Use of Performance Specifications for Asphalt Mixtures
Goal:
Identify state-of-the-practice strategies used by DOTs, Canadian MOTs, and other agencies on:

1. Effectively implement performance specifications & performance testing for asphalt mixtures

2. Performance tests used with volumetric properties for specifying both traditional and nontraditional plant-produced asphalt mixtures

3. Use of performance tests in asphalt QA procedures
Overarching Research Objectives

- Project selection criteria?
 - How were performance specifications developed?
 - Which criteria used in specs?
 - Who does testing? Internal or external?
- Equipment availability?
 - Performance testing time?
 - Were the benefits of testing worth the cost?

On-going research and needs?
Project Approach

- **Major Tasks:**
 1. Review current practices by all states re: development of asphalt mixtures, **with a focus on performance-based specifications (PBS)**
 2. Survey all state and provincial DOTs & identified 10 states & 1 local agency for further study
 3. Interview DOT, local agency, and industry staff for input to develop the 7 case examples
 4. Conduct detailed phone interviews to obtain specific details.
Definitions in Project Scope

Performance Based Specifications:
- Describe desired levels of fundamental engineering properties, to predict performance and used in distress models

Performance Related Specifications:
- Describe desired levels of key materials and construction quality characteristics to correlate with fundamental engineering properties that predict performance, amenable to acceptance testing at the time of construction
Data Collection

- Survey with 40 questions sent to AASHTO RAC members
- Forwarded to Materials Engineers
- 45 / 50 states responded
- Responses from Wash. DC, 2 counties, 1 city
- Responses from 10 provinces
Canadian Survey Respondents

- City of Edmonton

Map showing respondents in various Canadian provinces and territories.
Objectives of Performance Specs for Asphalt Mixes:
- Increased pavement durability
- Reduced maintenance
- Better resistance to common pavement distresses

Integration of Recycled Asphalt Materials is Common
- DOT approaches to mix design and qualification altered
- Performance tests integrated for standard and alternative mixture designs to improve pavement performance
Many agencies implementing PBS
- Use of one or more performance tests
- Researching use of PBS for improved durability through mostly cracking or rutting resistance

Use of PBS as a standard practice only in few states
- Large number of research projects currently underway to address performance testing for mix design and construction acceptance
- Development of advanced mechanistic PBS system, including ME pavement design models
Most-frequently reported challenges of moving towards PBS for design and acceptance of asphalt mixtures (out of 43 DOTs)

- Cost of equipment: 57%
- Cost of testing services (consultant labs): 57%
- Lack of familiarity in paving industry: 42%
- Insufficient info on how to successfully implement PBS: 68%
- Lack of training: 48%
Agencies Interviewed & Case Examples

Criteria for Case Examples included:

- Geographic distribution to include range of climates and paving program sizes
- Advancements in study of benefits & challenges of performance testing and performance specifications
Consistent Themes from Case Examples

- **Performance testing protocols incorporated into DOT/City standard specs**
 - Primarily Hamburg, APA, and TSR tests
 - Resistance to rutting and moisture damage

- **Cracking tests are of research interest**
 - Use of RAP, RAS, rubber & reduced AC content mixes... prone to premature cracking
 - Primarily BBR, SCB, and overlay test
Leading Efforts for PBS

- Case Example agencies incorporating performance testing for production acceptance
 - Primarily HWTD used for acceptance of produced mix in standard specifications
 - Pavement ME Design concepts and use of AMPT for $|E^*|$ and Flow Number — future of performance-based mix designs
City of Edmonton (Alberta)

Highlights

- **Use of PBS**: APA run on contractor’s design mixes for approval and plant mixes for acceptance
 - Also, using performance-based properties for qualification, project QC, and acceptance testing
- **Field Monitoring**: 70 asphalt & concrete pavement test sections in city monitored annually. All mixes tested first in lab with APA, flex beam fatigue test, and TSR
- **Cost-Benefit study**: Assessing relative costs-benefits of performance testing & basis of pay factors used for flexible pavements
Study conducted by C. Monismith et al. on I-710 Freeway Rehabilitation Pavement Performance

