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Unsaturated Geomechanical First
Principles

Claudia Zapata
Arizona State University
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Sources of Moisture In Pavements

Through surface discontinuities
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From edge
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action mg)veme-nts
i ¢ Rising water table

. Water table

TRB Webinar, Moisture & Compaction Measurement during Unbound Aggregate Layer Construction, August 2016



Key Findings Related to Moisture
Effects on Resilient Modulus

Field evidence and numerous numerical
modeling studies have shown that even

though the pavement structure acts as a
cover for the unbound material...

... Its moisture content eventually reaches an
equilibrium condition, fact that it is greatly
Influenced by climate and soil properties.
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Controlling Factors

m Unbound material

reaches an
equilibrium

Ground- condition
water m Climate

Table

m Soll properties

m Microclimate
controls flux
boundary
conditions

Perera, 2006
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Unsaturated Solls

* One-third of earth’s surface Is considered
arid or semi arid

 Unbound materials under pavements are
generally unsaturated
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 After decades of focus on saturated solls,
the Geotechnical profession has begun to
turn Its attention to unsaturated solls.

e (Construction In unsaturated solls Is
preferred when practical, due to reduced
costs and effort.

« Research community has made substantial
advances in understanding fundamental
aspects of unsaturated soil behavior.
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Typical Pore Water Pressure Profile

« Matric suction Excessive evaporation
controls the water Equilibrium
content in the soil  Sigses /_ e
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Some Case Study &
Relationship to Pavement Design

John Siekmeier

Office of Materials & Road Research
MnDOT
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Current Situation

« Pavement foundations are important and are
constructed to avoid saturation where possible.

« MNPAVE is MnDOT’s mechanistic pavement
design method used to quantify performance.

« Unsaturated geomaterials have greater moduli,
which can be used to optimize pavement designs.

Project Objective

 Pavement design procedures are modified to better
utilize unsaturated geomechanics so that we build
more financially effective roadways.
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Pavement Foundations are Important
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", Minnesota Department of Transportation
E Office of Materials & Road Research

orr® 1400 Gervais Avenue, MS 645

Maplewood, MN 55109

yvu-“da

Memo
TO: PCMG, CMG, MnDOT Districts, Mateyials Engineers, Soils Engineers, State Aid
FROM: Glenn M. Engstrom, Director
Office of Materials & Road Réscarch
DATE: October 31,2014

SUBJECT:  Pavement Design Manual Publication
I am pleased to announce the publication of the MnDOT Pavement Design Manual.

This publication represents a significant effort to update pavement design procedures and codify
existing documents into a single point of reference. As of November 1, 2014, all MnDOT
pavement designs shall follow the pavement design, pavement-type selection, LCCA, and alternate
bidding as laid out in the Pavement Design Manual. To view the manual, please follow
http://www.dot.state.mn.us/materials/pvmtdesign/newmanual.html




Mechanistic Pavement Design

* Provides the framework for using
performance based material properties

* Free pavement design software available
http://www.dot.state.mn.us/app/mnpave/index.html

e Just Google “MnPAVE”"
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Need Seasonal Change In
Aggregate Water Content
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MnROAD Test Section Case Studies

Ruth Roberson Thesis, 2007
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Lessons Learned from Case Studies

 Modulus greatly affected by moisture suction
(tensile stress between aggregate particles)

e Suction tensile stress depends on:
— Quantity of sand, silt, and clay particles
— Distribution of particles and voids
— Particle shape and void shape
— Porosity (measure of void space)
— Moisture content (measure of water in voids)
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Numerical Simulation
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Parameters Studied

 Aggregate gradation

« Moisture content (suction/tension)

* Friction between particles (roughness)
e Confining stress
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Numerical Simulation Results

