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Bayesian Identification of Hazardous

Locations

Juuia L. HiGLE AND JaMES M. WiTkowskl

A Bayesian analysis of accident data is used in the identifi-
cation of hazardous locations. The Bayesian model used in
the analysis is developed and discussed. Empirical compari-
sons of the results from the Bayesian analysis and from
classical statistical analyses are also included. These compar-
isons suggest that there is an appreciable difference among
the various identification techniques and that some classically
based statistical techniques may be prone to err in the direc-
tion of false negatives.

One problem of ongoing interest in highway safety analysis
is the identification of hazardous locations on the basis of
historical data. Typically, a site is deemed hazardous if its
recent accident history exceeds some specified level. One
of the most common methods used in practice is to identify
a site as hazardous if its accident rate over some period of
time exceeds the mean accident rate over all sites in the
region plus a multiple of the standard deviation of the site
accident rates within that region over the same period of
time. Such methods are based on the concept of confidence
intervals within the context of classical statistics. The
multiple used depends on the degree of confidence desired.
Another commonly used technique is the rate-quality
method (1, 2), which is based on statistical quality control
procedures. This technique is used to calculate a critical
accident rate, which depends on the degree of confidence
desired, for each location. With the rate-quality method, a
site is identified as hazardous if its observed accident rate
exceeds its critical rate.

It is commonly acknowledged that because of the ran-
dom variations that are inherent in accident phenomena,
historical accident data do not always reflect long-term
accident characteristics accurately. A site with a low acci-
dent rate (i.e.,, in the long run) may still have a high
accident rate over a short period of time, and vice versa.
Thus, the identification of hazardous locations is an inex-
act science at best. Regardless of the identification method
used, traffic analysts will generally agree that the accident
rate associated with a particular site is a random variable,
a quantity that cannot be predicted with absolute certainty.
Moreover, although regional accident characteristics may
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provide some useful information regarding the accident
rate at a particular site, each site must be evaluated sepa-
rately and should only be compared with sites that have
similar underlying characteristics. The vast differences in
accident histories that one finds among various sites sug-
gest that the random variables used to describe the accident
rates should differ from site to site.

To overcome some of the difficulties associated with the
identification of hazardous locations, researchers have in-
creasingly advocated the use of Bayesian analysis in this
identification process (3-7). Bayesian analysis provides a
framework wherein regional accident characteristics can
be combined with site-specific accident histories, which
results in a coherent method by which the random vari-
ables representing the accident rates at the various sites
can be mathematically defined. Moreover, by using a
Bayesian identification technique, one can identify hazard-
ous sites on the basis of the probability that the accident
rate exceeds some level. Such probabilistic identification
methods differ both qualitatively and quantitatively from
the confidence-based identification methods.

The research reported in this paper can be viewed as a
complement to the research presented by Hauer and Per-
saud (4-7), although the techniques used differ substan-
tially. These earlier papers are concerned with predicting
the number of accidents that will occur at a particular
location, and our research revolves around the accident
rate at a particular location. An accurate prediction of the
number of accidents at a particular site is invaluable in
the assessment of the effectiveness of an improvement
program, especially when one considers the phenomenon
of regression to the mean. However, before an improve-
ment program is implemented, one must first decide which
sites require improvement. The contribution of this paper
lies in the identification phase of the improvement process.
Specifically, we develop a method for identifying hazard-
ous locations on the basis of a Bayesian analysis of the
accident data.

In this paper, we present the results of a Bayesian
analysis of accident data from the jurisdiction of the Pima
County Department of Transportation in Tucson, Ari-
zona. The paper is divided into a discussion of the Bayesian
methodology used in the study, a description of the data
used, a comparison of the results of our Bayesian analysis
with the results of an analysis based on classical statistical
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BAYESIAN METHODOLOGY

Bayesian analysis differs significantly from the classical
statistical analysis of accident data. The motivation for the
use of the Bayesian analysis is the desire to treat the actual
accident rate (i.e., the number of accidents per million
vehicles entering an intersection) at a particular location
as a random variable and to use a combination of the
regional accident characteristics and the accident history
at that location to determine the probability that the
location is hazardous. In this way, we hope to better utilize
the available information throughout the identification
process.

Our Bayesian analysis uses a two-step procedure. In the
first step, we aggregate the accident histories across a
number of sites (i.e., across all sites within an appropriately
defined region). The result of this step is a gross estimation
of the probability distribution of the accident rates across
the region. We then use this regional distribution and the
accident history at a particular site to.obtain a refined
estimation of the probability distribution associated with
the accident rate at that particular site. Naturally, we
obtain this refined estimation for all sites within the regton,
and two sites with equivalent histories will have identically
refined distributions. This essentially concludes the
Bayesian portion of the analysis. With the collection of
refined distributions, one can now assess the probability
that any given site is hazardous.

To formally describe the Bayesian identification process,
we require the following notation:

\; = accident rate at location i (note that X is
treated as a random variable);
N; = number of accidents at location i during the
period of time in question;
V; = number of vehicles passing through location
i during the period of time in question;
fi(\| N;, V) = probability density function associated with
the accident rate at location i/, given the
observations N; and V;; and
fx(\) = probability density function associated with
the accident rate across the region.

Thus, fz()\) represents the gross estimation of the prob-
ability distribution of the accident rate across the region,
and f;(\| N;, V) represents the refined estimation of the
probability distribution at site #, as previously discussed.
Moreover, the cumulative distribution function associated
with the accident rate, X, is given by
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In performing this analysis, we make the following as-
sumptions, which are similar to those of Morin, Norden
et al., Hauer and Persaud, and Glauz et al. (, 2, 4, 6-6),
to name but a few.
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Al. At any given location, when the accident rate is
known (i.e., if \; = A), the actual number of accidents
follows a Poisson distribution with expected value AV:.
That is,

O,
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A2. The probability distribution of the regional accident
rate, fz(\), is the gamma distribution.