- Created new approach to define performance requirements for asphalt mixes, tack coat use, and compaction requirements
- Lessons learned were captured from Caltrans staff
- FWD testing and CalME analysis done to support revisions of the spec mix performance parameters incorporated in Special Provisions
Use of Performance Tests

- Loaded Wheel Tester (LWT) used in asphalt plant and semi-circular beam (SCB) test used for mixture design
- Plans to add SCB test of roadway samples as acceptance criteria, part of a PBS

Specification Development Underway

- Use Contractor QC tests for acceptance
- Test values related to mixture stripping and rutting for establishing PBS using LWT; SCB test for fatigue cracking potential
Overall Briefing of Findings

- 80% of DOTs require use of performance tests for moisture damage prediction prior to production
- 27% of DOTs use performance specs for mixture acceptance and pay adjustments
- APA and Hamburg WTD most common for PBS
- 30% of DOTs: Test Time and Cost are deciding factors in implementation of PBS
- Few agencies: currently assessing costs & benefits of PBS
Future Research Opportunities

Lack of...

1. Practical and cost-effective performance tests that truly reflect field performance of asphalt mixtures
2. Technology transfer for industry and agencies
3. Guidance and facilitation for implementing PBS
4. Consistency in terms related to performance specs
5. Consistency in definition of mixture types
6. Information on international efforts related to PBS
Moving Forward

• Must balance competing outcomes of time, cost, & quality.
• Industry & agencies must partner!

Data Collection
• Appropriate and effective predictive models
• Optimization of pavement designs / LCCA
• Reduce sampling & prep time & test complexity

Periodic review of effectiveness of performance specs

Identify Performance Metrics

Quantify costs & benefits
• Use of PPP, warranty, & DB hybrids offer opportunity for review
Leslie McCarthy - Contact Info

Associate Professor
Department of Civil & Environmental Engineering
Villanova University

- Email: leslie.mccarthy@villanova.edu
- Phone: 610-519-7917

Sidney Scott III - Contact Info

Hill International, Inc.

- Email: sidscott@hillintl.com
- Phone: 215-309-7856
Development & Implementation of Low Temperature Cracking Performance Specifications in Minnesota

Eshan V. Dave, Ph.D.
University of New Hampshire
30th March 2017
Overview

- Introduction: Performance-based Specifications
- Fracture Energy as Performance Measure
- MnDOT Performance Specifications
 - Regional Validation
 - Pilot Implementation
 - Sensitivity of Fracture Energy to Thermal Cracking Performance
 - Specification Refinement Efforts
 - Round Robin Testing
- Summary & Conclusion
Field Cracking and Volumetric Measures

- 26 Pavement Sections
- Field Cracking Rates

![Graphs showing the relationship between TCTotal and AC Th., Voids in Mineral Aggregate, and Recycled Asphalt Content, ABR.](image-url)
Balanced Mix Design: ETG Definition

- Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure.

Performance Pendulum (Shane Buchanan, Oldcastle)
Overview

- Cracking performance tests are becoming mature
- Performance related/based specifications are being developed
- Fracture testing based cracking tests are starting to get adopted
 - Disk-shaped Compact Tension (DCT)
 - Semi-circular Bend (SCB)
 - Indirect Tension
Fracture Tests in Performance Based Specifications (select examples)

- Semi-Circular Bend (SCB)
 - LA Version Intermediate Temperature → Louisiana DOTD
 - Wisconsin for High RAM Projects (2014 and 2015)
 - IL and MN Version at Intermediate Temperature:
 - Illinois in pilot implementation stages: Combination of Hamburg Wheel Tracking Test and SCB Flexibility Index (I-FIT)

- Disk-shaped Compact Tension (DCT)
 - City of Chicago
 - Illinois Tollways
 - Wisconsin for High RAM Projects (2014 and 2015)
 - Minnesota Department of Transportation → Discussed here
Disk-Shaped Compact Tension (DCT) Test