1.0 -
0.9 _ Particle Friction 0.6

Suction Stress 30 kPa
0.8

Confining Stress 100 kPa axial strain 0.10%

Mr 18t cycle 145 MPa
Mr 2"d cycle 155 MPa

&
~
1

axial strain 0.05%
Mr 18t cycle 145 MPa
Mr 2nd cycle 148 MPa

&
N
|

&
tn
|

axial strain 0.02%
Mr 18t cycle 135 MPa
Mr 2nd cycle 138 MPa

-Deviatoric Stress [Pa] x10"5
< o <
b2 (Y] P
| | |

g
[S—
1

&
o

L LA L L L DL L L DL L L L DL L L LA L ! ! L
-0.1 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.
-Axial Strain x107-3

TRB Webinar, Moisture & Compaction Measurement during Unbound Aggregate Layer Construction, August 2016



Numerical Simulation Results
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Numerical Simulation Results
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Numerical Simulation Results

Aggregate Base Unsaturated Gain Factors

particle friction 0.6 and contact bridge 1 mm (less sand and smaller particles)

Suction Gain Factor Gain Factor
(kPa) @ 50 kPa and 0.05% strain @ 100 kPa and 0.05% strain
) 1.32 1.49
30 1.90 2.07
60 2.26 2.36

Gain factors are the ratio of modulus at listed suction compared to 1 kPa suction.
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Numerical Simulation Results

Aggregate Base Unsaturated Gain Factors

particle friction 0.6 and contact bridge 10 mm (more sand and smaller particles)

Suction Gain Factor Gain Factor
(kPa) @ 50 kPa and 0.05% strain @ 100 kPa and 0.05% strain
) 1.46 1.30
30 2.26 1.85
60 2.65 2.14

Gain factors are the ratio of modulus at listed suction compared to 1 kPa suction.
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Damage vs Unsat Gain Factor

Damage must be less than of 1.0 to achieve 20 year design life.
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Conclusions

e Modulus Increases as suction increases
and aggregate roughness increases.

 Pavement structures can be optimized
by applying unsaturated geomechanics.

 Financial effectiveness can be enhanced
by better utilization of limited resources.
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Suction and Moisture Collected at
Field Sites and Variation Information

Claudia Zapata
Arizona State University
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Moisture Data Collected at FAA
Test Facillity
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Moisture Sensors Installation

o Total of 30 sensors were installed throughout
the test section

e Sensors have been collecting moisture every
hour since July 2013
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If measuring suction in the field
IS ot an option...

 Equilibrium suction in the field can be
predicted based on climatic indexes (such
as the Thornthwaite Moisture Index) and
readily available soll index properties
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TMI-P,4, Model — Granular Bases
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Soil-Water Characteristic Curve
Prediction

* Once the suction at equilibrium is
predicted, the soil-water characteristic
curve can be use to estimate the water
content at equilibrium

e The SWCC can be

— obtained In the laboratory

— roughly estimated from grain-size distribution
parameters and other soil properties
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Estimating SWCC based on Grain Size
Distribution

Porcentage Pasante
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Estimating SWCC for Granular
Material (Torres and Zapata, 2011)

SWCC Parameter af, kPa

SWCC Parameter bf

a, =-97.21D,* + 218 .37 D, — 2.7

b — 10(—0.0075af3+o.1133af2—0.3577af +0.3061)
.=

c, =0.0058a,° —0.0933a,° +0.4069a, +0.3481

SWCC Parameter cf

SWCC Parameter hr, kPa h, =10

Correction Factor CF(y)= (y —0.9128)

for the SWCC Equation: V= 0017
Where:

6w = Volumetric Water Content

@sat = Saturated Volumetric Water Content
w = Matric Suction, kPa

Gl = Group Index

Once the
parameters
are replaced in
the Fredlund
and Xing
equation, the
family of
SWCC curves
can be
obtained.
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SWCC for Granular Material
based on D,

PI = % Passing #200* PI/100
)
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Suction Measurements Database

 Compiled from National Resources

Conservation Service (NRCS) database

— Initially intended for agricultural purposes

— Key soil properties useful
In highway/pavement
engineering

— Joint agreement with the

then Bureau of Public Roads
(BPR)
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http://nchrp923b.lab.asu.edu/
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parameters

1 record found matching your criteria

Print Report Close
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Laboratory Measurement of Suction
& Relating it to Resilient Modulus

Claudia Zapata
Arizona State University

TRB Webinar, Moisture & Compaction Measurement during Unbound Aggregate Layer Construction, August 2016



How to Obtain Soil Suction?

