Real-Time Monitoring for Offshore Oil & Gas Operations

National Academy of Sciences Transportation Research Board

21 April 2015
Who is Athens Group?

Pioneered the exploration and production systems verification business in 2002

First to focus on integrated control systems as a key driver of operational safety and reliability

Our extensive experience and expertise with control systems, software, and automation uniquely positions us as a leader in equipment lifecycle management
Setting the Stage

• Remote Real-Time Monitoring (RTM) of two fronts:
 – Wellbore Parameters
 – Critical Equipment Status/Health

• Automating a process requires four distinct stages:
 1. Measure – Identify the parameters required and develop the methods to effectively and consistently measure them
 2. Control – Develop the methods to change conditions based on data received from measurements on demand
 3. Characterize – Establish the protocols for each control method and define the operating parameters they depend on
 4. Automate – Design the system to automatically control the process to minimize manual intervention
Critical Parameters

• Wellbore Parameters
 – Data that pertains to downhole conditions of the formation, including but not limited to: mud characteristics and flow, formation pressure, fracture pressure, pore pressure, etc.
 – Useful to determine if the well is under control

• Critical Equipment Status/Health
 – Data that pertains to the condition of the equipment deemed to be critical for the safety and integrity of the operation: BOP Stack/Control System status, DP WSOG status (if deepwater), etc.
 – Useful to determine the availability of critical equipment
The Role Of RTM

• Wellbore parameters and critical equipment status is monitored in real-time onboard
 – Current operational protocols depend on situational awareness at the rig site to interpret measurements and initiate the proper controlled response
 – Process and technology improvements continue to be adopted to improve measurement and control of operations

• Until we can determine the exact conditions of the well through data alone, remote RTM from shore should be used strictly as a support tool for the existing chain of command
 – Remote RTM is not a substitute for competency at the rig site
Remote RTM Oversight

• Promotes timely, functional, and value added inspections
 – Facilitates coordination and scheduling of visits based on operational performance → focus on specific areas
 – Enables assessment of equipment condition prior to arrival
 – Inspection shifts from equipment readiness assessment to evaluation of the rig’s operational framework (asset readiness)

• However, remote oversight should only be implemented via pre-established protocols that do not impact decision making on the rig
The Role Of Automation

• Effective automatic functionality requires detailed characterization of operations to ensure predictable and consistent results despite external conditions
 – Quality and Cyber-Security culture in the industry is not ready to immediately mitigate potential risks

• Automation and predictive tools should be reserved for analytics in support of Condition-Based Monitoring (CBM) and Preventive Maintenance Inspection and Test Program (PMITP) stewardship, without remote control capability
 – High potential risk of eroding the existing chain of command or inadvertent/accidental operation if unrestricted
Recommendation To BSEE

• Remote RTM oversight can reduce the frequency of visits by enabling inspections to be based on operational performance, but cannot replace site visits
 – If intervention is required it should be coordinated via the existing chain of command, not supersede it

• Prior to considering enforcement, evaluate current regulatory scheme, risk assess improvement opportunities, determine if the safety case justifies the expense, and pilot the program

• Enforcement should be operation based, not prescriptive

• Industry is not ready to effectively implement automation today