Determination of In-Place Elastic Layer Modulus: Backcalculation Methodology and Procedures

Panelists
Chetana Rao, PhD. – *Rao Research and Consulting, LLC*

Moderator
Regis Carvalho, PhD. – *Oaken Consult, LLC*

Organizing Committee
TRB Committee on Pavement Structural Modeling and Evaluation
October 25, 2016
Outline

• Introduction to backcalculation
 • Tools/programs available
• Guidelines for backcalculation
 • Dealing with anomalies and unreasonable values
• Procedures adopted in the LTPP project
 • Results and lessons learned
• Backcalculated modulus in mechanistic-empirical (M-E) design
 • Use of backcalculation results in M-E rehabilitation design
• Questions and answers
Acknowledgements

Determination of In Place Elastic Layer Modulus: Backcalculation Methodology and Procedures

- Long-Term Pavement Performance Data Analysis Project DTFH61-11-C-00051
- Publication Number: FHWA-HRT-15-036
Learning Objectives

• Understand the process and the tools available to backcalculate elastic layer moduli from deflection basin data
• Describe the backcalculated layer modulus values integrated into the computed parameter tables in LTPP
• Use of backcalculated modulus in M-E design
Outline

• Introduction to backcalculation
 • Tools/programs available

• Guidelines for backcalculation
 • Dealing with anomalies and unreasonable values

• Procedures adopted in the LTPP project
 • Results and lessons learned

• Backcalculated modulus in mechanistic-empirical (M-E) design
 • Application and use of backcalculation results

• Questions and answers
Falling Weight Deflectometer (FWD) Testing

- NDT procedure
- Impact load device
 - Simulate a moving wheel load
 - Measure pavement response-deflection basin
 - Require no fixed reference
 - Relatively fast
- Several applications
 - Backcalculation of layer properties – most common
Typical Sensor Configuration & Deflection Basin

Loading Wheel Contact Area

Sensor

Deflection Basin
Typical Normalized Deflection Basin
Typical Normalized Deflection Basin—Type I
Typical Normalized Deflection Basin—Type II
Typical Normalized Deflection Basin—Type III
Deflection Testing at Different Load Levels

Linear Response

- Four drop heights
 - 6,000 lb. (378 kPa)
 - 9,000 lb. (566 kPa)
 - 12,000 lb. (755 kPa)
 - 16,000 lb. (1007 kPa)
Deflection Response
An Indicator of Material Behavior
Backcalculation Methods and Software

<table>
<thead>
<tr>
<th>Methods</th>
<th>By Pavement Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Iterative Search Methods</td>
<td>• Flexible pavements</td>
</tr>
<tr>
<td>• Database Search Methods</td>
<td>• EVERCALC, MODCOMP/MODTAG, MODULUS, ELMOD, and others</td>
</tr>
<tr>
<td>• Equivalent Thickness Methods</td>
<td>• Rigid pavements</td>
</tr>
<tr>
<td>• Forward Calculation Methods/Closed form solutions</td>
<td>• Best-fit method, Area Method, EVERCALC, etc</td>
</tr>
<tr>
<td>• Other/Evolving</td>
<td></td>
</tr>
</tbody>
</table>
Simulation of Structure for Backcalculation

Mapping Layers

- **EVERCALC** – 5 layers
- **MODTAG** – 7 layers
- **MODULUS** – 4 layers
Selection of Backcalculation Program

Depends on User’s Needs

- Underlying theory (same as that used in design procedure?)
- Number of layers permitted in the analyses
- Convergence criterion
 - RMSE, absolute error, error term accounting for specific sensors
- Accuracy of the program
- Operational characteristics
- Ease of use of the program
- Stability of the program
LTPP Data Analyses Project
Hypotheses & Findings

• Hypotheses:
 • Backcalculation packages result in the same set of elastic layer modulus values.
 • Backcalculated elastic layer modulus values are correlated to but have a bias related to laboratory measured modulus values.

• Findings:
 • For deflection basins consistent with elastic layer theory:
 • Hypotheses accepted.
 • For deflection basins diverging from elastic layer theory:
 • Hypotheses rejected.
Findings

Programs resulted in similar elastic layer modulus values for many case study sites.
Outline

• Introduction to backcalculation
 • Tools/programs available

• Guidelines for backcalculation
 • Dealing with anomalies and unreasonable values

• Procedures adopted in the LTPP project
 • Results and lessons learned

• Backcalculated modulus in mechanistic-empirical (M-E) design
 • Application and use of backcalculation results

• Questions and answers
Backcalculation of E Values

In place elastic layer moduli from deflection basins for forensic investigations or rehabilitation design.

