Impacts of Wide-Base Tires on Pavement Performance

Imad Al-Qadi Jaime Hernandez Hao Wang Eric Weaver

9/10/2013

Agenda

- □ 2:00 2:05 Software Instructions: Lisa Marflak/Andrew Bevington
- □ 2:05 2:10 Introduction: Eric Weaver, FHWA
- 2:10 2:25 Introduction and Background on Wide-Base Tires: Imad Al-Qadi, UIUC
- □ 2:25 2:40 Tire-Pavement 3D Contact: Imad AI-Qadi, UIUC
- 2:40 3:00 Pavement Modeling and Impact of 3D Moving Tire Loading: Jaime Hernandez, UIUC
- 3:00 3:15 Failure Prediction Considering Contact Stress Variations: Hao Wang, Rutgers
- 3:15 3:25 Cost Impact of Using Wide-Base Tires: Hao Wang, Rutgers
- □ 3:25 3:35 Ongoing Work and Final Remarks: Imad AI-Qadi, UIUC
- □ 3:35 4:00 Question: Trenton Clark

Introduction

Eric Weaver

Introduction and Background on Wide-Base Tires

Imad Al-Qadi

WBT 445/50 R22.5 DTA 275/80 R22.5

Wide-Base Tire

- Nominal tire width 400~460 mm
- Low Profile
- **385/65R22.5; 425/65R22.5; 455/55R22.5**

Dual Tire

- Nominal tire width 250~305mm
- High Profile
- 12-22.5; 12R22.5; 275/80R22.5
- □ Code
 - Tire width (mm)/ tire aspect ratio (the ratio of section height to width)/ radial ply (R)/ rim diameter code (in)

- Introduced to North America in 1982
- Low profile design
- Earlier design was for onand off-road
- Relatively reduced empty weight
- Efficient fuel consumption

- Wide-base tires have been used in Europe since early 1980s
- In some countries more than 80% of trailers use wide-base tires
- Earlier generation of wide-base tires were proven more detrimental to flexible pavement systems than regular dual tires

Impact of Wide-Base Tires on...

Road Infrastructure

- Accelerated pavement testing
- Numerical modeling and analytical methods
- Dynamic Tire Loading
- **Trucking Operation**
 - Fuel economy; hauling capacity; tire cost and repair; safety; ride and comfort
- **Environment**
 - Gas emissions; tire recycling; noise

Impact on Road Infrastructure

- □ First Generation WBT (FG-WBT)
 - Finland: FG-WBT caused 1.2 to 1.4 times the damage by DTA¹
 - Virginia: FG-WBT produced 2 times greater permanent deformation and 25% less fatigue life²
 - Pennsylvania: FG-WBT resulted in 50-70% greater damage³
 - California: Overlay systems Number of repetitions to failure was 50-70% lower⁴
- 1. Huhtala, 1986; 1989
- 2. Bonaquist, 1992
- 3. Sebaaly and Tabatabaee, 1992
- 4. Harvey and Popescu, 2000

Impact on Road Infrastructure

□ Europe¹:

- UK: WBT-495 caused 50-70% more rutting than WBT-385 for thin and medium-thick flexible pavements, respectively
- Germany: WBT-495 produced 30% greater rutting than DTA (315/80R22.5) for thick pavements
- France: No significant difference between tires when using very thick and stiff pavements
- Finland: WBT-495 greater response when considering dynamic loading

Impact on Road Infrastructure

New Generation WBT

- Virginia Smart Road¹: Combined damage ratio showed NG-WBT and DTA had similar overall damage
- Canada²: Comparison of damage depended on environmental conditions
- Illinois³:
 - High-volume roads: WBT-425 more damaging than WBT-455
 - Low-volume roads: NG-WBT more damaging
- Florida⁴: WBT-455 tire performed as good or better than DTA in rutting and cracking
- 1. Al-Qadi et al., 2001-2005
- 2. Pierre et al., 2003
- 3. Al-Qadi and Wang, 2009, 2009a
- 4. Greene et al, 2009