The first assumption indicates that because the actual
accident rate is explicitly treated as a random variable, the
conditional distribution of the number of accidents (given
the accident rate) is the Poisson distribution. The second
assumption implies that

@
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for some « and B. Thus, the first step associated with the
Bayesian analysis, that of determining fz(}), is equivalent
to determining the values of « and 8. There are a number
of possibilities.

The most commonly used estimates are the method of
moments estimates (MME), where « and 3 are chosen so
that the mean and variance associated with the gamma
distribution are equal to the mean and variance of the
sample. That is, let X be the sample mean of the observed
accident rates, s° be the sample variance of the observed
accident rates, and m be the number of sites in the region.
Then

T

iz

=

1sN
mlll/-‘

1 ”m M _ 2
Sz m—1 ,'§| <I/, x)

Using the MME, one selects « and g so that X = «/8 and
§2 = a/B?, or equivalently, 8 = x/s* and a = BX.

Other commonly used estimates are the maximum like-
lihood estimates (MLE), where « and 8 are chosen so that
they represent the values that are most likely to have
generated the observed data. That is, if X; is the observed
accident rate at site i (i.e., A, = N;/V;), then « and 8 are
chosen to maximize
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The function . represents the likelihood function associ-
ated with the observed data when the parameters « and 8
are assumed. The MLE values for « and 8 may be obtained
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Although the MME and the MLE are among the most
commonly used methods of parameter estimation, other
methods for estimating « and g exist and are discussed at
length by Berger (9).

Once values for a and 8 have been determined, the first
step of the analysis has been completed. In the second
step, the observed accident rate at each site is used in
combination with the gross estimate of the regional prob-
ability distribution to obtain the site-specific probability
density functions, f; (A\| N, V}). These density functions
are obtained using Bayes’s theorem. That is,

ﬁ()\ | Nn V:) o« f(Nll >\5 I/l)fk(x)

Within the framework of Bayesian analysis, it is well
known that under Assumptions Al and A2, the resulting
probability distribution f{(A| N, V) is a gamma distribu-
tion (9, 10). Moreover, the parameters associated with this
distribution, «, and 8,, are easily obtained from the original
choices of « and §8 and the observed data, N; and V,, as
follows:

o=a+ N,
61=6+I/1

Thus, the probability density function associated with
the accident rate at location i(A,) is given by
[re
I'(e,)

=i\

ﬁ(>\|Nl, Vl) = e

Note that as NV, and V; increase, the site-specific parameters
(a; and 8;) will be largely determined by the observed data
(N;and V) and will become insensitive to the initial choice
of « and B. As such, for each computation, it may be
preferable to use the MME values rather than the MLE
values, because they are substantially easier to calculate.
All computations within this paper were based on the
MME values of « and 8.

With this collection of probability density functions, the
identification of hazardous locations is now a straightfor-
ward matter. If A is an upper limit on the “acceptable”
accident rates, then we wish to identify a site / as hazardous
if the probability is significant that A, exceeds X . That is,
if

P\, > X|N, V)> 56

where § is some predetermined tolerance level, then site i
is recognized as a hazardous location. Naturally, the ap-
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propriate values for X and & must be determined. For
example, in the results section of this paper, various values
ol X and & are used to develop criteria for the identification
of hazardous locations that are analogous to the criteria
used in classically based statistical procedures. This allows
a direct comparison between the results obtained from the
Bayesian procedure presented in this paper and the results
obtained from the classical techniques.

DATA DESCRIPTION

For the purposes of this study, 5-year (July 1981-June
1986) accident histories for signalized intersections under
the jurisdiction of the Pima County Department of Trans-
portation, in Tucson, Arizona, were used. Because signif-
icant improvement plans were undertaken during the third
year (July 1983-Junc 1984), the data were broken into
two separate sets. The first set corresponds to July 1981-
June 1983, whereas the second set corresponds to July
1984-June 1986. Between July 1981 and June 1984, four
intersections were signalized. Thus, the first data set in-
cludes 33 intersections, and the second data set includes
37 intersections. The two data sets were analyzed inde-
pendently. For each intersection, the observed accident
rate was calculated as the ratio of the total number of
accidents to the total traffic volume over the 2-year period.
The data are summarized in Tables 1 and 2.

One should note that the observed accident rate over
each 2-year period is calculated as N X 10°/2) X 365, and
thus is normalized to represent the accident rate per mil-
lion vehicles entering the intersection. The last two col-
umns represent the probability that the site is hazardous
on the basis of the two criteria developed in the section on
results; these elements are discussed in further detail in
that section.

EMPIRICAL RESULTS

In order to compare the results of an analysis based on
classical statistical methods (e.g., those based on statistical
confidence intervals) with the results of an analysis based
on the Bayesian methodology, the two analyses must use
analogous criteria in identifying a hazardous location. In
practice, two commonly used criteria can be stated as
follows.

C1. Site i is hazardous if the observed rate, 5\,, exceeds
the observed average rate across the region, x, with a level
of confidence equal to 5.

C2. Site i is hazardous if the observed accident rate, A,
exceeds the site’s critical rate, which is a function of the
observed regional accident rate, the traffic volume at site
I, and the level of confidence desired, 6.