1. **Limited to a specific number of layers:**
 a) Structure simulation is important.
 b) Results are a composite E value for individual layers.

2. **Most procedures, based on elastic layer theory:**
 a) E values do not vary vertically or horizontally for an individual layer.
 b) Layer is intact and continuous in the horizontal plane.

Reality versus Simulation?
Backcalculation Challenges

Assessment of Results, Categories:
• Errors between measured & calculated values.
• Compensating adjacent layer E-values.
• Inappropriate E-values.

Overcoming the Issues:
• First – try to identify what is causing the issue.
• Do not make random changes to structure.

How does one know that the results are good/poor?
How does one identify the cause of bad results?
Assessment of Results

Error Term

Error between the measured and calculated deflection basins.

1. Absolute error per sensor—MODULUS.
2. Root mean squared error—EVERCALC, MODCOMP

Make error as small as possible. (RMSE<5%)

RMSE = 0.4%

RMSE = 2.1%

RMSE = 7.6%

RMSE = 4.2%
Assessment of Results

RMSE

- Error between the measured and calculated deflection basins
- BUT:

 - Low RMSE—does not mean you have accurate values for in place layers.
 - High RMSE—does not mean you have inaccurate values for the in place layers.

RMSE is not an indicator of accuracy in backcalculation!
Assessment of Results

Compensating Layer

Compensating adjacent layer E values

1. Layer E is inversely proportional to an adjacent layer E value.

2. The resulting E values for adjacent layer can be:
 a) Independent of one another.
 b) Proportional to one another.

![Graph showing relationship between Layer 4 and Layer 3](image)

Layer 4 is inversely proportional to Layer 3

![Graph showing relationship between Layer 2 and Layer 1](image)

Layer 2 is independent of Layer 1
Assessment of Results

Inappropriate E Values for a Material

- **HMA**
 - Thick. = 6 in.; $E = 878,000$ psi

- **Aggregate Base**
 - Thick. = 12 in.; $E = 215,343$ psi

- **Embankment**
 - Thick. = 24 in.; $E = 48,655$ psi

- **Subgrade**
 - Thick. = Inf.; $E = 33,359$ psi
Assessment of Results

Inappropriate E Values for a Material

- BUT, for unbound layers:
 - E decreases as layer becomes wetter; near saturation E values can be low.
 - E increases as layer becomes drier; for some materials/soils layer can respond as a bound layer.

Try to find out why the E values are inappropriate before not using them.
Overcoming Backcalculation Issues

The more information you have, the fewer backcalculation challenges you have.

In other words:

Bad assumptions in → Invalid values out!

or

Garbage in → Garbage out!
Overcoming Backcalculation Issues

Quantify or understand the issue:

- Scattered across the entire project length?
- Common to a specific site feature?
- Confined to specific areas of the project?
Types of Errors or Issues

• Input Errors
• Measurement Issues
• Simulation Issues
 • No discontinuities
 • Homogeneous layers
 • Uniform contact pressures under the loading plate
Types of Errors or Issues

Input Errors

Typos (sometime blunders) in selected inputs

- Layer Thickness
- Sensor spacing
- Plate size
- Units
Types of Errors or Issues

Measurement Errors

- Sensor spacing relative to layer structure
- FWD Calibration Issues
- Condition of Surface
 - Loose surface material
 - Cracks, discontinuities
 - Severe distortions
Types of Errors or Issues

Errors in Simulation of Structures

- Combining “like” layers, that may not be “like” layers.
- Number of layers
- Variability of layer thickness

- Thin layers
- Rigid layers
- Stripping
- Voids
- Water table depth
Identify Error or Issue

• When issues are identified, what should be done?
• Do the easier steps first:
• Review and check inputs to make sure they are correct – Check for Blunders.
Identify Error or Issue

Evaluate Basins

- Evaluate basins to determine applicability to elastic layered solutions for backcalculation.
Identify Error or Issue

Check Sensor Spacing

• Make sure sensor spacing inputs match what was used to collect deflection basin data.
Identify Error or Issue

Surface Condition

- Cracks
- Loose material, raveling
- Severe distortions

Notes on surface condition during FWD testing can prove very valuable!
Identify Error or Issue

Structural Layer Information

- Good quality pavement structural layer information.
- Ensure sufficient destructive tests to define layer thicknesses and subsurface features.