Impact on Dynamic Tire Loading

- WBT is more flexible than DTA (two walls instead of four)
- □ **Transmissibility**¹:
 - WBT-425 has less transmissibility than DTA
 - Transmissibility is not affected by load and slightly affected by tire-inflation pressure
- WBT produced a dynamic load coefficient between 10 and 12% lower than that of DTA²

Impact on Trucking Operation

□ Truck's fuel consumptions:

Impact on Trucking Operation

- WBT reduces rolling resistance coefficient (10% greater fuel efficiency)¹
- WBT combined with aerodynamic devices can improve fuel efficiency by 18%²
- Hauling companies reported savings between 3.5 and 12% in gas³
- Fuel consumption is reduced by 10% (instrumented trucks were used)⁴
- 1. Muster, 2000
- 2. Bachman et al., 2005
- 3. Genivar, 2005
- 4. Franzese, 2010

Impact on Trucking Operation

- Hauling Capacity: WBT is lighter; hauling capacity is increased¹
- □ Tire Cost and Repair: WBT is easier to inspect, repair, and maintain²
- Safety: WBT has similar or slightly better performance after sudden-air-loss test¹
- Ride and Comfort: WBT reduces vibration; WBT and DTA require similar degree of handling¹

Impact on Environment

- Gas Emissions:
 - Reduction in emissions due to less gas consumption^{1,2}
 - Reduction in NOx emission (9-45%)³
- Tire Recycling: savings if WBT was disposed instead of DTA¹
- Noise is slightly reduced when using WBT⁴

- 1. Genivar, 2005
- 2. Ang-Olson, 2002
- 3. Bachman, 2005
- 4. Markstaller, 2000

Summary

WBT advantages over DTA include:

- Fuel savings
- Increase hauling capacity
- Environment friendly
- FG-WBT were proven to be more damaging than DTA
- Damage between NG-WBT and DTA needs to be further studied

Tire-Pavement 3D Contact

Imad Al-Qadi

Tire-Pavement 3D Contact

- Conventional pavement analysis assumptions includes:
 - Circular tire-pavement contact area
 - Contact stresses in the vertical direction only
 - Uniform contact stresses
 - Static loading

Conventional analysis cannot compare WBT and DTA

Contact Area

Circular contact area does not accurately represent the actual geometry of the tirepavement contact

Circular Contact Area

Stress Distribution

Conventional Assumption: Uniform magnitude and vertical direction only

Stress Distribution

Actual Distribution: Nonuniform magnitude and three-dimensional

(17.8kN and 724kPa)

Stress Distribution

□ Contact stresses across the tire

3D Contact Stresses

- D 3D contact stresses are crucial to compare effect of WBT and DTA on pavement and the resultant damage
- Two alternatives to determined 3D contact stresses:
 - Experimental Measurements
 - Modeling

Measurement of 3D Contact Stresses

Relevance of in-Plane Stresses

Transverse Contact Stresses

DTA vs WBT: Contact Area

WBT vs DTA: Max. Contact Length

Tire Modeling

- Allows characterizing tire-pavement contact under various scenarios
 - Different loading cases
 - Rolling conditions: Braking, accelerating, cornering
- Utilize experimental measurements for validation

Simulation Process

Summary

- Conventional pavement analysis does not properly consider tirepavement interaction
- Tire-pavement load-transfer mechanism depends on tire type

Pavement Modeling and Impact of 3D Moving Tire Loading

Jaime Hernandez

Pavement Modeling

- Successful pavement models requires:
 - Appropriate input: materials, loading, etc.
 - Accurate representation of reality: moving load, layer interaction, etc.
 - Validation using experimental measurements: pavement instrumentation
Pavement Modeling

	Conventional	3D FEM
AC Materials	Linear elastic	Viscoelastic
Granular Materials	Linear elastic	Nonlinear cross- anisotropic (stress- and direction- dependent)
Loading Area	Circular	Versatile
Loading	Static	Static/ dynamic and 3D
Layer Interaction	NO	YES