Typically, § is a reasonably high number, such as 0.99,
0.95, or 0.90. C1 is the standard confidence-based crite-
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TABLE | DATA OBTAINED FROM JULY 1981 THROUGH
JUNE 1983
site observed number of daily prob. prob.
number accident rate accidents volume (B1) (B2)
(#/MVE) (N) V)

1 0.957 20 28644 0.4308 0.3861

2 1.192 46 52891 0.8684 0.8331

3 0.947 20 28950 0.4145 0.3701

4 1.437 43 40994 0.9813 0.9738

5 0.588 9 20965 0.0742 0.0614

6 1.043 14 18393 0.5402 0.5005

7 1.418 17 16422 0.8609 0.8377

8 0.779 9 15825 0.2573 0.2285

9 1.375 14 13953 0.8046 0.7776
10 1.007 18 24496 0.5058 0.4621
11 1.074 14 17863 0.5740 0.5349
12 1.174 21 24515 0.7280 0.6897
13 0.660 14 29054 0.0754 0.0608
14 1.040 22 28998 0.5632 0.5167
15 1.133 18 21773 0.6634 0.6237
16 0.675 11 22343 0.1198 0.1007
17 0.846 5 8100 0.3700 0.3411
18 0.742 11 20323 0.1897 0.1640
19 0.617 9 19989 0.0965 0.0810
20 0.282 4 19450 0.0061 0.0047
21 0.709 11 21253 0.1545 0.1318
22 1.003 8 10924 0.4805 0.4468
23 1.010 15 20360 0.5034 0.4626
24 0.088 1 15550 0.0025 0.0019
25 1.848 17 12605 0.9627 0.9543
26 0.567 6 14500 0.1138 0.0978
27 1.337 15 15376 0.7967 0.7683
28 1.471 48 42850 (.9891 0.9842
29 1.604 14 11957 0.8908 0.8727
30 1.032 15 19915 0.5311 0.4904
31 0.963 13 18502 0.4441 0.4054
32 1.184 20 23147 0.7308 0.6935
33 0.589 9 20953 0.0745 0.0616

rion, whereas C2 corresponds to the rate-quality criterion,
developed by Norden et al. (2).

To identify hazardous locations by using Criterion Cl,
one must calculate both the sample mean X and the sample
standard deviation s. Associated with each value of § is a
constant k; (e.g., koos = 1.645), and if

N> X+ ks

then site 7 is said to be hazardous at the § confidence level
(11). To identify hazardous locations using the Bayesian
methodology, a criterion that is analogous to C1 can be
stated as follows:

BI. Site i is hazardous if the probability is greater than
5 that its true accident rate, A;, exceeds the observed average
rate across the region.

Recall that the Bayesian methodology treats the accident
rate at a particular location as a random variable and
obtains a refined estimate of its probability distribution.
As such, if

P{\,>X|N, V}>6

then site 7 is said to be hazardous. Thus, the identification
of hazardous locations using Criterion Bl involves the
computation of

P{X;,> %|N,, Vi} = 1 — P{X, < %}
T B o
=1- e\ AN 1
1 s I‘(rx,))\ e frd (1)

If the computed value exceeds 6, site i is identified as
hazardous.

Similarly, to identify hazardous sites using Criterion C2,
one must calculate the regional accident rate,

b
=

Xp =

£
=

For a given level of confidence, 8, the critical rate associ-
ated with location / is computed as follows:

_ xe 1
N = xp + ks \/;;+21/i
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TABLE 2 DATA OBTAINED FROM JULY 1984 THROUGH
Ei

JUNE 19806
aite ohserved numher of daily prob. prob.
number daily rate accidents volume (B1) (B2)
(#/MVE) (N) (V)

1 0.710 15 28950 0.0727 0.0616

2 1.006 51 69450 0.3890 0.3405

3 1.047 27 35350 0.4845 0.4458

4 0.897 22 33600 0.2398 0.2118

5 1.051 23 30000 0.4885 0.4522

6 0.625 12 26300 0.0414 0.0347

7 0.875 16 25050 0.2443 0.2190

8 0.7268 11 20750 0.1266 0.1114

9 0.865 13 20600 0.2544 0.2303
10 0.648 13 27500 0.0463 0.0388
11 1.028 18 24000 0.4520 0.4191
12 1.357 36 36350 0.9083 0.8903
13 1.237 31 34350 0.7828 0.7528
14 1.162 24 28300 0.6560 0.6222
15 0.704 15 29200 0.0681 0.0575
16 0.689 14 27850 0.0648 0.0548
17 0.857 6 9592 0.3238 0.3033
18 1.109 27 33350 0.5909 0.5533
19 1.318 28 29100 0.8436 0.8202
20 0.386 8 28400 0.0017 0.0013
21 1.342 29 29600 0.8669 0.8456
22 1.269 15 16200 0.7032 0.6770
23 0.947 18 26050 0.3340 0.3036
24 0.684 12 24050 0.0790 0.0679
25 2.289 34 20350 0.9998 0.9997
26 1.006 13 17700 0.4275 0.3984
27 1.300 24 25300 0.8034 0.7782
28 2.177 66 41550 1.0000 1.0000
29 1.912 30 21500 0.9951 0.9937
30 1.288 22 23400 0.7795 0.7534
31 0.988 16 22200 0.3983 0.3675
32 1.266 20 21650 0.7445 0.7173
33 1.160 26 30700 0.6630 0.6284
34 0.601 5 11400 0.1361 0.1230
35 0.813 11 18550 0.2145 0.1935
36 0.525 12 31300 0.0081 0.0064
37 0.602 9 20500 0.0569 0.0489

This critical rate is based on the assumption that the
number of accidents at location i is Poisson distributed
with a mean of xxV; (2), which is similar to Assumption
Al in this paper. The critical rate is defined so that with
this assumption, the observed accident rate will be less
than or equal to the critical rate with probability 6. An
investigation into the early development of this rate-qual-
ity method (2) suggests that an analogous criterion within
the Bayesian methodology can be stated as follows:

B2. Site i is hazardous if the probability is greater than
X that its accident rate, X, exceeds the observed regional
accident rate, xx.