- **ASTM D7313-13**
- **Loading Rate:**
 - Crack Mouth Opening Displacement
 - CMOD Rate = 1.0 mm/min
- **Measurements:**
 - CMOD
 - Load
Fracture Parameters

Fracture work: Area under Load-Displacement curve

Fracture Energy, G_f: Energy required to create unit fracture surface
$G_f = \frac{\text{Fracture Work}, S_f}{\text{Fracture Area}}$

Flexibility Index, FI: $FI = \frac{G_f}{m}$
Specimen Preparations

Gyratory Specimen

50 mm (2 inch) Disk

Core loading holes

Notched

DCT
Low Temperature Cracking Pooled Fund Study

- Primary Distress: Thermal cracking
- Minnesota (Lead State), Connecticut, Iowa, Illinois, New York, North Dakota, Wisconsin
- PI: Prof. Mihai Marasteanu
 - Extensive evaluation of performance tests (binder and mixtures)
 - SCB and DCT fracture energy tests evaluated for nine pavement sections
 - 4 and 7% air void level, short term and long term aging conditions
 - Outcome: Performance specifications with limited validation through five field sections
Fracture Energy as Performance Measure: Results from Various Studies (~ 50 sections)
Pooled Fund Study LTC Performance Specifications

- Based on traffic levels
- Limits based on:
 - Fracture energy test @ 10°C above 98% reliability Superpave Low Temperature PG (PGLT)
 - Low temperature cracking performance model (*IlliTC*)

<table>
<thead>
<tr>
<th>Limits</th>
<th>Project Criticality / Traffic Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High (> 30M ESALs)</td>
</tr>
<tr>
<td>DCT Fracture Energy (J/m²)</td>
<td>690</td>
</tr>
<tr>
<td>IlliTC Cracking Prediction (m/km)</td>
<td>< 4</td>
</tr>
</tbody>
</table>
MnDOT Implementation of Performance Specification

1. Regional Validation of Performance Specifications (2011-2016)

2. Pilot Implementation (2013)

4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

Communications and Training
MnDOT Implementation of Performance Specification

1. Regional Validation of Performance Specifications (2011-2016)
2. Pilot Implementation (2013)
4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

Implementation of Performance-based Specification (MnDOT)

Communications and Training
Minnesota Regional Validation Studies (2011 – 2015)

- 18 sites and 26 sections
 - **Companion sections**
- 2004 – 2013 construction years
- Captures different binder grades and aggregates in Minnesota
- Different construction types: New construction, overlay, and full-depth reclamation
- Different design traffic levels
Local Validation Example:
Field Cracking Performance vs. Fracture Energy

- Fracture Energy vs. Percent Cracking
- Years in Service vs. Percent Cracking
- Fracture Energy vs. TCTotal

Graphs showing the relationship between fracture energy and percent cracking over years in service.
Implementation of Performance Specification

1. Regional Validation of Performance Specifications (2011-2016)

2. Pilot Implementation (2013)

4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

Communications and Training
Pilot Implementation (2013)

- Pilot Implementation on 5 projects
 - Contractor provide samples at mix design
 - TSR pucks, 7% AV, +/- 0.5%
 - DCT tests are conducted
 - If mix passes, approve for paving
 - Passing value of $G_f > 400 \text{ J/m}^2$
 - If mix fails, adjust mix & try again
 - MnDOT paid for difference in cost (D-I funds)
 - Adjusted mix was used for paving a section of project
 - Testing is also conducted on production mixes
Determine Sensitivity of Thermal Cracking to Fracture Energy

- **Objective:** Determine the allowable variability in fracture energy for purposes of job specification
 - Req. fracture energy = 400 J/m² (if actual is 375 J/m² is it too low?)