Dynamic Analysis

- Considers mass inertia and damping forces effect on pavement response
- Different contact areas of tire imprint can affect inertia force values
- Pavement response is affected by loading amplitude

Material Characterization

□ AC: Linear-viscoelastic:

- Dynamic modulus test (E*)
- Prony series expansion
- □ Granular materials:
 - Thin pavement: Nonlinear crossanisotropic stress-dependent
 - Thick pavement: Linear Elastic

Boundary Conditions and Layer Interaction

Infinite Boundary Elements

- Simulates far-field region
- Layer Interaction:
 - Fully-bonded
 - Simple Friction
 - Elastic Slip

3D Contact Stresses

- Uniform constant stresses underestimate
 - response close to surface
- 3D contact stresses may create greater compressive strain on top of subgrade and transverse tensile strain

3D Contact Stresses

Discretization of tire footprint

3D Contact Stresses

FEM Input

From measurements to FEM

Finite Element Model

Contact Stresses

Moving Loading

- □ Applied tire-loading is moving, not stationary
- Loading amplitude continuously changes
- Dynamic tire force is excited by pavement irregularities (& vehicle suspensions)
- □ **3D stress state at tire-pavement interface**

Moving Load

Traditional method

- Triangular, trapezoidal, rectangular amplitude in constant loading area
- Pavement at different depths have same loading time
- Impulsive loading (hammering)
- Continuous loading
 - Loading area changes as tire moves
 - Loading amplitudes are linearly varied with time for the entrance and exit parts of tire imprint

Continuous Moving Loading

Trapezoidal

Continuous

Finite Element Model

Mesh Configuration

Validation – Smart Road

Effect of 3D Contact Stresses

Strain Distribution with Depth

Critical strain within HMA

Strain from the surface to bottom of 150mm HMA

Summary

- Finite Element Modeling
 - Dynamic-implicit analysis
 - Material characterization
 - 3D contact stresses
 - Continuous moving loading
 - Infinite boundary elements
 - Layer interaction
- In-plane contact stresses are crucial for accurate near-surface pavement responses calculation

Failure Prediction Considering Contact Stress Variations

Hao Wang

Transverse

Vertical

(17.8kN and 724kPa)

Longitudinal

Contact Stresses at Various Loading Conditions

Load, kN (kip)	Pressure, kPa (psi)	Maximum contact stress	Range, kPa	Avg.	Std.
	17.8- 414- 40.2 966 (4-9) (60-140)	Vertical	854-1633	1220	264
17.8-		Transverse	194-490	339	100
40.2 (4-9)		Longitudinal	103-306	214	50
	Stress ratio	1:0.23:0.07- 1:0.31:0.30	1:0.28:0.17	/	

Contact Stresses at Various Rolling Conditions

Rolling conditions	Friction coefficient	Maximum contact stress, kPa		Ratio of	
		Vert.	Trans.	Long.	maximum stress
Free rolling	0.3	1056	223	65	1:0.21:0.06
	0.8	1067	391	81	1:0.37:0.08
Full braking	0.3	1053	14	316	1:0.02:0.30
	0.8	1144	73	915	1:0.06:0.80
Cornering (slip angle=1°)	0.3	1157	277	73	1:0.24:0.06
	0.8	1432	485	95	1:0.34:0.07

Pavement Failure Mechanism

Analysis of Thin Pavement Responses

- A low-volume road pavement section built at ATREL: Geosynthetically stabilized pavements
- Conventional failures in thin asphalt pavements:
 - Bottom-up fatigue cracking
 - HMA rutting (distortional deformation)
 - Base permanent deformation (shear failure)
 - Subgrade rutting

Wearing surface 76mm				
Granular base 305mm				
Subgrade (CBR=4)				