Hierarchical Levels
DIRECT MEASUREMENTS INDIRECT MEASUREMENTS

Laboratory Measurements Prediction based on Prediction based on
Field Measurements Grain-Size Dtstribution Simple Index Properties

Most accurate Higher uncertainty
Sophisticated equipment Very low cost
High cost Easier to implement
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How to Obtain Matric Suction?

e Laboratory measurements
— Pressure plates, pressure membranes
— Filter paper method

* Field measurements
— Thermal conductivity sensor

— Tensiometers
— Gypsum blocks
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Measuring Matric Suction

® One way to measure matric suction is to directly
measure or control -u,, and u.,.

® Because u,, is commonly highly negative,
measuring or controlling u,, in the lab often
requires increasing u_ to avoid cavitation of water
In the measurement device.

® The axis-translation technique is a common
method used for the direct measurement of soll
matric suction.
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Axis-Translation in the Lab

® This procedure changes the atmospheric pressure

In the chamber to move the origin of reference for
the pore-water pressure from the standard level to
the final air pressure in the chamber.

® This is why the procedure is called "axis-
translation.”

® Cavitation is prevented because water pressure
IN the measuring system does not become highly
negative.
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Methods Avallable to Measure
Matric Suction

 Direct methods:

o Tempe cells
o Pressure cells

o Tensiometers
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Measuring Matric Suction

® High air-entry ceramic
disks, which are
uniformly porous and
separate air and water,

are used. I
® |f the disk is saturated s
with water, air cannot posicl ' Y
pass through it since the e
air-water interface resists eT——

To measuring system

the flow of free air. - .
Modified from Fredlund and Rahardjo, 1993
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Air-Entry Value

Table 4.3 Properties of High Air-Entry Disks Manufactured by Soilmoisture Equipment
Corporation' {(Manufacturer's Results)

‘ Measured Air-
Type of Disks Dﬁ;’:ﬂ;‘ﬁﬂﬁ]g?ﬂﬁﬂ Entry Value,
‘rF.; - "..-]_,. . kPa
“: bar High flow 6.0 48-62
1 bar 2.1 138-207
1 bar High flow 2.5 131-193
2 bar 1.2 241-310
3 bar 0.8 317-483
5 bar 0.5 = 550
15 bar 0.16 = 1520

! Sotlmaoisture Equipment Corporation, Santa Barbara, CA, USA
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Relating Suction
and Resilient Modulus




How can the resilient modulus be
adjusted for environmental conditions?

@T

Environmental Factor, F

Mr - FenV X Mropt

env
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Models by Andrel and Witczak (2003)

b-a 3

M. = 1Oa+1+EXP(,B+km.(S—Sopt ) M

Ropt

\ }
!

MOISTURE ADJUSTMENT
FACTOR (Fg..)

Mg = Resilient Modulus at any degree of saturation (S)

Mgopt = Resilient modulus at optimum degree of saturation (S,,,) or initial
compaction conditions

F.,, = Environmental adjustment factor
a, b, k.., B = Regression parameters
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Models by Andrel and Witczak (2003)

3.0
| | | |
Dry of Optimum Wet of Optimum
25 = >
\ Fine-Graingd
2.0
5 TN
% 18 Coarse-Grained \
=
1.0
\
0.5 —Coarse-Grained Materials —
—Fine-Grained Materials
0.0
-70 -60 -50 -40 -30 -20 -10 0 10 20 30
(s'sopt)%
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Resilient Modulus at Optimum

K K

0 T,
I\/IRopt:k1°pa° T ' ~+1

Pa Pa

 Universal model

— Implemented in the ME-PDG for “unfrozen” unbound
materials

— Stress dependent model
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More data collected indicated...