- **Approach:**
 - Simulate different combinations of climates, mixes, pavement structures with different fracture energies using *IlliTC*

<table>
<thead>
<tr>
<th>Asphalt Mix</th>
<th>PG28R</th>
<th>PG28R</th>
<th>PG34R</th>
<th>PG34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture Energies Corresponding to Thermal Cracking Performance Levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Damage (ND)</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>≥425</td>
</tr>
<tr>
<td>Damaged (D)</td>
<td>450</td>
<td>425-450</td>
<td>375-450</td>
<td>300-375</td>
</tr>
<tr>
<td>Cracked (C)</td>
<td>≤425</td>
<td>≤400</td>
<td>≤350</td>
<td>No data</td>
</tr>
</tbody>
</table>

Variation of fracture energy by 25 J/m² might be sufficient in changing the thermal cracking performance of the pavement.
Implementation of Performance Specification

1. Regional Validation of Performance Specifications (2011-2016)
2. Pilot Implementation (2013)
4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

Communications and Training
Specification Refinement

- **GOAL:** Improve ease, practicality and repeatability of test procedure
- Research was needed to increase ease and practicality of DCT testing
 - *ASTM D7313-13 requires DCT specimens to be conditioned between 8-16 hours at test temperature before testing begins.*
- Extensive evaluation of temperature conditioning procedures was conducted to investigate different temperature conditioning scenarios
Temperature Conditioning Study: Sample Results

Fracture Energy J/m²

<table>
<thead>
<tr>
<th>Condition</th>
<th>Fracture Energy J/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Room Temp. to Test Temp.</td>
<td>350 ± 10</td>
</tr>
<tr>
<td>Ramp (0.33 °C/min)</td>
<td>370 ± 15</td>
</tr>
<tr>
<td>9 hr. Soak</td>
<td>380 ± 20</td>
</tr>
</tbody>
</table>

Ambient Room Temp. to Test Temp. (1.0 hr)

Ramp (0.33 °C/min)

9 hr. Soak
Specification Refinement

- Several changes/additions to ASTM specification
 - “MnDOT Modified” version

- Temperature Conditioning Study Final Results
 - Specimens must reach test temperature in no faster than 0.75 hours, but within 1.5 hours.
 - Specimens must stay in conditioning chamber for a minimum of 2 hours before testing.
 - All testing must be finished within 6 hours of initial placement into conditioning chamber
DCT Specifications: Inter-laboratory “Round Robin” Comparison Study

- Loose mix sampled from 16 projects
- Participating labs include:
 - American Engineering Testing
 - Braun Intertec
 - MnDOT OMRR
 - UMD/UNH
 - 4 specimens/project tested by each lab
- Gyratory specimens compacted by MnDOT
Preliminary Interlab Comparison Study

- Field sampled material (I-94)
 - SPWEA540E, PG 64-28
- Samples tested at MnDOT and UMD
- Interlab differences:
 - Fracture Energy: 2.4–8.1%
 - Peak Load: 0.7–4.6%
Effects of Specimen Preparation and Sampling on Fracture Energy

- **Issue:** Change in fracture energy between mix design samples and production samples
- **Samples collected from 11 locations across MN**
- **Sample Types:**
 - At mix design (provided by contractor)
 - Loose mix collected during production
 - 4 cylinders re-heated and compacted by MnDOT
 - 4 specimens compacted on site by contractor
 - Loose mix collection site marked. Field cores taken 1-2 days after initial collection.
Table DCT-1

Minimum Average Fracture Energy Mixture
Design Requirements for Wearing Course*

<table>
<thead>
<tr>
<th>Traffic Level</th>
<th>Fracture Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Level 2-3/PG XX-34</td>
<td>450 J/m²</td>
</tr>
<tr>
<td>Traffic Level 4-5/PGXX-34</td>
<td>500 J/m²</td>
</tr>
</tbody>
</table>

Table 2360-9

Allowable Differences between Contractor and Department Test Results*

<table>
<thead>
<tr>
<th>Item</th>
<th>Allowable Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCT - Fracture Energy (J/m²)</td>
<td>90</td>
</tr>
</tbody>
</table>

*Test a minimum of six (6) DCT test specimens according to ASTM D7313-13 MnDOT Modified revision dated September 1, 2015 to determine the average fracture energy of the submitted mix design (see MnDOT Modified for requirements of when greater than 6 specimens are to be tested).
Implementation of Performance Specification

1. Regional Validation of Performance Specifications (2011-2016)
 - Communications and Training

2. Pilot Implementation (2013)

4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-16)

Summary

- With current evolution of asphalt mixtures (additives, recycling, production technologies) volumetric measures are no longer sufficient for controlling performance.

