Development of Design Methods for In-Stream Flow Control Structures (NCHRP 24-33)

30 August 2016

Today's Presenters

Moderator

Michael Fazio, P.E., City Engineer, Bluffdale, Utah – Former member of ASHTO Technical Committee on Hydrology and Hydraulics.

Presenter

Dr. Ali Khosronejad, New York State University at Stony Brook

NCHRP is...

A state-driven national program

- The state DOTs, through AASHTO's Standing Committee on Research...
 - Are core sponsors of NCHRP
 - Suggest research topics and select final projects
 - Help select investigators and guide their work through oversight panels

NCHRP delivers...

Practical, ready-to-use results

- Applied research aimed at state DOT practitioners
- Often become AASHTO standards, specifications, guides, manuals
- Can be directly applied across the spectrum of highway concerns: planning, design, construction, operation, maintenance, safety

A range of approaches and products

- Traditional NCHRP reports
- Syntheses of highway practice
- IDEA Program
- Domestic Scan Program
- Quick-Response Research for AASHTO
- Other products to foster implementation:
 - Research Results Digests
 - Legal Research Digests
 - Web-Only Documents and CD-ROMs

NCHRP Webinar Series

- Part of TRB's larger webinar program
- Opportunity to interact with investigators and apply research findings.

Today's First Presenter

 Development of design guidelines for instream restoration structures via highresolution numerical simulations
 Ali Khosronejad, Department of Civil Engineering, State University of New York at Stony Brook

High fidelity numerical simulation of field-scale rivers: Development of design methods for in-stream flow control structures (NCHRP 24-33)

Ali Khosronejad & Fotis Sotiropoulos
Civil Engineering Department
College of Engineering & Applied Science
State University of New York at Stony Brook

Developing design guidelines for in-stream restoration structures^{\psi}} for two common rivers:

1) **Sand-bed rivers** \rightarrow higher sinuosity and other typical characteristics

- ^ψ Stream restoration structures include:
- a) Rock-vane;
- b) J-hook;
- c) Bend Way weir;
- d) Cross-vane;
- e) Step Cross-vane;
- f) W-weir

Problem description: scour at the apex of meandering rivers

for gravel-bed rivers

VSL3D confirms ASCE's suggestion for sand-bed rivers

What criteria one need to consider for simulation-based optimization of in-stream rock structure design:

- The more bank protection provided, the better;
- The less interference to the point bar near the inner bank, the better;
- The less rock-material is needed, the better.

Let's Start with a gravel river

Q=36 m³/s Width = 27 m Mean flow depth = 0.9 m D_{50} = 3.2 cm Meander length = 3 × 328.1 m

Rock-vane: gravel river

Now that the 30° rock-vane is better but one more rock-vane is needed, where should one install the second structure?

Double 30° Rock-vanes in gravel river satisfy all design-requirements;

Let's now check an *offset* of the double 30° rock vanes in gravel river:

Let's continue with a sand river

Q=48.4 m³/s Width = 27 m Mean flow depth = 1.35 m D_{50} = 0.5 cm Meander length = 3 × 266.7 m

Rock-vane: sand river

Now that the 20° rock-vane is better but one more rock-vane is needed, where should one install the second structure?

Double 20° Rock-vanes in sand river do not satisfy all design-requirements: a third one is needed.

Where to install the *third* structure?

Triple 20° Rock-vanes in sand river satisfy all design-requirements.

Let's now check an *offset* of the triple 20° rock vanes in the sand river:

Offset is More favorable:

- ✓ Less deposition of sediment at the upstream corner of each rock vane;
- ✓ the maximum thalweg scour depth is less than non-shifted case;
- ✓ the protected length of the outer bank is extended farther upstream

Barbs: gravel river

- Five installation angles studied;
- Optimum angle is selected based on cost (material) and bank protection;
- 50° barb is selected;
- Number and spacing is optimized—see next slides.

Barbs: gravel river

Single & double 50° Barb: gravel river

Single & double 50° Barb: gravel river

Triple 50° Barb: gravel river

Triple 50° Barb: gravel river

Simulation results for flow & sediment transport in a field-scale meander with 3 Bendway weirs

Width $\sim 30 \text{ m}$ Length $\sim 1.5 \text{ km long}$ h = 0.9 m $\text{Re} > 10^6$

- Five installation angles studied;
- Optimum angle is selected based on cost (material) and bank protection;
- 50° barb is selected;
- Number and spacing is optimized—see next slides.

Two rock-vanes: Sand river

J-hook 30 degree: gravel river

G_JH30

S_WW_30

S_CV_30

S_CVK_30

Starts from deformed equilibrium bed

G_CVK_30

Phase B3:

Difference with the base-line

G_WW_30

Phase B3:

G_CV_30