15 N ° F

A env -
Lo s 0 A conservatively
. — A predicted
05 & 0
e | E A—‘X_ K
=" B " . F,,, forf
= eny for fine
o | Database - Coarse Grained ° A ° g ral n e d
o Database - Fine Grained X :
10— - M-tEPDG Prediction - Coarse Grained E : m ate rl a‘IS
—— M-EPDG Prediction - Fine Grained ° un d e reStI m ate d
-15 \ \ \ \ \
70 60 50 40 30 20 10 0 0 20 30 at d ry con d |t| ons

S-Sope (%)
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Environmental Factor as a
Function of Soll Type

12 /ﬁv‘rzs‘a‘

§\ WPI =45
10 \
BN
(1 =
% . § \\\\\\\S‘Q WPl =35
- wPl =30
é \\\\\\\ WPl =25|
S 6 \\\ ‘§
2 WPl = 20 \§\
UD-J 4 AwPr=15 §\
7 wPI =10 \\
LE I s~
) wPI =5 @E
— —
o
0 | —
-60 50 40 30 -20 10 0 10 20 30

S'Sopt (%)
Cary and Zapata (2010)

TRB Webinar, Moisture & Compaction Measurement during Unbound Aggregate Layer Construction, August 2016






Moisture and Compaction
Measurement and Field Performance

Erol Tutumluer
University of lllinois
at Urbana-Champaign
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Rutting Is the

.a—J

Main Performance Indicator

-

UIUC ATLAS APT Device

ICT' R27-81 Research Project
(Mishra & Tutumluer et al. 2013; ict.illinois.edu)
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Moisture Content and Aggregate Quality
Influencing Permanent Deformation Behavior

Repeated Load Triaxial Test Results

0.7 3
12% fines (P,q) 110% of Wy
- 2.5 -
z :
£ c
: g 2
= E == == Gravel 12% Non-Plastic Fines
E 5 15 === Dolomite 12% Non-Plastic Fines
Hg ? 7 Gravel 12% Plastic Fines
(=]
D At
= c
S . S | |
s / e Dolomite Non-Plastic @ $0% Wopt &
0.2 =
g == + DolomiteNon-Plastic @ 110% Wopt o -
. ’ == == Dolomite Plastic @ 90% Wopt & 05 J ot Ry gyl gy oy P
0.1 - P T ——
e Dolomite Plastic @ Wopt
0 1 T T T T T T T T T
D T T T T
0 200 400 600 800 1000 0 100 200 300 400 500 600 700 800 900 1000

Number of Cycles Number of Cycles

(Tutumluer et al., 2009; R27-1 Project; ict.illinois.edu)
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Effect of Shallow Ground Water Table on
Permanent Deformation Accumulation

60 Volumetric Moisture Content 6
=K = Subgrade, LVDT 0.25 0.30 035 0.40 0.45
] = A = Base course, LVDT 1502 0
E 503 =+ Subbase, LuoT R . T
= =——4—=subbase predict ' 2 .’ 20 \ Moisture
5 40 =d—=hase course predict \ Contents
3 ] ———hase course, predict - - K 10 \ \ -3 days
£ ] =T \[GWTRaisedl \ \
T 30 60 \ ~-9days
T ) N \
c 2 e = ~__ \ ~16 days
E T 4 =1 ~ N \
] e = 8 S~ ™ \
o | W - &y — 100 A\ "~
o 10 A i\ T~ DN ~30 days
> 4 H \\ \\ \
e X — —F— * 120 ———— \\E
0 . . . : : : \"\\\ ~Equilibrium
140 — C\WT DN sSWce
eopt VA'AL
0 100000 200000 300000 400000 500000 (b) _l_ y_ L1
a
(@) Numer of passes, N 160 — HEN

(Erlingsson and Ingason, 2004)
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Dolomite (14-in. thick) over CBR=3 Subgrade

Rut Depth (mm)

Rut Depth (mm)