Drill cores & borings in areas with significantly different basin shapes.
Identify Error or Issue

Layer Insensitive to Load

- Thin layers under thicker layers.
- Change in modulus values have little effect on the deflection basin.

Assume a typical E value for the layer or combine with a “like” adjacent layer.

Thin layer?
Identify Error or Issue

Subsurface Features

- Stripping in HMA mixtures between layers.
- “Like” unbound layers with opposite stress sensitivity.
Identify Error or Issue

Subsurface Features

• Loss of bond or horizontal cracks near surface.
• Vertical cracks below surface.
Thickness variations & subsurface features: bedrock, high water table, etc.
Outline

• Introduction to backcalculation
 • Tools/programs available

• Guidelines for backcalculation
 • Dealing with anomalies and unreasonable values

• Procedures adopted in the LTPP project
 • Results and lessons learned

• Backcalculated modulus in mechanistic-empirical (M-E) design
 • Application and use of backcalculation results

• Questions and answers
LTPP FWD Test Plan for Flexible Pavement

- 4 Drop Heights (6, 9, 12, and 16 kips)
- No. of drops = 4 per drop height
- Total Drops per test point = 16
LTPP FWD Test Plan for Rigid Pavement

- 3 Drop Heights (9, 12, and 16 kips)
- No. of drops = 4 per drop height
- Total Drops per test point = 12
LTPP FWD Deflection Test Data

A Snapshot

- **Number of sections**
 - 1,744 HMA surface + 1,008 PCC surface
 - 381 sections under HMA and PCC
 - 3,133 unique sections in all States

- **Automate** 97 percent deflection basins fell under Type 2/Typical categories

- **Requirements**
 - Automated backcalculation procedure
 - Less dependency on user
 - Recreate the results by others not involved in the development process

- **Backcalculation Procedures**
 - EVERCALC
 - MODTAG (MODCOMP)
 - Best Fit for all RIGID Sections

5,847,770 deflection basins (typical and type 2)
Definition of Error Status
Based on RMSE and Backcalculated E Value

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Acceptable</th>
<th>Atypical</th>
<th>Error or Unacceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>≤3.0</td>
<td>≤3.0</td>
<td>>3.0</td>
</tr>
<tr>
<td>and</td>
<td>and</td>
<td>and</td>
<td>or</td>
</tr>
<tr>
<td>Modulus value (by material type)</td>
<td>Within Acceptable range limits</td>
<td>Outside acceptable but within atypical limits</td>
<td>Outside Atypical range limits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acceptable</th>
<th>Atypical</th>
<th>Error</th>
</tr>
</thead>
</table>

46
Automated Backcalculation Process

- Makes process less dependent on the users
- Users can use the tools and procedures to recreate the results.
Preprocess Data

- Issues with sensor or deflection data
- ModTag/Program Slic
- Deflection basin characterization
 - Unacceptable - Type I & Type III
 - Acceptable – Type II or Typical
- Load response characterization – post processing of backcalculation results
 - Deflection hardening
 - Deflection softening
 - Elastic/linear elastic
Decision Tree

1. Extract & assemble data
2. Preprocess data
3. Apply rules of simulation
4. Execute BC – program
5. Apply error evaluation criteria
6. Resolve/flag inappropriate results
7. Enter into CPT

Analyses performed by State to optimize computational needs
Computed Parameter Tables

LTPP Database

Layer Structure Information

1. Section Information
2. Structures, EVERCALC
3. Structures, BEST FIT

Backcalculated Modulus Values

<table>
<thead>
<tr>
<th></th>
<th>Individual Basins</th>
<th>Summary for Test Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elastic layer moduli from EVERCALC/MODCOMP</td>
<td>Elastic layer moduli from EVERCALC/MODCOMP</td>
</tr>
<tr>
<td>2.</td>
<td>Elastic layer moduli from BEST FIT</td>
<td>Elastic layer moduli from BEST FIT</td>
</tr>
<tr>
<td>3.</td>
<td>Load transfer efficiency from BEST FIT</td>
<td>Load transfer efficiency from BEST FIT</td>
</tr>
</tbody>
</table>

All results included in CPTs

Only results defined as acceptable and atypical included in CPTs
Findings

• 97 percent of LTPP deflection data – good to use in backcalculation
• Over 76 percent of deflection basins resulted in elastic layer moduli considered acceptable or atypical
• Deflection testing provides valuable information & data
• Use of 4 drop heights not necessary for rehabilitation designs.