Effect of Contact Stresses on

Pavement Responses

Locations	Responses	At 25°C		At 47°C	
		Uniform	3-D	Uniform	3-D
Bottom of asphalt layer	Long. tensile strain (micro)	374	+0%	1057	+8%
	Tran. tensile strain (micro)	272	+6%	973	+19%
Shallow depth of asphalt layer	Shear strain (micro)	299	+4%	1499	+5%
	Shear stress (kPa)	401	+16%	243	+25%
Top of subgrade	Deviatoric stress (kPa)	54	-7%	81	-5%
	Compressive strain (micro)	1246	-9%	1781	-9%

Effect of Tire Braking on Shear Strain

Near-Surface (Top-Down) Cracking

- A thick full-depth pavement section with 254-mm asphalt layer
- Near-surface (or top-down) cracking is more critical in thick asphalt pavements (Baladi et al. 2002)
 - Observed within 10 years after construction
 - Longitudinal or transverse cracking around wheel-path areas
 - Depth of cracking is generally contained in the wearing course

Strain Distribution at Near-Surface

Effect of Load and Pressure on Near-Surface Strains

Effect of Vehicle Maneuvering on Near-Surface Strains

Effect of Wide-Base Tire on Near-Surface Strains

Effect of Wide-Base Tire on Tension and Compression Strains

Summary

- Effect of contact stresses on pavement responses depends on the following:
 - 3D contact stresses; applied load and tire pressure; and vehicle maneuvering
 - Pavement layer thickness
- Effect of wide-base tires on pavement responses
 - Different contact stress distributions
 - Depends on pavement failure type, asphalt layer thickness, and temperature

Cost Impact of Using Wide-Base Tires

Hao Wang

Case Study in South Dakota

- 2012-01 Research project sponsored by South Dakota DOT
- In South Dakota, wide-base tires may be generally substituted for standard duals; but the legally allowed weight on single axles is reduced
 - 17.5kips for 445mm tires; 18kips for 455mm tires
 - 20kips for dual-tire configuration
- Project goal: Assess potential impact of allowing 20-kip load on single axle equipped with 445mm and 455mm wide-base tires on state and local roads in South Dakota
Web Survey and Interview

- Survey to SD state DOT on load regulation or permit fee of wide-base tires -- 22 responses
- Survey to state trucking associations on use percentage, trend, and benefits of wide-base tires --8 responses
- □ Interview local truck owners and operators -- 6
- Discussion with SDDOT staff to characterize road surface designs in SD

Damage Ratios

- Damage Ratio: ratio of damage caused by one pass of a single axle with wide-base tires with respect to damage caused by one pass of a single axle with dual tires when carrying the same load
 - **Damage Ratio:** $DR = \frac{1/N_{single}}{1/N_{dual}} = N_{dual}/N_{single}^{1}$
 - The allowable load repetitions (N) could be calculated directly from performance measurements or critical pavement responses (through transfer functions)
 - Performance models in new AASHTO MEPDG are mainly used

Individual Damage Ratios

Pavement Structure	Distress	Ratio of Critical Response	Damage Ratio	Source References	
	Fatigue Cracking	1.03-1.25	1.13-2.41		
Full-Depth Pavement	Top-Down Cracking	0.89-0.91	0.64-0.70	ICT/IDOT Study	
	Primary Rutting	0.86-0.91	0.77-0.85	Olddy	
	Fatigue Cracking	0.96-1.06	0.86-1.26	Virginia Smart Road Study;	
Thick Asphalt	Top-Down Cracking	0.63-0.90	0.16-0.67		
Pavement	Primary Rutting	1.06	1.05-1.27	Ontario Study;	
	Subgrade Rutting	N/A	N/A	FLDOT Study	
Thin Asphalt Pavement	Fatigue Cracking	1.14-1.30	1.68-2.82	Quebec Study:	
	Primary Rutting	1.14-1.28	1.35-1.77	ICT/IDOT	
	Subgrade Rutting	1.06-1.21	1.31-2.35	Study	

