alerts, e.g., using artificial intelligence
✓ Drilling is optimized automatically from onshore
✓ Smart tools and neural networks are commonplace
✓ Data and information is automatically integrated in 3D models
✓ Information is displayed in a much more visual way

Completion

✓ Well completions are integrated parts of virtual reality reservoir models
✓ All work overs and well interventions are supervised by virtual reality models
✓ Wireless intervention tools are available
Closer integration of the work processes between daily and longer time loops optimizations by linking episodic reservoir data with real-time process and production data.
Operation and Maintenance
- a quiet revolution (IO G2)

- Intelligent equipment, field-buses, and distributed control systems are revolutionizing operations
 - Self-regulating equipment
 - Components for automatic detection of anomalies, handling of alarms and optimization of operations
 - Wireless networks

- Large amounts of real-time information can be transferred to onshore operation centers
 - Remote monitoring of performance and efficiency, corrosion and erosion
 - Remote administration of chemicals

- Proactive maintenance concepts can be implemented

New technology in instrumentation, automation, communication and in real time data transmission make it possible to monitor and control equipment from onshore
Integrated Operations and HSSE

OLF recommendations:

- HSE have to be one of the drivers for implementing IO

- Improve change processes by:
 - Secure trust on individual and group level
 - Increase investments in change management
 - Secure involvement by employees and users
 - Improve HSE and organizational culture
Two HSE challenges in IO: Manage the change process and change the management process

Manage HSE consequences of the change process:
Visible HSE goals for the change processes and the new solutions

Change the HSE management process:
Apply IO principles, methods and solutions for improving HSE management internal and in interface between all stakeholders
Integrated Operations reduce risks

The Norwegian Snorre Field had an uncontrolled leakage of gas from a well in 2004

- Maintenance of a well
- A kick occurs and huge amount of gas leaks into the ground close to the sea bottom
- The gas is also filling up the water below floating platform
- Quite a few decisions were not according to regulations and good practices
- It serious event that could have been a new Piper Alpha accident

“The Snorre event would not have happened if Integrated Operations had been implemented”

Terje Overvik
Senior Executive Vice President, Statoil (2006)
Integrated operations: Is co-working across all boundaries

IO provides:

➤ Transparency
 ✓ Real time information shared offshore/onshore

➤ Improved work processes
 ✓ Onshore deciding
 ✓ Offshore executing
Operations - Traditional, IO G1 & G2

Organizational changes

Generation 2
- Operation centers of operators and vendors are integrated
- Vendors are managing processes operators managed earlier
- Several tasks are automated
- The parties cooperate over “the net” (virtual teams, leadership, culture, compensation – new operational concepts, decision processes, roles and procedures have to be adapted virtual operation centers)
- The centers are operating 24/7 and tasks are carried out according to “follow the sun” principles

Generation 1
- Decisions are made jointly by teams onshore and offshore
- Personnel onshore monitor operations in real-time, identify operational and safety related problems, discuss actions with and support personnel offshore in the implementation phase
- For some areas like drilling onshore support is available 24/7, for other areas beyond normal work hours
- Off-the-shelf technologies like high quality audio and video systems are used extensively for real time co-operation

Traditional
- Daily operational decisions are made offshore with limited onshore support
- Personnel on- and offshore belong to several different organizational units
- Plans are made and changed fragmentally and at fixed times
- IT solutions are specialized and silo-focused
- Data necessary to optimize operations is time-consuming and difficult to gather
Operations - Traditional, IO G1 & G2
Degrees of real time data integration onshore

Generation 2
- A common terminology for E&P ensuring that concepts are consistently defined across domains is implemented (oil and gas ontology)
- Any business process or combination of business processes may be presented on one screen
- Reasoning software using data from several domains (drilling, production, logistics and operations and maintenance) are deployed and provide planning information and actions (automated or partially automated)

Generation 1
- Terminologies established for single domains
- The basis for XML schemas for automatic transferal of data between applications in same domain
- There is one screen per domain
- The opportunity for concurrent analysis of data from different domains are still limited

Traditional
- Daily operational morning meeting week days
- No real time data available onshore
- Many applications are used offshore for the same purpose
- There are many screens per domain and data are “locked” in the various applications
3. Data integration
POSC Caesar Association (PCA)

- Founded in 1997
 - **Reference Data Organization**

- ISO 15926 “Integration of lifecycle data”
 - Documentation for Operations (DFO/NORSOK)
 - Integrated Operations (IO)
 - Asset Management