ICT R27-124 Project; (Kazmee & Tutumluer, 2015)
100% crushed, 11% passing No. 200 sieve, PI=0

OMC (%) MDD (pcf)
Cell (Std Proctor) (Std Proctor)
Quarry Quarry
Reported vive Reported vive
3 8.1 7.7 141.5 142.5
100
50
. — it
0 — 10|
| =——#100
50 #1754
| =—#300
A0 #4007
—_— 700
150, 50
100
50
e e e i M s e s v s
e e e A I
e ]
-100 #10
: —#100
_15-050 -40 -30 20 -10 0 10 20 30 40 50

Center Line Offset (in.)
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Sustainabllity in Aggregate Layer Construction

p— : ~—

ICT R27-81 Research Project
(Mishra & Tutumluer 2013; ict.illinois.edu)
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Pavement Forensics — PANDA & Geo-Endoscopy
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Depth of Water Table & Paveme

50.3cm 38.0cm 12.4 cm 1.9cm

68.4 cm

Sec. CP-l

Depth (cm)

F. o [
Capping o'd'g’OS i -3 a 2
--------- Og? - - - - = - e - - - - == a= -'.- - - - -
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20 4 .o % e %°® * 1l oL e ° 4 .
O o% 5 ©o .
° j?)o e i b g
2¢' Q0 Aggregate  ® .
304 &% 0 430+ $ o
e %4 0° © Subgrade e 8
o i - : o
[ ] .0 o éao ! ! 8
40 4+ s od T+ <7 o2y i
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0L e 8_4o+_ _8.o ____ i
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Cone Resistance, q4 (MPa)

ICT R27-124 Project; (Kazmee & Tutumluer, 2015)

California Bearing Ratio, CBR (%)

Sec. CP-lI
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Minimize Rutting Due
to Shearing in Base

» Resist shear defrormation
within the aggregate base
— Crushed, high quality
angular stone for higher
stability
— Proper compaction!!!
(Density, Density, Density...)

(Mishra & Tutumluer, 2013; ict.illinois.edu)
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NCHRP

SYNTHESIS 445

Practices for Unbound Aggregate
Pavement Layers

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD

OF THE NATIONAL ACADEMIES

NATIONAL
COOPERATIVE
HIGHWAY
RESEARCH
PROGRAM

NCHRP
Synthesis 445

(Tutumluer, 2013)

Download from the TRB Website;

http://onlinepubs.trb.org/onlinepubs/
nchrp/nchrp_syn_445.pdf

:”G'-eg'gl:?.}” -
S Ve
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Best Practices: Aggregate Layers

 Equipment:
— Mixing by stationary plant e.g. pugmill / rotary mixer.

— Use mechanical spreaders to avoid segregation & achieve grade
control.

— Suitable vibratory compaction equipment.

e Mixing and Transporting:
— Plant mix aggregates and water to OMC +1% / -2%
— Transport to site avoiding segregation and loss of moisture.

e Spreading:
— Place at correct moisture & thickness by mechanical spreader.

— When thickness >13 inches, consider 500-ft long test section to
demonstrate adequate compaction without particle degradation.
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Aggregate Placement
& Compaction
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Methods to Control the Moisture Content of
Unbound Aggregate Base/Subbase Layers

Number of Responses
0 10 20 30 40

Other (Contractor - 46 survey respondents
responsibility, etc.) 13% (6) y P

Measured through field

(nuclear methods, etc.)