Combined Damage Ratios

Category	Pavement Type	% of Total Miles	Range of Damage Ratio	Ave. Damage Ratio
Interstate and Primary Road	Full Depth (> 10 in ACP w/no granular base)	3.4	0.85-1.32	1.085
	Thick (5 to 10 in ACP w/ granular base)	49.6	0.69-1.07	0.88
	ACP on PCCP (Asphalt overlay on top of PCCP)	12	1.0**	1.0**
	Rigid Pavements	35	1.0**	1.0**
Secondary Road	Thin on Strong Base (2 to 5 in ACP on > 8 in. granular base)	76	1.45-2.31	1.88
	Thin on Weak Base (2 to 5 in. ACP on < 8 in. granular base)	21.8	1.45-2.31	1.88
	Surface Treatment (Bituminous surface treatment or oil aggregate surface)	2.2	1.45-2.31*	1.88*

* Assume that BLOT has the same damage ratio as TonW and TonS.

** Assume that damage ratios on AonC and rigid pavements are equal to one.

Step 1: Determine pavement cost functions

0E+0

1E+7

2F+7

20-Year Design ESALs

3E+7

Step 2: Estimate pavement cost when dual tires are used

Road Segment	Highway Number	Length (miles)	Pavement Type	Interstate	Millions of ESALs in 20 years	EUAC per lane-mile
1	010	9.08	TONS	No	0.26	\$26,250
2	011	11.089	THK	No	0.16	\$24,452
3	012	1.158	FD	No	0.43	\$33,927
4	065	3.049	TONW	No	0.11	\$23,548
5	090	2.374	FD	Yes	6.26	\$46,567
6	090	8.005	THK	Yes	6.76	\$42,284

TONS: Thin Asphalt Pavement on Strong Base; TONW: Thin Asphalt Pavement on Weak Base; THK: Thick Asphalt Pavement; FD: Full-Depth Pavement.

Step 3: Estimate the number of trucks with spread tandem axles and axle load spectrum

Category	% of	%of trucks v in a	with spread ta all Class 9 tuc	% of	% of	
	Class 9 trucks in all trucks	8-9 ft axle spacing (max load allowed: 19 kips)	9-10 ft axle spacing (max load allowed: 19.5 kips)	>10 ft axle spacing (max load allowed: 20 kips)	tandem with full load	tandem with 40% full load
Interstate	51.7%	0.46%	8.12%	15.26%	78.97%	21.03%
Non- Interstate	35.2%	0.35%	8.29%	19.15%	65.12%	34.88%

Step 4: Estimate change of pavement cost when wide-base tires are used

Road Segment	Highway Number	Length (miles)	Pavement Type	Interstate	Millions of ESALs in 20 years	EUAC per lane- mile	Change of EUAC per lane
1	010	9.08	TONS	No	0.29	\$26,693	+\$4015
2	011	11.089	THK	No	0.16	\$24,406	-\$507
3	012	1.158	FD	No	0.44	\$33,977	+\$57
4	065	3.049	TONW	No	0.12	\$23,827	+\$851
5	090	2.374	FD	Yes	6.33	\$46,631	+\$152
6	090	8.005	THK	Yes	6.64	\$42,176	-\$859

Step 5: Calculate total change of pavement cost in state highway network

Change of EUAC	Category	Percentage of spread tandem axles using wide- base tires replacing dual tires after policy change						
(\$ million)		10%	20%	30%	50%	100%		
Using average damage ratios	Interstate	0.00	0.00	0.00	-0.01	-0.02		
	Non- Interstate	0.36	0.71	1.06	1.73	3.28		
	All state highways	0.36	0.71	1.06	1.72	3.26		

Impact on Environmental Cost

- Recent studies proved that using wide-base tires can reduce tire rolling resistance by 12% and reduce fuel consumption by 5-12%
- Environmental damage and cost of neutralizing gas emission are estimated at \$1.13/gal (\$0.3/liter)

