The waste hierarchy of “reduce, reuse, recycle” is so simple and learned at a young age. As elementary students, many of us remember crushing aluminum cans at home so they could be recycled. We remember feeling good about doing our part—and making a little spending money. But it never occurred to us that someone else then had to take the crushed cans and find a responsible way to reuse that aluminum.

Recycling is a concept that most of society supports as a practice that can benefit the environment and overall well-being, as well as reduce the needs and costs associated with raw materials. However, the conversation needs to shift from just recycling to responsible recycling. People make the same mistake with other words when they sometimes unintentionally reduce the word’s scope. For example, “sustainability” has been limited by some to mean just “green” or “environmentally responsible” materials. However, economics and the well-being of people are just as relevant to fully understanding whether a material is truly sustainable.

Recycling for the sake of recycling may be fine in passing conversation, but for those who design, research, and build today’s infrastructure—and to the public, who often owns this infrastructure—responsible recycling is key to a more sustainable future. Some say that people are turning highways into linear landfills—and that could be the case if recycling is done without further analysis. However, research can determine whether recycled materials could add benefits to our infrastructure network. In that case, recycling is a responsible action.

The asphalt pavement industry is looking at recycled plastic as a potential new source of waste material for use in its product, and it is expected to increase the durability of the world’s roadway networks.

This article describes how asphalt paving technologists have been leaders in recycled paving for many years, summarizes several of the materials that have been...
recycled (or evaluated), and uses this history to provide some perspective on recycling plastic: a topic of worldwide interest. A prevailing theme is that logical decisions backed by engineering, science, and economics have led to successful outcomes, but recycling without doing so responsibly may not be best for the longevity of asphalt pavements.

Truly sustainable practices come in many forms but unify around the environment, economics, and social well-being. Portions of this TR News issue provide other ways that transportation is working to be part of a sustainable society, such as using titanium dioxide in highway barriers to facilitate oxidation of air pollutants on the barrier surface. A second example is the recently completed research on sustainable highway construction practices performed under the National Cooperative Highway Research Program (NCHRP) Project 10-91A and documented in Muench et al. (1). A third example is work through the Transportation Research Board (TRB) Standing Committee on Resource Conservation and Recovery and its Recycled Material Web Map, an ArcGIS warehouse of the location of various recycled materials intended to connect the supply to construction market demand.1

The Plastic Crisis
In 2017, China passed the National Sword policy focusing on the protection of the environment and human health. As part of this policy, effective January 2018, China would no longer take in approximately 45 percent of the world’s plastic waste, as it had been doing. This meant that 106 million metric tons of plastic waste needed to find a new home quickly. It is expected that, by 2030, almost 111 million metric tons of plastic waste will be displaced because of this policy. Currently, it is estimated that only about 9 percent of the world’s plastic is recycled annually, with more than 80 percent ending up in landfills or in the natural environment. Between four and 12 million metric tons find their way into the oceans each year (2).

Since 2018, U.S. cities and counties have responded by banning plastic straws, restaurants have replaced plastic utensils with compostable forks, and people outside of the asphalt pavement industry are now looking to asphalt to help resolve the plastic problem. In 2018, the Plastics Industry Association’s New End Market Opportunities for Film working group published Literature Review: Using Recycled Plastics for Compounding and Additives (3), which—based on previous research—identified the use of plastic film waste in asphalt as a new potential end market opportunity.

It was not long before videos were going viral on social media, and traditional forms of media were reporting that plastic-modified asphalt could increase the life of a pavement by 10 times compared with standard neat asphalt. This solution would solve two of America’s greatest issues: the plastic crisis and aging infrastructure.

Then, on November 28, 2018, at a hearing titled “Addressing America’s Surface Transportation Infrastructure Needs,” the chair of the U.S. Senate Committee on Environment and Public Works asked Robert Lanham, then vice president of the Associated General Contractors of America, about the use of recycled materials—specifically plastics—in roads to build longer lasting, more resilient infrastructure. The topic surfaced in early drafts of legislation. A bill was drafted in the California State Senate that would require the California Department of Transportation to evaluate the use of plastic in asphalt. And in the Fiscal Year 2021 House Transportation Housing and Urban Development Funding Bill, a study on plastics in asphalt was specifically mentioned.

Early media reports made claims about the use of plastic-modified asphalt without providing much data. People were asking “why are we not recycling?” instead of “is it responsible to recycle?” The asphalt industry and state agencies have faced this dilemma before in a long history of using recycled materials and can learn from it moving forward.

The Big Three
The asphalt industry has a 60-year history of recycling postconsumer products, with varying levels of success. In fact, asphalt is one of the most recycled materials in the world (4). Terrel et al. (5) identified rubber tires, glass, shingles, petroleum-contaminated soils, incinerator residue, slags, and polymers as the most common waste—or postconsumer—materials added to asphalt.