Sampled during

construction/compaction for _ 30% (14)

laboratory testing

moisture content

According to quarry reported F 4% (2)

0% 20% 40% 60% 80% 100%

Percentage of Survey Respondents

(NCHRP Synthesis 445 - 2013)
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Laboratory & In Situ Compaction (soft subgrade)

s~25.0 s -25.0
g (a) g (b) Ty (TYPE G) = 23.8 kN/m®
= ) , - @ - Type E (RAP) = - -
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3 &
- (]
2 B 5 & wmax) (TYPE E) = 20.1 kN/m®
8200_ 3 ;20.0__00000W/%/C.tlt.‘.llt..tl LR R
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B L ST B S » 1 T
£ > : e = Modian ean
2175+ : : -0 1751 s
= : 2
@ : ‘ T
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15.0 } } | s g : m— e | 15.0 } i
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Moisture Content, w (%) L Capping Type (First Lift)
$-25.0 € 21.0 8
£ [(d) e (TYPE G) = 238 kNm® | > (€)| [~ Dry Density. 7, Section FP-|
o e G bt [ [~ :
= RAP density insensitive to 5 (.| Moisture Content, w (%) |y o =224 kNim® [,
= . : ; R
® 225 increase in compaction energy| 32051+ & D <
2 o = © g =
a = -3 2 Ppe
2 Tyqmay (TYPE E) = 20.1 kNm* |5 N s © - g
200F==-" ——r R R . 0200__ : a 2 g )
5 5 . X 2 ~ 5 9
— ) M~ o O
= o = < & S 3
“6 1 3 1 q - g
5175 Ya § 195 S 7 S ] 4=
: £ : - :
x E ' > 7
=
15.0 : : 19.0 .::;/1::/::::/3
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(Kazmee & Tutumluer, 2015)

Number of Roller Passes
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In-Place Modulus Measurement of Constructed
Aggregate Layers

v Density is not a required input for Mechanistic-
Empirical pavement design methods

v Resilient modulus (Mg) is used as a key input

v Using My, for construction quality control may facilitate
linkage with design methods
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Methods to Determine the Resilient Modulus of
Unbound Aggregate Materials for Use in Granular
Base and Subbase Layers

ther
(Generally not sure)
In-place modulus measurement of
constructed layers by deflection-based
methods such as FWD, LWD, etc.
Empirical correlations with index
properties like CBR, gradation
parameters, etc.

Resilient modulus testing in the
laboratory

NCHRP Synthesis 445 - 2013

0%

0 10 20 30 40

L ]33% (19)

. 46 survey respondents

N e

E—T

| ]22%(10)

20% 40% 60%
Percentage of Respondents
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Moisture (Suction) Effects on Aggregate
Base Course Resilient Modulus (M)

700 Y ' Y
Repeated Load Triaxial Test Results

600

=
)
= A te B
~ 400 _ggrega e. ase _|
= - with 12% fines
o 300 | |
N major u :
S B cg=10psi |
M 200 Increase o, = 5 psi
100 |
0 . . . n _
0 2 4 6 8 10

Water Content (%)
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Different Methods for In-Situ Modulus
Measurement
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Need to Know What We Are Measuring !!

3 Area over which the
roller MV's are averaged In-situ point test measurements
X 2.1m X X X X X X

A Distance = Roller travel in approx. 0.1to 0.5 sec.

IFmpac[': F;:larce 300 mm § A Dynamic
rom Roflers LWD/FWD?* Cone
Penetrometer
Soil Stiffness _ huclear - ep)
) Gauge® Density Gauge
0.3 m spacing B J
Geophones [ ] LF
D.D T | 1 ] I/,H“‘. o
03 +- — N S A u _____ __7Z_I_ —
) BE=0.3m Aecti . i
06 +— A peflection f ______Compactionlaver ||
: Influence depth Basin ." . .
09 +——- =10tel2m Aol I Typical penetrationf
. / depth ~ 1m !
£12 +-——- \ g e L
p— -.,_1 L A .
=15 ________;1_‘H____‘£__XK ________ —___________ Extension | __|
a 1.5 m (ISSMGE 2005) up to ~ 3m Chang et al. (2011)
S84 |-
21 1 Metes: . rTmTmTmTmT T T 1
24 1 *Influence depths for LWD/PWD are assumed ~ 1 x B fwidth) | I
- bnfluence depth of soil stiffness gauge ~ 230 mm (Florida DOT , 2003}
27T 4+ “Maximum penetration depth for Muclear density gauge =03 m [ _ I
’ daccording to Method of Equivalent Thickness by Odemark [1949) 1
3_D T T T T T T =L
0 1 2 3 4 9 & 7
Width (m) .
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Need to Know What We Are Measuring !!