- Fracture energy based performance tests (DCT, SCB) have shown very promising results.

- Use of these tests in performance based specifications (as well as or balanced mix designs) are starting to become popular.

- Implementation of performance test requires strong partnerships (agency, industry and researchers).

- MnDOT specification development: local validation, specification refinement, round-robin testing, training and communications.
Currently Ongoing Efforts

- Minnesota DOT:
 - Continued training and adoption
 - Extending DCT specifications to address reflective cracking in asphalt overlays

- National Level:
 - Pooled Fund Study (NCAT, MnROAD partnership)
 - Several agencies are working on adoption efforts (Illinois, Missouri, Washington, Wisconsin etc.)
 - NCHRP 09-57 succession study

- Lot of work is going on, stay tuned!
NJDOT EXPERIENCE WITH ASPHALT MIXTURE PERFORMANCE

Robert Blight
Supervising Engineer, NJDOT Pavement Design & Technology Section
ACKNOWLEDGEMENTS

- Thomas Bennert, Ph.D., Rutgers University-CAIT
- Eileen Sheehy, NJDOT retired
- Robert Sauber, RWS Consulting, LLC (NJDOT retired)
- Frank Fee, NuStar retired
- Susan Gresavage, NJDOT
- Phil Bertucci, NJDOT
- Narinder Kohli, NJDOT
- Vasudevan Ganarajan, NJDOT
• Performance tests NJDOT is using for asphalt mixture testing

• NJDOT asphalt mixtures with performance test requirements, limits

• Relative comparison of NJDOT asphalt mixtures using lab performance test data

• Field performance of NJDOT asphalt mixtures

• NJDOT future with asphalt mixture performance specifications
HOW DO WE DEFINE PERFORMANCE?

The manner in which or the efficiency with which something reacts or fulfills its intended purpose.

- Webster College Dictionary
WHY ADD ASPHALT MIXTURE PERFORMANCE TESTING?

• Heavy traffic
 • Increase in truck freight with upgrade of Port Terminals and Panama Canal upgrades

• Severe Weather
 • High frequency of freeze/thaw

• Diverse Geology
• 50-60% of NJDOT roadways poorly performing composite

• Durability, cracking, longitudinal joint, and raveling issues
WHY ADD ASPHALT MIXTURE PERFORMANCE TESTING?

• “SuperPave” mix design methodology resulted in dry mixtures lacking in adequate asphalt liquid binder

• AASHTO 1993 Pavement Designs for overlays not feasible
 • Excessive increase in profile
 • Many geometric/environmental constraints
 • Design life not being met

• Continually changing waste products in asphalt mixes
 • Base asphalt, RAP/RAS, REOB, additives
WHY ADD ASPHALT MIXTURE PERFORMANCE TESTING?

- Volumetric mixture design ≠ good performance
- Need End Result Performance Related Specifications
- NEED “BALANCED” ASPHALT MIXTURES
 - RUT RESISTANCE, FATIGUE RESISTANCE, REFLECTIVE CRACK RESISTANCE
 - PERFORMANCE CRITERIA SPECIFIED FOR MIX TYPE, LOCATION IN PAVEMENT, & PAVEMENT TYPE
• Asphalt Pavement Analyzer (AASHTO T 340)
• Overlay Test or Texas Overlay Tester (NJDOT Test Method B-10)
• Flexural Beam Fatigue (AASHTO T 321)
ASPHALT PAVEMENT ANALYZER