That is, under Criterion B2, site i is identified as hazard-
ous if

P{X;>xz| N, Vi} > 6

or equivalently, if

1 - f L \erlg g > § )

Note that the assumptions leading to Criteria C2 and
B2, namely, those regarding the Poisson nature of acci-
dents at a particular site, are very similar. The fundamental
difference lies in the fact that in using C2, one implicitly
assumes that the true accident rate is xz (2). The authors
who pioneered this method concede that the true rate (2)
“is never known and we shall always have to be satisfied
with an estimate of the expectation” (i.e., xz). In using
Criterion B2, one accounts for the inherent randomness
associated with each accident rate, as reflected in Assump-
tion A2,

In identifying hazardous locations on the basis of the
Bayesian methodology (i.e., Criteria Bl and B2), one must
perform the integrations identified in Equations 1 and 2.
A computer program was written to numerically evaluate
each of these integrals. The results of our empirical study
are summarized in Figures 1 through 4. For each data set
and for each value of 6 (i.e., 6 = 0.99, 6 = 0.95, and 6 =
0.90), hazardous sites were identified on the basis of Cri-
teria C1 and C2, corresponding to the classical statistical
methods, and of the analogous Bayesian Criteria B1 and
R2. These results are presented in Figures 1-4. The ele-



Higle and Witkowski

ments in the 4 X 4 matrices found in Figure 1 are organized

as follows:

1. Columns

a. HC1 corresponds to the number of sites that were
identified as hazardous on the basis of Criterion C1 (i.e.,
the number of sites whose observed accident rate exceeded

X+ k).

a. 6 =099
| HC1I | No1
HB1 0 0
NBI1 0 33
b.6 =095
| HC1 | Nci
HB1 1 2
(25) (4,28)
NB1 1 29
(29)
c.§ =090
| HC1 | NcC1
HBL 2 I
(25,28) (4)
NB1 1 29
(29)

FIGURE 1 Distribution of
sites based on B1 and C1
(July 1981-June 1983).

a. 6 =0.99
| HC2 | NC2
HB2 0 0
NB2 2 31
(25,28)
b. 6§ =0.95
| HC2 | NC2
HB2 3 0
(4,25,28)
NB2 0 30
c.§ =090
| HCz | NC2
HB2 3 0
(4,25,28)
NB2 2 28
(7)29)

FIGURE 2 Distribution of
sites based on B2 and C2
(July 1981-June 1983).

29

a. § =0.99
| HC1 | NC1
HB1 ) 1
(25,28) (29)
NB1 0 34
b.§ =0.95
| ®HCT | NC1
HB1 3 0
(25,28,29)
NB1 0 34
c. § =0.90
| HCI | Nci
HB1 3 1
(25,28,29) | (12)
NB1 0 33

FIGURE 3 Distribution of
sites based on B1 and C1
(July 1984-June 1986).

a. 8 = 0.99
| HC2 | NC2
HB2 3 i
(25,28,29)
NB2 0 34
b. 6 = 0.95
| HC2 | NC2
HB2 3 0
(25,28,29)
NB2 0 34
c. 6 =0.90
| HC2 | NC2
HBz 3 0
(25,28,29)
NB2 1 33
(12)

FIGURE 4 Distribution of
sites based on B2 and C2
(July 1984-June 1986).

b. NCI corresponds to the number of sites that were

not identified as hazardous on the basis of Criterion C1.
2. Rows )

a. HB1 corresponds to the number of sites that were
identified as hazardous on the basis of Criterion BI (i.e.,
the number of sites with P{X, > X} = §).

b. NB1 corresponds to the number of sites that were
not identified as hazardous on the basis of Criterion B1.
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The numbers in parentheses correspond to the sites that
are identified as hazardous, as represented in Tables 1
and 2.

Thus, for example, in Figure | we see that for July 1981-
June 1983, for 6 = 0.95, one site (25) is identified as
hazardous under both C1 and Bl, two sites (4, 28) are
identified as hazardous under B1 but not C1, and one site
(29) is identified as hazardous under C1 but not Bl. The
remaining 29 sites are not identified as hazardous under
either criterion.

The results of the comparison between C2 and B2 for
July 1981-June 1983 are similarly arranged in Figure 2
and those for the analyses of the data collected between
July 1984 and June 1983 are presented in Figures 3 and 4
for Bl and C1 and for B2 and C2, respectively.

Because there seems to be consistent disagreement be-
tween the various criteria, a discussion of the information
conveyed in Figures 1-4 is in order. First, note that as
expected, as 6 decreases, the number of sites identified
increases under all four criteria. That is, the more relaxed
the identification requirement, the easier it is to be iden-
tified.

Second, there is very little difference between the sites
identified by Bl and B2, the Bayesian criteria. The only
difference is in Site 12, using the data collected from July
1984-June 1986. With 6 = 0.90, it is identified using B1
but not B2 (see Figures 3 and 4). However, the data
presented in Table 2 indicate that the probability com-
puted under Criterion Bl is 0.9083, whereas the probabil-
ity computed under Criterion B2 is 0.8901. Thus, although
the methods differ, the difference is not substantial. This
significant agreement between the two methods is easily
explained by the data. BI uses the threshold value X = %,
whereas B2 uscs A = xx. For both data sets, x and x; are
not substantially different, as .indicated by the summary
statistics presented in Table 3.

One should note carefully that Criteria B1, B2, and C2
all tend to be more conservative than C1, in that they tend
to identify more sites as hazardous. This suggests that C1
may be more susceptible to the identification of false
negatives (i.¢., those sites that are actually hazardous but
are not identified as such).