A plentiful supply of discarded plastic bottles are available to be recycled and mixed with asphalt, offering responsible recycling—and increased durability and affordability—to the world’s roadway network.
Act shifted the use of RTR from a voluntary action to a federal mandate when it required states to use a minimum amount of RTR each year beginning in 1994. Although the mandate increased RTR usage, it also prematurely moved a material from the research phase to implementation. Because of pushback, the mandate was removed in 1995 under Section 205(b) of the National Highway System Designation Act. RTR usage continued in some states, but most states discontinued RTR programs and did not reconsider its use again until 2008, when the price of polymers increased, and states needed another option for modification. In 2019, a survey conducted by asphalt mixture producers showed the use of RTR in only 10 states.

RECYCLED TIRE RUBBER
RTR—often used as smaller particles and referred to as ground tire rubber—is typically mixed with either asphalt binder or an asphalt mixture to improve the asphalt binder properties and make it more resistant to rutting or cracking. The first modern use of this recycled material in asphalt mixtures was a product called asphalt rubber. It was introduced in the 1960s in Arizona as a field-blended product. In the late 1980s, other states began to evaluate the use of rubber-modified asphalts. For example, state Senate Bill 1192 urged Florida to begin a research program that showed that the rubber modification did indeed improve the overall performance of the mix.

In 1991, Section 1038(d) of the Intermodal Surface Transportation Efficiency Act required states to use a minimum amount of RTR each year beginning in 1994. Although the mandate increased RTR usage, it also prematurely moved a material from the research phase to implementation. Because of pushback, the mandate was removed in 1995 under Section 205(b) of the National Highway System Designation Act. RTR usage continued in some states, but most states discontinued RTR programs and did not reconsider its use again until 2008, when the price of polymers increased, and states needed another option for modification. In 2019, a survey conducted by asphalt mixture producers showed the use of RTR in only 10 states.

RECYCLED ASPHALT SHINGLES
RAS was first thought to be a potential replacement for asphalt binder in new asphalt mixtures in the early 1980s. However, it was not until the cost of asphalt binder rose significantly in the mid-2000s that asphalt mixture producers and road owners really began to explore its use. Between 2009 and 2012, the amount of RAS used in asphalt mixtures rose from 0.702 million to 1.863 million tons. In 2014, RAS usage hit an all-time high of 1.964 million tons. But, then, usage began to drop, and in 2019 it was estimated that only 0.921 million tons of RAS were used in asphalt mixtures.

When RAS was introduced, states would commonly allow up to 5 percent RAS in new mixtures, with some states going as high as 7 percent. For example, the Texas Department of Transportation (DOT) did a preliminary study that suggested that RAS could be used in asphalt mixtures, allowing up to 5 percent in surface mixtures and up to 10 percent in base mixtures. The department then developed an implementation plan. RAS usage in Texas has decreased over the past few years, because the agency began to see poor performance of mixtures with RAS. Other states and contractors have reduced RAS usage intentionally, for similar reasons.

Numerous studies and organizations have found that RAS can be used effectively. However, these mixtures must be engineered to ensure performance. Such engineering includes using well-characterized RAS and ensuring that mixtures contain enough virgin asphalt binder. Construction and production of these mixtures are also critical. As Figure 1
shows, the freefall on RAS usage plateaued and seemed to stabilize over the past three years, but more confidence in the product is needed for increased usage.

RECLAIMED ASPHALT PAVEMENT

RAP became a valuable material in the 1970s. The Arab oil embargo was driving up the price of crude oil, and the Federal Highway Administration (FHWA) responded by partially funding Demonstration Project 39 to include and document the use of RAP in pavements. Over the next 20 years, NCHRP and FHWA published guidelines and recommendations for the effective use of RAP in asphalt pavements (10).

From the late 1990s through the early 2010s, NCHRP and state departments of transportation funded research to help engineers understand how to use RAP effectively in mixtures (10). In 2013, research was completed on how contractors and agencies could move to high-RAP mixtures (11). Despite some countries using high-RAP mixtures effectively (12), the average RAP content in the United States in 2019 was about 21 percent but has steadily increased since 2009 (4), as shown in Figure 2. Although this calculation is about a 5 percent increase from the 2009 value, more recent research shows contractors and agencies whether and how to use recycling agents to increase recycled material content (13, 14).

To move the industry and private road owners to a national average of 21 percent RAP usage, it has taken more than 40 years and millions of research dollars. It has also required road owners, the asphalt pavement industry, and academia to ask questions and find solutions to ensure that RAP is used responsibly. FHWA’s policy on recycled materials states the following:

1. Recycling and reuse can offer engineering, economic, and environmental benefits.
2. Recycled materials should get first consideration in materials selection.
3. Determination of the use of recycled materials should include an initial review of engineering and environmental sustainability.
4. An assessment of economic benefits should follow in the selection process.
5. Restrictions that prohibit the use of recycled materials without technical basis should be removed from specifications. (15).

This policy shows that it takes research, collaboration, and time to ensure responsible recycling. When recycling is done responsibly, it is encouraged and even applauded. Data and analysis are needed to develop the technical merit, and only time can prove field performance.

Is Plastic in Asphalt the Answer?

When asphalt pavement industry technologists are asked how they feel about using plastics in asphalt, they commonly respond that they are “cautiously optimistic.” Road owners, researchers, and others (continued on page 26)