- Check Permanent Deformation via APA Rutting Test (AASHTO T 340)
- Samples compacted in gyratory (AASHTO T 312) to 77 mm height and specified air voids
- 100 lbs. wheel load, 100 PSI hose pressure
- Test @ 64°C (148°F) for 8,000 cycles, 60 cycles per minute
- APA Rutting must be less than \(X\) mm to pass
OVERLAY TESTER

• Check Crack Resistance via Overlay Tester (NJDOT B-10)
• Samples compacted in gyratory (AASHTO T 312) to 115 mm height and specified air voids
• 6” diameter sample is trimmed to 6” length by 3” wide by 1.5” thick
• Loading: Continuously triangular displacement 5 sec loading and 5 sec unloading

• Test at 25°C (77°F) and a joint opening of 0.025 inch until failure
 • Failure is defined as discontinuity in load vs. displacement curve

• OT cycles to failure must be greater than _Y_ cycles to pass
FLEXURAL BEAM FATIGUE

• Check fatigue life by repeated flexural bending (AASHTO T 321)
• Compact in Asphalt Vibratory Compactor (AVC) and then trim to 380mm length x 50mm thick x 63mm wide
• Sample tested in four point bending device at 15°C and 10 Hz loading frequency at specified strain level
• Cycles to failure must be greater than __ cycles to pass
NJDOT ASPHALT MIXTURES WITH PERFORMANCE TESTS
1. Perform volumetric design and NJDOT verification
2. Supply lab (Rutgers/NJDOT HQ Lab) prepared gyratory and bucket samples for performance testing
3. Produce mix through plant, provide samples for testing and pave test strip off site (skip step if previously approved mix)
4. Sample & test 1st Lot (test strip on project site) and every other lot during production for performance testing
HIGH PERFORMANCE THIN OVERLAY (HPTO)

• Main Purpose – used as a rut-resistant and durable thin lift mix for maintenance/pavement preservation
 • Superior leveling course
 • Overlay for bridge decks
 • Superior surface course for inlays
 • Composite pavement
• Appropriate on high or low volume roads

Direct Overlay – No Milling
HIGH PERFORMANCE THIN OVERLAY (HPTO)

- 4.75mm Superpave + APA Rut Test + Overlay Crack Test
- 7.4% min PG 76-22 (PG 64E-22) or other polymer modified binder
- 3.5% Air Voids at 50 Gyrations
- 1-7% mat voids
- 1” +/- Lift Thickness
- Steel roller in static mode
- APA Rut < 4mm (5mm) at 8000 cycles
- Overlay Test > 600 cycles
HIGH PERFORMANCE THIN OVERLAY (HPTO)

- Improves ride quality
 - 70% improvement on some projects
- Seals out water
- Renew road surface
- Quick open to traffic
- Minimal RAP on Preservation
 - Lift thickness 1" typically
- Placed with a Conventional Paver or spray paver
- Bond is critical!!
BRIDGE DECK WATERPROOF SURFACE COURSE (BDWSC)

- Main Purpose – Waterproof asphalt overlay for older bridge deck structures
 - Must be capable of compaction with **no vibratory rolling (static only)**
 - Must be rut resistant and crack resistant
 - Produced and placed using conventional equipment and practices
 - Volumetric design such that the asphalt mix is **impermeable**
BRIDGE DECK WATERPROOF SURFACE COURSE (BDWSC)

• 9.5mm Superpave + APA Rut Test + Flexural Beam Fatigue Test
• Polymer modified asphalt binder specially formulated to meet mix performance criteria
• 1% Air Voids at 50 Gyrations
 • Low permeability!
• 1.5” to 2.5” Lift Thickness
• APA Rut < 3mm at 8000 cycles (mix design)
• Flexural Fatigue > 100,000 cycles @ 1500 µ-strains
Main Purpose – base course mixture designed specifically to meet the flexural needs of a perpetual pavement (site specific – Rt. 295 Rubblization)

- 19 mm Superpave Base Course mix with 5% min. of polymer modified binder (PG76-28).

- Mix performance testing required for design (lab) and production (plant).

