Committee on the Application of Real-Time Monitoring of Offshore Oil & Gas Operations

Large / Independent Production Operations Panel

SHELL’S APPROACH TO REAL-TIME MONITORING IN THE PRODUCE PHASE FOR ITS DEEPWATER ASSETS

Hyatt North Houston, Grand Ballroom
425 North Sam Houston Pkwy E
Houston, TX
April 20–21, 2015

Tom Moroney
Vice President, Wells & Facilities Engineering Technologies
Projects & Technology – Innovation, Research & Development
DEFINITIONS AND CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell's 20-F for the year ended December 31, 2012 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, [21/04/2015]. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
Deepwater GOM presents unique operational challenges.
Collaboration Centers supporting the Asset Lifecycle

Explore & Develop
SEPCoVE

Drill & Complete
WVRO
(WellVantage Remote Operations)

Surveil / Diagnose
Bridge

Operate / Control
IOC

Collaboration Centers supporting the Asset Lifecycle
Operational Control/Monitor & Engineering Surveillance

Real-time Operations
Control & Operate

Production System
Surveillance & Diagnostics

Asset Performance
Analysis & Optimization

ALARM
- An operational notification that requires immediate attention [IMMEDIATE & URGENT]

ALERT
- An engineering notification that indicates a parameter is trending outside of desired range [DEVELOPING & THREATENING]

EVENT
- A single or combination of ALERTS that indicate a defined production anomaly

SERVICE
- The step-wise remediation steps to ‘treat’ an event [SOP]

Copyright of Royal Dutch Shell

CONFIDENTIAL April 20-21, 2015
Early detection methods – “before problems occur”

- Operating Windows
- Deviation from “normal”

Expected System Capacity

Minimizing the deferment wedge

System Optimization

Threshold Alarms

Exception-Based Multi-Variant Alert
BRIDGE / EBS SURVEILLANCE PROCESS MAP

Operational Data
- X, Y, Thrust
- Speed
- LO Pressure / Temp

Equipment Condition Monitor:
- Online
- Data Gathering & Pre Processing
- Algorithms / Event Generation

EBS Alert:
- Date / Time Stamp
- Equip Type / Location
- Condition Status

Alarm Validation

Service Analysis

Engineering Analysis

Operational Data: ECM Analysis
- Near / Real Time

Analytics
- Bridge Portal

EBS Alerts
- (~2000)* Detected Alerts
- (~1000)* Initiated Services
- (~400)* Completed Services
- (~250)* Actions Carried Out

Advice/Plan
- Specialist

Action
- Engineer
EBS ALERT USE CASES

- EBS Alert Console
- Visual aids and Related Technical Info
- Alert verification
- Escalate to SharePoint workflow
- Workflow based on SOP
BRIDGE ALERTS

<table>
<thead>
<tr>
<th>Surveillance Category</th>
<th>Surveillance Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Engineering</td>
<td>Chemical Performance Surveillance</td>
</tr>
<tr>
<td></td>
<td>Compressor Optimization Surveillance</td>
</tr>
<tr>
<td></td>
<td>Compressor Reliability Surveillance</td>
</tr>
<tr>
<td></td>
<td>Instrumentation System Surveillance</td>
</tr>
<tr>
<td></td>
<td>Process System Surveillance</td>
</tr>
<tr>
<td></td>
<td>Pump and Generator Surveillance</td>
</tr>
<tr>
<td></td>
<td>Water Injection Surveillance</td>
</tr>
<tr>
<td></td>
<td>Water Separation Surveillance</td>
</tr>
<tr>
<td>Subsea Engineering</td>
<td>Chemical Performance Surveillance</td>
</tr>
<tr>
<td></td>
<td>Choke Performance Surveillance</td>
</tr>
<tr>
<td></td>
<td>Christmas Tree Surveillance</td>
</tr>
<tr>
<td></td>
<td>Electric Submersible Pump Surveillance</td>
</tr>
<tr>
<td></td>
<td>Flowline Surveillance</td>
</tr>
<tr>
<td></td>
<td>HPU Surveillance</td>
</tr>
<tr>
<td></td>
<td>Multiphase Flow Meter Surveillance</td>
</tr>
<tr>
<td></td>
<td>EPU Surveillance</td>
</tr>
<tr>
<td></td>
<td>POD Electrical and Hydraulic Surveillance</td>
</tr>
<tr>
<td></td>
<td>Valve Surveillance</td>
</tr>
<tr>
<td>Subsurface Engineering</td>
<td>Annulus Pressure Surveillance</td>
</tr>
<tr>
<td></td>
<td>Choke Performance Surveillance</td>
</tr>
<tr>
<td></td>
<td>Gas Lift Surveillance</td>
</tr>
<tr>
<td></td>
<td>Operating Guidelines Surveillance</td>
</tr>
<tr>
<td></td>
<td>Rate and Phase Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sand Management Surveillance</td>
</tr>
<tr>
<td></td>
<td>Shut In Well Surveillance</td>
</tr>
</tbody>
</table>