GeoGauge Test Number
o 1 2 3 4 5 6 7 8 9 10 11 12 13

90 | | | I | | | | I | | I 90
85 _- ® LWD Section 1 A LWD Section 2 V¥ LWD Section 3 -
i O GeoGauge Section1 /2 GeoGauge Section2 </ GeoGauge Section 3 _ 85
80 + Section Relative Compaction (%) v L
T (ASTM D698)
75‘. ; gi.; < - 80 E ConStrUCted
~ - |
s 709 | s %2 oY < =  Aggregate
2, 65 A - Layer
n J
2 60 o LA -70 8 Modulus
= e A oA A A L s
S V7 AL oA o Measure-
s . A% A - 65
50 - o o AA A %n
O 507 ot . A L 3 ment
— @]
J® .. Q
40 4 Y A v . &
- ® 0 v v |55
35 _ © E 4 A0 " _
J v
30 I | | | I I 50

T T 1 N B
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

LWD Test Number ICT R27-81 Research Project
(Mishra & Tutumluer, 2013; ict.illinois.edu)
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Modulus-Based Compaction Control

v Combine the aspects of in-place modulus
measurement and construction quality control

v Key issues to consider NCHRP Synthesis 445 (2013)
v' Measurement Depth
v Induced Stress State (In relation to Strength)
v" Proper Algorithms for Layer Modulus Estimation

v' ldeal approach (Do not rely on any one measurement!)
v" Density: Target Value + Tolerance
v Moisture Content: Target Value + Tolerance
v Layer Modulus: Target Value + Tolerance
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Development of Modulus-Based
Compaction Control Specifications

Requirements: NCHRP Project 10-84

e Should be based on field measures of the stiffness or modulus and
moisture content

« Should directly account for the seasonal variation of the modulus of
the compacted unbound aggregate

« Should be founded on a comprehensive review of the current literature

on the long-term behavior of various soils and unbound
aggregates in terms of the principles of unsaturated soil mechanics

Indiana and Georgia implement modulus-based compaction
control for demonstration projects only
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Effect of Moisture Conditions in the Field

ICT R27-81 (Mishra & Tutumluer, 2013)

® LWD-Sectionl A LWD-Section2 ¥ LWD-Section 3
O GeoGague-Section 1 A GeoGauge-Section 2 v GeoGauge-Section 3

110 : : : : : 110
| _ v _
| . R N ]
90 - | g I : ' | : @] = 90
fa'\ _ | | | . 'E“
[a W 80 - - 80 E
Ea , v A | A v i —
5 70 AV 2 M A § v v 70 E
E 1 - . . _ IR , i <
'8 ] 5 6 So | )
s 604 - S N 60 =
s . . | ©
2 50 A = . 4| 1s0 &
- A . | A . | v -
40 - ! ! ! | | - 40
v v
30 T T T v T T T T ' T Y ' v T y 30
3 4 5 6 7 8 185 19.0 19.5 20.0 20.5 21.0
Moisture Content (%) Dry Density (kN/m®)
e J|ncrease in Moisture - Decrease in Field Modulus
[ )

No clear trend in effect of dry density
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Moisture (Suction) Effects on
Field Modulus Increase
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Section ICT R27-124 Project; (Kazmee & Tutumluer, 2015)
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Variation of response as detected by
sensors Iin a roller compactor







Webinar Conclusions

e Moisture changes suction

e Suction changes resilient modulus & rutting resistance

— Therefore granular layers in pavements are sensitive to moisture
and other factors that change suction

 Tools available to measure suction and suction effects
o Better compaction occurs when suction low (near OMC)

e Density has value in providing basic mineral skeleton,
but modulus is fundamentally important and is sensitive
to suction/moisture effects.

e Assessing in-situ density or modulus by indirect methods
must acknowledge moisture/suction effects
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