<table>
<thead>
<tr>
<th>Result</th>
<th>Total Number of Drops</th>
<th>Percent of Total Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drops</td>
<td>5,662,494</td>
<td>100</td>
</tr>
<tr>
<td>Unacceptable Results</td>
<td>1,350,680</td>
<td>23.9</td>
</tr>
<tr>
<td>Atypical Results</td>
<td>2,494,628</td>
<td>44.1</td>
</tr>
<tr>
<td>Acceptable Results</td>
<td>1,817,186</td>
<td>32.1</td>
</tr>
<tr>
<td>Total Acceptable & Atypical</td>
<td>4,311,814</td>
<td>76.1</td>
</tr>
</tbody>
</table>
Outline

- Introduction to backcalculation
 - Tools/programs available
- Guidelines for backcalculation
 - Dealing with anomalies and unreasonable values
- Procedures adopted in the LTPP project
 - Results and lessons learned
- Backcalculated modulus in mechanistic-empirical (M-E) design
 - Application and use of backcalculation results
- Questions and answers
Application and Use

• Use of backcalculated data for rehabilitation design
 • Location for sampling.
 • Layer E values.
 • In place damage.
 • Schedule rehabilitation or preservation.
 • Load transfer efficiency.
Location for Destructive Sampling

- Strategically identify areas with different pavement responses and stiffness.

Allows better assumptions for simulation and identify anomalies.
Layer E Values as Inputs to Design

Stress sensitivity effect is low compared to water content.
Layer E Values as Inputs to Design

Controversy and debate over appropriateness of the c-factor. Depends on calibration of transfer function.
Layer E Values as Inputs to Design

Ratio between lab measured resilient modulus and backcalculated elastic modulus values for subgrade soils.

\[C = \frac{M_{R-Lab}}{E_{FWD}} \]

<table>
<thead>
<tr>
<th>Backcalculation Program</th>
<th>Average c-Factor</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evercalc</td>
<td>0.35</td>
<td>0.136</td>
</tr>
<tr>
<td>Modcomp</td>
<td>0.36</td>
<td>0.146</td>
</tr>
<tr>
<td>Modulus</td>
<td>0.41</td>
<td>0.266</td>
</tr>
</tbody>
</table>
In Place Damage Assessment

Within and between wheel path test locations can be different, probably related to the in place damage.

Result: if combined, it increases variability in modulus.
AC Damage Assessment

None to little damage

Very high damage

Damage present

Damage present
AC Damage Assessment

In-Place damage for Rehabilitation Design

Using backcalculated modulus data to estimate in-place damage for rehabilitation design.

![Dynamic modulus input level table](image)

![Modulus of existing AC layer obtained from NDT testing table](image)
AC Damage Assessment

In-Place damage for rehabilitation design

\[\log(d_{AC}) = 0.2 \times \left[\ln \left(\frac{E_{PRED} - E_{FWD}}{E_{FWD} - 10^\delta} \right) + 0.3 \right] \]

\[E_{PRED} = \text{Laboratory dynamic modulus} \]

<table>
<thead>
<tr>
<th>NDT Modulus (psi)</th>
<th>Frequency (Hz)</th>
<th>Temperature (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>885000</td>
<td>30</td>
<td>79</td>
</tr>
<tr>
<td>652000</td>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>459000</td>
<td>30</td>
<td>96</td>
</tr>
</tbody>
</table>
AC Damage Assessment

In place damage related to the amount of fatigue cracking for estimating the coefficients of the fatigue cracking transfer function.

$$DI_{E-ratio} = 1 - \frac{E_{FWD}}{E_{Undamaged}}$$
AC Damage Assessment

In-Place damage for rehabilitation design

![Graph showing damage assessment criteria](image)
Load Transfer Efficiency for Rehabilitation Design

- Differential deflections across cracks in flexible and semi-rigid pavements is the more critical mechanism for cracking predictions for HMA overlay design.
Load Transfer Efficiency for Rehabilitation Design

Differential deflections across cracks in flexible and semi-rigid pavements for cracking predictions.

Result: allows better assumptions for reflection cracking predictions.
Questions and Answers

Comments & suggestions for future webinars are welcomed.

Contact Information

Regis Carvalho
(301) 502-3842
rcarvalho@oakenconsult.com

Chetana Rao
(217) 369-6865
crao@raorc.com

Harold Von Quintus
(512) 694-1511
hvonquintus@ara.com