- Fatigue Life based on Endurance Limit procedure from NCHRP Project 9-38
 - > 100,000,000 cycles @ 100 µ-strain

- APA (rutting) < 5mm at 8,000 cycles
BOTTOM RICH BASE COURSE (BRBC)

Interstate Route 295 Rubblization project MP 45 – 56

• 50 Gyrations @ 3.5% AV
• 1%-8% Mat Air Voids
• Full flexural fatigue suite required during mixture design and test strip production (AASHTO T 321)
 • 3 beams at 400 με and 3 beams at 800 με
 • Only 3 beams at 800 με during plant production (1st and every 5th Lot)
Main Purpose – Reflective Crack Relief Interlayer (RCRI) on composite pavement to withstand reflective cracking due to horizontal joint movement (environmental) and vertical joint movement (traffic).

- Important to note – mixture placed over BRIC still needs to be flexible enough to resist residual vertical bending

“causes shear stresses in the overlay.”
BINDER RICH INTERMEDIATE COURSE (BRIC)

- 4.75mm Superpave + APA Rut Test + Overlay Crack Test
- 7.4% min. polymer modified binder (PG 70-28)
- 3.5% Air Voids at 50 Gyrations
- 0-6% mat voids
- 1”-1.5” Lift Thickness
- Steel roller in static mode
- APA Rut < 6mm (7mm) at 8000 cycles
- Overlay Test > 700 (650) cycles

The Solution
Reflective Crack Relief Mixtures
RCRI and RBL
- Thin (1”) fine aggregate HMA
- Highly elastic binder – modified on low PG side as well (-28°C and lower)
- Asphalt-rich, impermeable layer to keep moisture away from PCC and supporting materials
HOT MIX ASPHALT (HMA) HIGH RAP

- Main Purpose – partner with industry to allow responsible increase % Reclaimed Asphalt Pavement (RAP) in HMA
 - Minimum 20% RAP in surface course (up from 15% max)
 - Minimum 30% RAP in intermediate & base course (up from 25% max)
- Mix design and plant produced HMA High RAP must meet APA Rut & Overlay Crack test requirements

Table 902.11.03-2 Performance Testing Requirements for HMA HIGH RAP Design

<table>
<thead>
<tr>
<th>Test</th>
<th>Surface Course</th>
<th>Intermediate Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>APA @ 8,000 loading cycles (AASHTO T 340)</td>
<td>< 7 mm</td>
<td>< 7 mm</td>
</tr>
<tr>
<td></td>
<td>< 4 mm</td>
<td>< 4 mm</td>
</tr>
<tr>
<td>Overlay Tester (NJDOT B-10)</td>
<td>> 150 cycles</td>
<td>> 100 cycles</td>
</tr>
<tr>
<td></td>
<td>> 175 cycles</td>
<td>> 125 cycles</td>
</tr>
</tbody>
</table>
HOT MIX ASPHALT (HMA) HIGH RAP

Table 902.11.03-1HMA HIGH RAP Requirements for Design

<table>
<thead>
<tr>
<th>Compaction Levels</th>
<th>Required Density (% of Theoretical Max. Specific Gravity)</th>
<th>Voids in Mineral Aggregate (VMA), % (minimum)</th>
<th>Voids Filled With Asphalt (VFA) %</th>
<th>Dust-to-Binder Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@N_{des}^{1} @N_{max}</td>
<td>Nominal Max. Aggregate Size, mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>96.0 ≤ 98.0</td>
<td>13.0 14.0 15.0 16.0 17.0</td>
<td>70 - 85</td>
<td>0.6 - 1.2</td>
</tr>
<tr>
<td>M</td>
<td>96.0 ≤ 98.0</td>
<td>13.0 14.0 15.0 16.0 17.0</td>
<td>65 - 85</td>
<td>0.6 - 1.2</td>
</tr>
</tbody>
</table>

1. As determined from the values for the maximum specific gravity of the mix and the bulk specific gravity of the compacted mixture. Maximum specific gravity of the mix is determined according to AASHTO T 209. Bulk specific gravity of the compacted mixture is determined according to AASHTO T 166. For verification, specimens must be between 95.0 and 97.0 percent of maximum specific gravity at N_{des}.