13,800 individual EBS Alerts

+225,000 daily executed anomaly detections
An Integrated Operations Center has been deployed to producing assets in the Mars Basin

The Bridge, Subsea Collaborative Work Environment – performance monitoring, optimization

Integrated Operations Center (IOC): 24x7 Remote Control Rooms, co-located with off-asset operations staff, dedicated asset technical support staff (& reservoir teams where appropriate). Includes robust IT infrastructure and collaboration capabilities supporting efficient remote execution of work.

The on-asset staff strives to ensure that only activities mandatory to be performed on the asset are actually done there.
The IOC layout is process driven, consisting of a Control Room and Work Zones equipped with collaboration enablers.

Operations Work Zones
- Asset support grouped into Zones delineated by work process
- Zone placement is based on frequency of interaction with offshore and between Zones, with the RCR acting as the operational center
- Olympus & Mars sides are mirror images of one another

Development Work Zones
- Development support grouped into Zones delineated by project-centric and discipline-centric activity

Key:
- Mars
- Olympus
- Development
In addition to production/deferment impact, we have significant PoB avoided, reduced non-productive time and avoided flight costs.
OUR FUTURE ANALYTICS PORTFOLIO

Event Stream Processing (ESP)

Spectral Analysis

In-Well Sensing (Fiber, Electrical)

3D Graphics

EBS Alert

- Displayed on equipment operating with a performance anomaly, hydrate
- Displays relevant measurements

NLG

- Event Stream Processing (ESP)
- Spectral Analysis
- In-Well Sensing (Fiber, Electrical)
- 3D Graphics
- EBS Alert
WRAPPING IT UP

- Does your company use real-time monitoring for its offshore operations? If not, why? **YES**
- If your company does use real-time monitoring, what are the critical operations and specific parameters that your company monitors? **ALREADY DISCUSSED**
- Do you believe there are specific types of wells or operations and parameters (for drilling, completions or workovers, or production operations) that always should be monitored with real-time monitoring? **YES**
- Are there specific criteria or risk thresholds that your company uses to prompt real-time monitoring requirements (e.g. factors such as well or water depth, frontier area, HP/HT wells, or well complexity)? **PERHAPS**
- Does your company rely on any automation and predictive software in real-time monitoring? **YES**
- What role could automation and predictive software tools play in real-time monitoring? **SURVEILLANCE**
- Condition-based monitoring is viewed by BSEE as monitoring the operating condition of critical equipment and using any generated data to predict and proactively intervene when needed. As such, what role could condition-based monitoring play in real-time monitoring? Describe how operating equipment using condition-based monitoring could be tailored and/or used for real-time monitoring. **DRAW YOUR OWN CONCLUSIONS**
- How could BSEE leverage such technologies? **NOT CERTAIN THERE ARE SPECIFIC TECHNOLOGIES TO LEVERAGE**
- Which activities could real-time monitoring supplement or replace? **TO BE DEBATED**
- What opportunities do you see for BSEE to use real-time monitoring to provide timely, functional, and value-added inspection? **THERE COULD BE OPPORTUNITIES**
- What would you recommend that BSEE do in the real-time monitoring area? **DON’T PRESCRIBE, SET PERFORMANCE OBJECTIVES**