- **W3C Recommendations**
 - Semantic Web Technology

- **Generic Information Modeling (GIM)**
 - Modeling any type of data

- Competence in management, engineering, modeling, information management and IT

The vision of PCA is integration & interoperability of lifecycle data

GIM interoperability at its simplest

Using *standard shared references* reduces business ambiguity and reduces mapping overheads.
Systems versus data integration

Mapping is 50% of the IT costs

Software integration vs Interoperability

Sharing today vs Sharing tomorrow
History of information paradigms

Information paradigm
1. Particular things
2. General types things
3. Relationships between things
4. Changes happening to things

Paradigms
Substance Paradigm
Entity Paradigm
Logical Paradigm

Substance
Entity
Logical

1000 -500 500 1500 2000 Year

Aristotle
Substance Paradigm

Entity Paradigm
“Paper and Ink”

Logical Paradigm

Frege
Einstein
Quine
Cantor
Venn
Boole
Hume
Locke
Descartes

Object (4D) Paradigm

Object (4D)

Year
ISO 15926 Industrial automation systems and integration
-Integration of life-cycle data for process plants
including oil and gas production facilities

The data model in ISO 15926 is a 4-dimensional conceptual model based on set theory and logic.
ISO 15926 Model and reference data

An integration model can be created if a common understanding of the application models to be integrated can be established.

The conceptual model is the integration model that is able to cope with all possible application model based 4D modelling plus required set of reference data.
Generic Information Modeling (GIM)

GIM will DRIVE your knowledge into business
ILAP Asset Lifecycle Model

Asset Lifecycle Activities

- **Acquire**
- **Develop**
- **Operate* and maintain and renew**
- **Dispose**

* Incl. drilling
** Incl. Turnarounds and High Activity Periods

- Governance
 - Go/no go decision
 - Study
 - Modification project
 - Greenfield development project
 - Brownfield redevelopment project
 - Disposal project

Governing, timing and classification of Asset Lifecycle Projects

www.epim.no
Define one set of ILAP concepts (reference data) from many sources

Terminology in planning tools

Terminology used by the ISO and operators

For each of these reference data sources we need to identify, clarify and unify their models (documents and drawings) and extract all relevant terms and definitions.

For each of these tools we need to identify, clarify and unify how these tools use terms (documents and drawings) and extract all relevant terms and definitions for use in the Reference Data Library.

Creating on common set of concepts based on today’s practices
ILAP interoperability at its simplest

Using *standard shared references* & sharing references used, reduces business ambiguity & reduces mapping overheads. Makes interoperability easier and reduces risk & cost.
The ILAP solution

Note that the application providers should build adapters for exchanging ILAP planning data.
4. Common industry solutions

a) Connectivity
✓ Internet
✓ Topside
✓ Subsea
✓ Well
✓ Drilling rigs

b) Content
✓ OPC UA
✓ WITSML
✓ GIM
Topside

Safety and Automation System (SAS)

The SAS establishes secure industrial control and includes:

- Scada (supervisory control and data acquisition) systems,
- DCS (distributed control systems)
- ICSS (integrated control and safety system)
- Control systems configurations

Separation of the Process Control, Safety and Support ICT systems with the office system is fundamental requirement.
Connectivity of topside and subsea through MDIS

MDIS aim to provide

- Simplified implementation and testing of the interface
- Reduction in the risk of interface failures resulting in system faults and the cost of implementation due to delays and rework
- Ensure clear logic and control and status interface boundaries (aids future MCS/DCS logic development/implementation)
- Repetition of data use within objects is avoided
- Operator perspective i.e. to enable safe control and monitoring via the DCS
- To ensure flexibility for future vendor specific development and maintenance of subsea products

The MDIS standard is submitted to ISO 13628-6.
SIIS defines the interface between subsea production system instruments (sensors) and the Subsea Control Module (SCD). SIIS has developed a tri-level classification system for control system to sensor interfaces:

Level 1 – Simple instrument loop (4-20 mA)

Level 2 – CANbus (Fault tolerant) CANOPEN

Level 3 – Ethernet TCP/IP

The SIIS standard is submitted to ISO 13628-6.

Obsolescence Management

✓ Permanent transition from operability to non-functionality due to external reasons

✓ Co-ordinated activities to direct and control an organization with respect to obsolescence
Intelligent Well Interface Standard (IWIS)

IWIS is a standard for integration of downhole power and communication equipment with subsea control systems to secure timely and cost-effective implementation of smart downhole equipment and defines interfaces between downhole vendor card and subsea control system with respect to:

- Communication
- Power
- Hardware

The IWIS standard available in ISO 13628-6.

http://www.iwis-jip.com/
Lacking similar connectivity solution for drilling rigs?