In a review of Figures 3 and 4, it is clear that for the
data collected between July 1984 and June 1986, the
classical criteria are in relatively high agreement with their
Bayesian counterparts. This is most likely due to the
extremely high accident rates (2.289, 2.177, and 1.912,
respectively) of three intersections (25, 28, and 29), com-
pared with a mean accident rate of 1.0396 and a regional
rate of 1.0578. Because of the extreme nature of these
three accident rates, it is reasonable to expect that any
Justifiable procedure would identify these sites as hazard-
ous and that all others may seem safe by comparison. Of
course, when the Bayesian procedure is used, a change in

TABLE 3 SUMMARY STATISTICS

Data Set z Zp 3
June 1981 - July 1983 0.9815 1.0042 0.3756
June 1984 - July 1986 1.0396 1.0578 0.4196
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the threshold value would affect the sites that are identified
as hazardous. For the purposes of this study, the values of
X — X(B1)and X — x,(B2) were chosen so that the Bayesian
and classical methods could be easily compared.

The disagreement between Criteria Bl and C1 (Figures
1 and 3) is probably best explained in terms of the under-
lying assumptions. Bl is based on the widely accepted
assumptions that accidents occur according to a Poisson
distribution and that the accident rate has a gamma distri-
bution (i.e., Assumptions Al and A2 as stated in the
section on Bayesian methodology in this paper). Similarly,
Criterion C1 is based on the implicit assumption that the
observed accident rates are normally distributed. The rel-
atively large standard deviations when compared with the
low sample means (e.g., X = 0.9815 and s = 0.3756 for the
July 1981-June 1983 data) combined with the fact that
the accident rates must be nonnegative suggest that the
normal distribution may yield an inappropriate model for
these data sets.

Because Criteria B2 and C2 are based on a similar
assumption (i.e., that accidents occur according to a Pois-
son distribution), the differences between the correspond-
ing results, as summarized in Figures 2 and 4, are due
solely to the treatments of the actual accident rate. The
Bayesian method explicitly assumes that the accident rate
at any given site is a random variable and accounts for
this randomness in the identification process. The rate-
quality method (C2) implicitly assumes that the accident
rate at each site is equal to the regional rate x.. Thus, the
Bayesian method allows site-specific accident information
to guide the identification process, and the rate-quality
method does not.

Finally, it should be noted that Intersection 4, which
was identified as hazardous by using the data collected
from July 1981-June 1983 with 6 = 0.95 under Criteria
B1, B2, and C2, underwent significant change during July
1983-June 1984. Subsequently, it was no longer identified
as a hazardous intersection, and the probability that it is
hazardous dropped from 0.9813 to 0.2398 on the basis of
Bl or from 0.9738 to 0.2190 on the basis of B2. Clearly,
these substantial drops indicate that the improvement
program was successful.

CONCLUSIONS

Use of a Bayesian analysis in the identification of hazard-
ous accident locations using accident rate data appears to
be a fundamentally sound procedure, which is shown to
have identification criteria analogous to those used in the
classical identification scheme, although it is certainly not
limited to these criteria. The Bayesian technique has the
added advantage of allowing the assessment of the impact
of varying the degree of confidence, §, without requiring
that the decision statistics be recomputed. Moreover,
knowing the probability that the actual rate exceeds the
regional rate, for example, provides added information
that can be used to evaluate the trade-offs involved in
deciding which 1 3
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The results presented in Figures 1 and 3 suggest that, in
general, the confidence-based procedure, C1, may be in-
appropriate for identifying hazardous locations. Criterion
Cl fails to identify as hazardous many sites that are flagged
by Criteria B1, B2, and C2. The underlying assumption of
normality in the distribution of the accident rate appears
to cause C1 to err in the direction of false negatives. This
is the least desirable characteristic for an identification
procedure.

The results presented in Figures 2 and 4, combined with
an analysis of the underlying assumptions, suggest that in
many cases, the use of B2 may be preferable to the use of
C2. This may be especially true when data are sparse or
when numerous years of comparable data are not avail-
able. It is expected that the differences between B2 and C2
will be substantially reduced whenever a great deal of data
are available.
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The proposal by Higle and Witkowski to use hierarchical
Bayesian and empirical Bayesian methods to identify haz-
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ardous highway locations is a sound one that can be
expected to fare well in comparison with more traditional
methods. Accident rate estimation is extremely uncertain
because the number of accidents at any one intersection
tends to be quite random and subject to the regression-to-
the-mean phenomenon. Bayesian methods help because
they effectively permit pooling of data from other relevant
sites. It also makes good sense that the authors base hazard
determinations on probabilistic assessments of the value
X, of the intrinsic hazard rate, as, for example, Criteria B1
and B2 require.

In Table 1 the exposure rates (daily volumes) V; vary by
a factor of 6.5 between the two extreme sites (Sites 2 and
17). Although the setting here is for Poisson data, this is
otherwise analogous to the empirical Bayes estimation of
means in the normal distribution case, which is now well
understood (1, 2). In such cases the Bayesian ranking of
extreme intersections differs from the observed daily rates
because those extreme intersections with low volumes
generally would regress to the mean more than high-
volume intersections. Thus, Site 4 in Table 1 probably is
more hazardous than Site 25, even though the observed
rate of 1.437 MVE is less than 1.848 MVE for Site 25.
This occurs because the daily volume for Site 4 is more
than three times higher, 40,994 to 12,605.

It should be obvious that a methodology that properly
weighs all evidence in ranking dangerous intersections is
very valuable. Such features can only be revealed by using
Bayesian and empirical Bayesian models, in which distri-
butions are specified and estimated for both observed data
and unobserved parameters.

Despite the virtues of the authors’ general idea, there are
features in their proposed methods that need further ad-
justment to correct for bias and to improve statistical
efficiency. I will explain the difficulties partly on the basis
of my own research with Olga Pendleton on accident
analysis using these same Poisson-gamma models.

The authors’ development fits within the General Model
for Statistics (2, 3), which in their Poisson-gamma setting
and notation is summarized in Table 4.

Note that Equations 3 and 4 correspond to the authors’
Assumptions Al and A2. The descriptive model is entirely
equivalent to the inferential model (Table 5), which re-
verses the probabilistic conditioning and is more conven-
ient for statistical analysis.