Cost Saving (\$ million)	Percentage of spread tandem axles using wide-base tires replacing dual tires after policy change						
	10%	20%	30%	50%	100%		
Fuel	0.17	0.35	0.52	0.86	1.73		
Pollution	0.05	0.10	0.16	0.26	0.52		
Total	0.22	0.45	0.67	1.12	2.25		

Summary

- Damage ratio provides a good approach to quantify impact of wide-base tires
 - Pavement failure mechanism
 - Mechanistic-empirical approach
- Impact of wide-base tires on life cycle assessment
 - Pavement damage cost
 - Cost of fuel consumption and emmision

Ongoing Work and Final Remarks

Imad Al-Qadi

- Quantify the impact of WBT on pavement damage utilizing advanced theoretical modeling and validate results using fullscale testing
- □ Scope:
 - Contact stress measurements of tires (WBT & DTA)
 - APT of pavement sections
 - FEM modeling of pavement loading
 - Calculation of pavement damage

Loading Matrix

Contact stress measurements and APT

Tire Type	Inflation Pressure (kPa)	Tire Loading (kN)				
NGWB and Dual	552					
NGWB and Dual	690					
NGWB and Dual	758	26.6	35.5	44.4	62.2	79.9
NGWB and Dual	862					
Dual Only	414/758*					
Dual Only	552/758*					

***Differential Tire Inflation Pressure**

FEM Input: AC Materials

Based on more than 1000 data sets

2σ ≈ 95.4%, 2.5σ ≈ 97.5% and 3σ ≈ 99.8%

Layers Considered:

- Wearing Surface (WS) 9.5 or 12.5mm
- Intermediate Layer (IS) 25 or 19.5mm
 Base Layer (BS) 25 or 37.5mm

From http://en.wikipedia.org/wiki/Normal_distribution.

FEM Input: AC Materials

FEM Input: Granular Materials

- □ Base materials (thin pavements)
 - Cross-anisotropic stress-dependent
 - Based on database of 114 materials (Tutumluer, 2008)
 - Materials in database tested using pulse load in vertical and radial directions

Laboratory Testing

Dynamic Modulus

SCB

Database of Measurements

Artificial Neural Network

Testing and Instrumentation

Rosette

Life Cycle Cost Analysis (LCCA)

- Guidelines to assess LCCA using RealCost:
 - Identify RealCost inputs
 - Calculate low-volume damage for current traffic (Control)
 - Calculate pavement damage caused by expected traffic (WBT)
 - Run RealCost for both scenarios (Control and WBT)

Life Cycle Assessment (LCA)

- Evaluation of environmental effects
- Focus on energy use and greenhouse gas emissions
- □ Sensitivity analysis including:
 - Range of smoothness, rolling resistance, and surface characteristics
 - Hauling distance
 - Traffic levels and congestion
 - Traffic closure during constructions
 - Fleet composition

Project's Expected Outcome

- Database to access measured pavement responses
- Validation of pavement model using instrumented sections
- Analysis tool comparing pavement damage caused by WBT and DTA
- LCA and LCCA

Final Remarks

- Proper characterization of tire-pavement interaction is crucial to accurately quantify pavement damage
- Robust analysis needs to be performed in order to determine the actual damage caused by WBT and DTA
- Tire-pavement load transfer mechanism depends on tire type, loading, and rolling conditions

Acknowledgement

- **TPF-5(197) Pool Fund Study Technical Panel:**
 - **FHWA, RMA, IL, MN, MT, NY, OK, VA, OH, and TX.**
- □ ICT, Delft UT, FL DOT, UC Davis, Texas A&M, CSIR
- **UIUC-NCSA, Ohio U., SD DOT**
- B. Choubane, A. Coenen, M. De Beer, M. Elseifi, A. Gamez, J. Green, J. Harvey, I. Khoury, S. Lew, D. Little, H. Ozer, S. Sargand, T. Scarpas, R. Wu, P. J. Yoo, and M. Ziyadi.

QUESTIONS