Today’s practices for drilling facilities, for example BOP, is that testing and maintenance are performed according to a schedule between drilling the wells.

Modern drilling facilities from NOV and MH-Wirth might be remotely monitored and reprogrammed from a support center. But none of them are in operations on the NCS.

The IWIS, SIIS and MDIS solutions seems to unknown to people working within drilling.
WITSML (Wellsite information transfer standard markup language)—Energistics
WITSML™ is an industry initiative to provide open, non-proprietary, standard interfaces for technology and software that monitor and manage wells, completions and workovers.

PRODML (Production Markup Language)—Energistics
PRODML is an industry initiative to provide open, non-proprietary, standard interfaces between software tools used to monitor, manage and optimize hydrocarbon production.

OPC-UA - OPC Foundation

✓
✓ To be used on Johan Sverdrup Field

ISO 15926 – EPIM/PCA
✓ DDR
✓ DPR
✓ MPR-Authorities
✓ MPR-Partners
✓ Environment reporting
✓ Logistics (tracking CCU + content)
✓ Planning

One (important) comment to IO:
• Immature solutions
• New solutions lacking support from organization
• CBM – little useful information
5. Looking ahead
Looking into the future

- Oil prices $30 per bbl the next coming years?
 - Reduced investment
 - Fewer employees – less competence

- Oil recovery factor up to 70%?

- No major accidents?

- Digitalization of the industry?

 - Today’s IT solutions have already major digestions problems – more data is coming around the corner

 - In the future most of the communication will be between computers requiring logical languages interpretable by computers
PCA Reference Data Library (RDL) - the instrument for data integration

- Yearly member meetings
 - Europe
 - Asia/Australia
 - America

- Collaborating with
 - Fiatech
 - ISO
 - MIMOSA
 - NIST
 - Standards Leadership Council
Common reference data across industries in ISO

Aerospace and automotive joint effort
ISO 10303 AP242 Managed Model Based 3D Engineering

Business Problem addressed by PLCS
(ISO 10303 AP 239 Product Lifecycle Support)

The vision of GIM (ISO 15926)
Data interoperability and life cycle

ISO TC184/SC4/WG22
Global collaboration on common classes and attributes for offshore equipment

Data sheets
Common set of classes and attributes+

ISO 15926

Terminology used by Norwegian Offshore Industry (STI project)

ISO 15926

Terminology used by standard organizations (ISDD project)

NORSOK
Operators
Contractors
Other suppliers

ISO 15926

Creating data sheets based on today’s practices

ISO 15926

API
ISA
IEC
ISO

www.epim.no
Exploration and Production Information Association (EPIM)

- **EPIM** is governed by the operators on the NCS

- **EPIM** shall facilitate IT solutions and services for the oil and gas industry through **standardization of requirements and processes**

Service contract with the suppliers:
- Development
- Software maintenance
- Application management
- Support
- Hosting and operations
- Consulting
- Training
EPIM solutions based on the GIM standard
Information Strategy for IO for the future

Thank you for your attention!
Substances paradigm

Aristotle’s (384-322BC) was concerned with seeing the real world clearly and accurately. His “Organon” was the authority source on logic and classification up to the 19th century and he presented here the substance paradigm.

Substance was a neutral foundation for things.

Each thing was a single inert hunk of matter impregnated by a number of attributes.
The employees work with spreadsheet in almost all companies in the oil and gas industry showing the usefulness of the entity paradigm even today.

The simplification of the secondary hierarchy removes the possibility to manage more general types of things. It is not any more possible to accurately reflect the distinction between entity and attributes.
The Logical Paradigm

Frege (1848-1925) developed predicative logic in his book “The Foundations of Arithmetic” and is the founder of the logical paradigm. The paradigm is based on mathematics (logic and set theory), Frege’s reference principle and extension of an object (a property of things that can’t be doubt according to Descartes (1596-1650).

The substance concept in the substance paradigm is replaced by the extension (length, breadth, and height) in the logical paradigm and called an object.

The object, the car in the picture, is now defined with its length, breadth, and height. But what about the attributes? Due to the reference principle they need also extensions.
Willard Van Orman Quine (1908 - 2000) noted in his book “Word and Object” that “Our ordinary language shows a tiresome bias in its treatment of time” and he recommend to follow Einstein and treat time as another dimension on par with space’s three for the objects.

4 dimensional object does solve the identity issue of the physical bodies. States of physical bodies persist through time. This gives two important characteristics:

- timelessness
- whole-part patterns

Events are 3 dimensional object with zero thickness along the time dimension. They do not persist through time.