Expressions 5 and 7 refer to the negative binomial and
gamma distributions, with their usual parameterization,
whereas Expressions 6 and 8 and the square brackets
signify that the means and variances are displayed.

TABLE 4 DESCRIPTIVE MODEL

Obscrved ~ N
Data: Ni | A ~ Poisson(V; A,) 3)
7 =1,...,m independently.
Unobserved 1
Paramecters: A (e, B) ~ Gamma(a, E) 4)
1, a8%, m independently

i=
¢ = (e,f) unknown, a,3 > 0




32

TABLE 5 INFERENTIAL MODEL

Observed

. _ W
Data: Nila,f ~ NegBm(a,p. = ‘W) )
. raV; aV, al?
= NegBin [73—, 5 + _ﬁ_“'_] ©)
i=1,...,m independently.
Unobserved

= . 1

Ai| Nije, B~ Gammﬂ(ﬂ + N, m)
a+ ,\'! a4+ N, ]
B+ V, (B+ WP
i =1,...,m independently.

Parameters:

=] Gam_ma[

The analysis proceeds using (N, ..., N,,) to estimate
¢ = (a, B) from Expression 5, and then carries this infor-
mation to 7 or 8 to assess the posterior distribution. The
simplest method for doing this, often called “empirical
Bayes,” simply develops a point estimate ¢ = (& B) and
substitutes these values into 7 or 8. [This can be risky if
(&, B) are not accurately estimated, an issue that could be
assessed in the data example.] The authors follow this
empirical Bayes approach, although not quite correctly.

Note that the marginal distribution (Expression 5) for
the data , is negative binomial, not gamma, as the authors
indicate when discussing the MLE. Thus, the maximum
likelihood conditions in the second section of their paper
are incorrect.

Similarly, the MME technique is improperly applied by
the authors, and the estimates of the “hyperparameter”
¢ = (a, ) are biased and inefficient. Define X, = N,/V;,
X = 1/mZX; and s* = [1/(m — D]Z(X; - X)?, as in the
second section. Then from Expression 6, EX; = /8 and
so EX = /B, as claimed. However, from Expression 6,

Var(X;) = b% + % = ¢ )
and so
2 1 - 2
Es = 3 o] (10)
[0 4 o
- (11)

This exceeds /8% the value claimed by the authors, by
the amount «/8V*, V* the harmonic mean of (V,, . . .,
V,.). It follows that, instead ot the authors’ formula, the
MME is

V*X

e —g &= XB (12)

g =
Of course additional modifications are required if the
denominator of 8 is not positive or is close to zero.

For the data set of Table 1 (1981-1983), the authors’
formulas give values for o and B) of about 7 and 7,
respectively, but the correct MME equations give estimates
closer to 14 and 14. Thus, the model in Expression 4
shouid provide aboui iwice as much informaiion as ihe
authors have estimated.
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We could further improve the estimation. The un-
weighted mean X is not the best estimate of /8 because
those X; based on larger exposures V; deserve more wcight.
A similar statement would apply to the use of 5% but
determining the correct weights is quite complicated in
that case. The benefits of these improvements with m =
33 or 37, as in the examples, should be of second order,
however, and so perhaps this use of a simple method is
not costly for the data considered.

A nice feature of using the optimally weighted X is that
it then could be used instead of X and Xk in Criteria Bl
and B2 and would be preferable to either.

The simple device of substituting the estimates («, 3)
from Expression 5 into 7 fails to acknowledge the uncer-
tainty in knowledge of («, 8). More accurate methods,
which are hard to derive [see discussion by Morris (3)]
would spread out the posterior distribution. The effect of
properly accounting for this in the Higle-Witkowski appli-
cation would be to lower somewhat the probabilities for
Criteria B1 and B2 for those locations with high accident
rates.

To summarize, the Higle-Witkowski Bayesian model
promises to have many advantages over standard methods
for identifying hazardous locations. It will take more time
before the most appropriate analytical methods are avail-
able, however. The development of such methods promises
to be a rewarding and interesting task.
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Morris, in his discussion of this paper, has eloquently and

JE Bt PR IS | [N .y . 1. come Tl L1V .2 A
UIUdCLICdlly COVOICU IS WOAKIICHNUS. 11IC 10HUWILE UIdLUS=
sion is offered to paraphrase and reemphasize some of his
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comments and to add a few comments regarding the
numerical example.

Basically, this study uses a method that is inefficient.
Furthermore, there are computational errors in the analy-
sis. The authors’ estimates are biased and inefficient and
the method of moments technique is improperly applied,
as Morris has noted. With regard to the computational
errors, Morris has shown that the discrepancy in the pa-
rameter estimates is twofold when the computations are
done correctly.

My second comment pertains to the numerical example.
Although the results are computationally incorrect, I will
base my comments on the data as they were originally
presented, to show that many of the authors’ claims are
not supported by their numerical example.

The authors attempt to show by the numerical example
that the empirical Bayesian (EB) methods (Criteria B1 and
B2) are superior to two classical methods—one that as-
sumes a normal distribution (C1) and one that assumes
the more correct Poisson distribution (C2). Careful inspec-
tion of the results (Figures 1-4) does not support this
claim.

In Figure 1 the classical estimate, C1, identifies one site
as hazardous that the EB method fails to recognize (Site
29), and fails to identify one site that the EB method does
identify (Site 4). Note that the accident rate for the site
identified by the classical method is higher (1.604) than
that identified by the EB method (1.437), and hence might
appear to be “more logical.”

In Figure 2 the classical estimate using the more correct
Poisson distribution assumption, C2, identifies the same
hazardous sites as does the comparable EB method (B2)
and recognizes them at an even higher 6 than does the EB
method. The classical method identifies two sites (7 and
29) that EB does not at § = 9. Thus, one could rephrase
the authors’ first sentence in the second paragraph of page
5 in support of the classical estimator as follows: “Criterion
B2 (EB) fails to identify as hazardous many sites that are
flagged by C1 and C2.” The “many” here would be only
three sites; however, this is the same number of sites the
authors refer to as “many” in their original statement
denouncing C1 (Figure 1).

In Figures 3 and 4 we see one site (Figure 3) that the EB
method identified and the classical one did not, namely,
Site 12, but then in Figure 4, the classical method identifies
Site 12 as hazardous when the EB method does not.

In summation, this numerical example does not show,
as stated in the abstract, “that some classically based
statistical techniques may be prone to err in the direction
of false negatives” any more than EB methods. If, after
correcting the computational error discovered by Morris,
this example still fails to support such a claim, a better
example should be found. Otherwise, the would-be user of
this methodology is left to conclude that here we have a
much more complicated procedure that does no better
(maybe even worse) than the more simplistic classical
methods. In its present form, this paper appears to do a
disservice to a methodology that may, in fact, be superior
by (a) containing mathematical errors and (b) presenting
a weak example.
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In this paper the authors suggest ways of estimating the
mean and the variance of true accident rates for m sites.
The expressions given in the paper for calculating the
variance by the method of moments and the formulation
of the likelihood function are incorrect.

It can be shown (/) that, using the method of moments,

m

Var{\} = [1/0m - 1)1[; (N7 = N/ V?

- (1/m)<$ N,/V,)z] (13)
and not
[1/0m = 1) 3 (N,-/u ~1m3 Nf/'V,)z (14)

as given in the paper.

As can be seen from the expressions above, Equation 2
leads to an overestimation of the variance. The difference
between the two expressions is

e

[1/(m = DI X WN/VD) (15)

Using data from Tables 1 and 2, the following compar-
isons, as shown below, can be made. It can be observed
that there is a substantial overestimation of the variance
by Equation 2.

Variance
Data Set FEquation 1 Equation 2
Table 1 0.0673 0.1410
Table 2 0.1164 0.1759

Similarly, it can be shown (/) that the correct likelihood
function is

"m

I]I [e/(a + VEQM]' [T + N)/T()N D]
X [ViEN/(a + ViEIN)Y (16)

and not the corresponding expression given in the paper.
The performance of this likelihood function was con-
firmed by simulation (/) and shown to give good results.
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AUTHORS’ CLOSURE

First, let us state unequivocably that it is truly an honor
to have these authors share their thoughts on this paper.
It is with pleasure that we respond to their comments.

In our paper, we present a two-stage method for obtain-
ing information abhout accident rates in a Bayesian fashion.
In the first stage, we combine accident histories from
various sites within a region to estimate a regional distri-
bution, whereas in the second stage, we use site-specific
data to update the regional distribution, thereby obtaining
refined estimates of the distribution associated with each
site. The comments in the discussions offered by Quaye
and Morris concern some of the details associated with
the first stage. We shall address their comments first, and
save our discussion of Pendleton’s criticisms for last.

FIRST-STAGE CONCERNS

Both Quaye and Morris question the manner in which we
compute our estimate of the variance of the regional
distribution, fi(\), which has an obvious impact on our
initial choice for the parameters « and 8. Quaye’s objection
arises from the fact that we have treated the observed
accident rates X, =N/V,i=1,..., m, as our sample of
observations instead of the collection of paired values (N,
V). Morris points out that even when the observed rates
are used, the manner in which we calculate the sample
variance yiclds a biased estimate of the distributional
variance.

Admittedly, because each observed accident rate, \;, is
derived from two pieces of data, N, and V,, Quaye’s inter-
pretation of the “sample” may be preferred to ours. How-
ever, the method of estimating the variance of the accident
rates, presented by Hauer and Garder (/), should be con-
sidered with caution. These authors verify that the estimate
presented by Quaye can provide negative estimates of the
variance, a quantity that is necessarily nonnegative. This
can cause difficulties, and thus the procedure should be
carefully examined before it is used. Although the estimate
we used cannot yield a negative sample variance, it does
yield a biased estimate of the true variance, as discussed
by Morris.

Regardless, herein lies a major difficulty associated with
some classical identification techniques. Each of these
three methods represents a reasonable or common method
used to estimate the variance of the regional distribution,
yet each provides a different estimate (although the Quaye
and Morris estimates are 1n very close agreement). Because
of the direct dependence of the classical techniques on the
computed sample mean and variance, it is clear that the
resulting set of sites identified as hazardous depends on
the manner in which the data are presented and the
statistics are computed. Different estimates of the variance
of the accident rates across the region will necessarily lead
to different sets of sites that are identified as hazardous.
As a result, the tremendous differences in the tabulated
values of the computed estimates of the variance presented
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in the Quaye discussicn, cerresponding to factors of 2.09
and 1.51 for the first and second data sets, respectively,
might cause some concern tor the integrity of some of the
classical procedures.

To see that the Bayesian technique does not suffer from
these same shortcomings, one need only compare the
distributions obtained with the two estimation techniques.
Clearly, different estimates of the variance of the accident
rates will result in different estimates of both the regional
and the refined distributions. Figures 5 and 6 show the
regional distribution and a representative refined distri-
bution that result from the two estimation techniques.
These figures are based on the moments computed from
the second data set, because it best shows the differences
between the various distributions. The more peaked curve
in Figure 5 (i.e., the one with the smaller variance) corre-
sponds to the regional distribution based on the estimate
of the variance obtained with Quaye’s Equation 13, which
is very nearly equal to Morris’s estimate. In Figure 6, one
can see that the refined distributions are virtually indistin-
guishable. As we discussed in the paper, this is because in
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updating the parameters associated with the regional dis-
tribution to obtain the site-specific distribution, one nec-
essarily overpowers the original parameters (which in our
case are based on the computed sample mean and vari-
ance) with the site-specific data. Thus, the refined distri-
butions, which provide the basis for the identifications and
are therefore of paramount importance, are largely insen-
sitive to the original parameter selection. It follows that
one can be reasonably assured that although the classical
methods are highly dependent on the sample variance, the
Bayesian methods are not.

In addition, both Quaye and Morris question the likeli-
hood function presented in the second section of the paper.
In performing our analysis, we worked exclusively with
the model that Morris has described as the descriptive
model. As such, we have explicitly dealt only with the
distribution of the accident rates, which are initially as-
sumed to follow a gamma distribution. This is our As-
sumption A2. As a result, the likelihood function for the
gamma distribution is correct as stated. Naturally, if we
had performed our investigation on the basis of &;, using
the inferential model, the negative binomial model sug-
gested by Morris would have been correct, and the likeli-
hood function would change accordingly.

Unfortunately, Quaye’s claim regarding the likelihood
function (i.e., Quaye’s Equation 16) is simply incorrect. A
likelihood function is a mathematical entity representing
the relative likeliness of the observed data (e.g., {(NV,
Vi, for a given set of distribution parameters (e.g., «
and 8 for a gamma distribution). Thus, the maximum
likelihood parameter estimates for the gamma distribution
are those values of « and 8 that are most likely to have
generated the observed data. In a very real sense, they
provide the values of o and @ that best fit the observed
data, although the resulting theoretical mean and variance
need not agree with the sample mean and variance. The
“likelihood function” offered by Quaye, which also appears
in the paper by Hauer and Garder (1), is not a true
likelihood function. Instead, it is a form of a likelihood
function that has been artificially constrained so that the
resulting theoretical mean agrees with the observed sample
mean. Thus, in general, the parameter estimates that are
obtained by using it are not the maximum likelihood
estimates, whereas those obtained from the expression in
our paper are. In addition, the statement that somehow
Quaye’s Equation 16 has been “confirmed” by simulation
is most disturbing indeed. As a mathematically known
function, a likelihood function need not be subjected to
empirical validation. Such a validation procedure suggests
that there may be a “gray area” associated with the func-
tional definition. Because it is a well-known mathematical
entity, there is no such gray area requiring empirical
validation.

INTERPRETATIONAL CONCERNS

Pendleton’s discussion begins with a simple reiteration of
Morris’s comments. Because we have already discussed
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these comments at length, there is no need to further
expand on them here. Instead, we shall focus on Pendle-
ton’s remaining criticism, which pertains to our interpre-
tation of the results of our empirical study.

First, note that we are not in a position to claim that
one technique is superior to another. To do so, one would
have to know which sites are actually hazardous so that
one can correctly determine which technique tends to
provide correct identifications most often. Naturally, in
the absence of perfect information, one can only interpret
pieces of evidence or results as they become available.

The interpretation of empirical results such as those
presented in our paper is necessarily subjective, and solid
conclusions are often difficult to reach. Our conjecture
that the classical technique, C1, “may be prone to err in
the direction of false negatives” is based on an in-depth
analysis of the magnitude of the differences in the levels
at which sites are identified as hazardous.

To illustrate these differences, consider the three sites
from Figure 1 for which techniques Bl and C1 provide
differing results, namely, Sites 2, 28, and 29. From Table
1 one can obtain the probabilities computed using the
Bayesian technique. A simple algebraic expression identi-
fies the maximum confidence level at which Criterion Cl
will identify these sites as hazardous, 6., Similar quan-
tities can be obtained from the analogous sites associated
with Figure 3 (i.e., Sites 12 and 29). These values are
summarized in Table 6.

On the basis of this information, it seems clear that Bl
provides very strong evidence that Sites 4 and 28 are
hazardous (0.9813 and 0.9891, respectively), whereas C1
provides substantially weaker evidence (0.8874 and
0.9037, respectively). Similarly, although Site 12 receives
a lower degree of support from B1 than do Sites 4 and 28,
it still receives a substantially higher level of support from
B1 (0.9083) than from C1 (0.7753). Of course, in the first
data set, Site 29 receives a lower level of support from Bl
(0.8908) than from C1 (0.9512), but the difference is
smaller in this case. Because we believe that this type of
analysis provides a better understanding of the difference
between the methods than does Pendleton’s method, we
stand by our earlier claim. Of course, further investigation
of the differences between the Bayesian and classical meth-

TABLE 6 SUMMARY OF DIFFERENCES
BETWEEN B1 AND Cl1

Figure 1: site prob. (B1) 6 max (C1)
4 0.9813 0.8874
28 0.9891 0.9037
29 0.8908 0.9512

Figure 3: site prob. (B1) 8 max (C1)
12 0.9083 0.7753
29 0.9951 0.9812
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ods is called for. In addition, because Pendleton’s obser-
vation regarding the apparent reordering of Sites 4 and 29
in Figure 1 is eloyuently explained in Morris's discussion,
we shall not endeavor to expand on his explanation here.

In conducting the research reported in this paper, it was
our intention to offer a Bayesian technique for identifying
hazardous intersections and to begin to understand how
our technique differs from some of the classical techniques.
It was not, as Pendleton states, to show that the Bayesian
methods “are superior to two classical methods.” Pendle-
ton suggests that because our data set fails to provide
evidence of superiority of the Bayesian method, another
example should be “found” that will support such a claim.
The purpose of this research was to explore the truths of a
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situation. not to discard or manufacture data in an effort
to support a desired result.

CONCLUSION

In conclusion, we would like to agree with the closing
remarks made by Morris. The application of Bayesian
analyses to accident data does appear to provide a fruitful
avenue of exploration. There are numerous modeling tech-
niques to be explored. In addition, a further understanding
of the differences in the results provided by Bayesian and
classical identification techniques is of obvious impor-
tance. The pursuit of knowledge in this exciting field
promises to offer its own rewards.