2. For calculation of VMA, use bulk specific gravity of the combined aggregate include aggregate extracted from the RAP.

Table 902.11.04-1 HMA HIGH RAP Requirements for Control

<table>
<thead>
<tr>
<th>Compaction Levels</th>
<th>Required Density (% of Theoretical Max. Specific Gravity)</th>
<th>Voids in Mineral Aggregate (VMA), % (minimum)</th>
<th>Dust-to-Binder Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@N_{des}^{1}</td>
<td>Nominal Max. Aggregate Size, mm</td>
<td></td>
</tr>
<tr>
<td>L, M</td>
<td>95.0 – 98.5</td>
<td>13.0 14.0 15.0 16.0 17.0</td>
<td>0.6 - 1.3</td>
</tr>
</tbody>
</table>

1. As determined from the values for the maximum specific gravity of the mix and the bulk specific gravity of the compacted mixture. Maximum specific gravity of the mix is determined according to AASHTO T 209. Bulk specific gravity of the compacted mixture is determined according to AASHTO T 166.
HOT MIX ASPHALT (HMA) HIGH RAP

Table 902.11.04-2 Performance Testing Pay Adjustments for HMA HIGH RAP

<table>
<thead>
<tr>
<th>Surface Course</th>
<th>Intermediate Course</th>
<th>PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG 64-22</td>
<td>PG 64-22</td>
</tr>
<tr>
<td>APA @ 8,000 loading cycles, mm (AASHTO T 340)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t ≤7</td>
<td>t ≤4</td>
<td>t ≤7</td>
</tr>
<tr>
<td>7 < t < 10</td>
<td>4 < t < 7</td>
<td>7 < t < 10</td>
</tr>
<tr>
<td>t ≥10</td>
<td>t ≥7</td>
<td>t ≥10</td>
</tr>
<tr>
<td>Overlay Tester, cycles (NJDOT B-10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t ≥150</td>
<td>t ≥175</td>
<td>t ≥100</td>
</tr>
<tr>
<td>150 > t > 100</td>
<td>175 > t > 125</td>
<td>100 > t > 75</td>
</tr>
<tr>
<td>t ≤100</td>
<td>t ≤125</td>
<td>t ≤75</td>
</tr>
</tbody>
</table>
FIELD PERFORMANCE OF NJDOT ASPHALT MIXTURES
Benefit-Cost Comparison Based on Lab Overlay Test Results

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Avg. Performance in Overlay Tester (cycles to failure)</th>
<th>Average Cost per Ton ($)</th>
<th>Cost Ratio of Mix Type vs HMA</th>
<th>Performance Ratio of Mix Type vs HMA</th>
<th>Benefit/Cost Ratio (Performance Ratio/Cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>91</td>
<td>70</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HRAP (64 Mixes Only)</td>
<td>369</td>
<td>75</td>
<td>1.1</td>
<td>4.1</td>
<td>3.8</td>
</tr>
<tr>
<td>SMA</td>
<td>729</td>
<td>98</td>
<td>1.4</td>
<td>8.0</td>
<td>5.7</td>
</tr>
<tr>
<td>BRBC</td>
<td>1143</td>
<td>89</td>
<td>1.3</td>
<td>12.6</td>
<td>9.9</td>
</tr>
<tr>
<td>MOGFC</td>
<td>1039</td>
<td>90</td>
<td>1.3</td>
<td>11.5</td>
<td>8.9</td>
</tr>
<tr>
<td>AR-OGFC</td>
<td>1796</td>
<td>110</td>
<td>1.6</td>
<td>19.8</td>
<td>12.6</td>
</tr>
<tr>
<td>HPTO</td>
<td>3013</td>
<td>129</td>
<td>1.8</td>
<td>33.2</td>
<td>18.0</td>
</tr>
<tr>
<td>BRIC</td>
<td>3051</td>
<td>116</td>
<td>1.7</td>
<td>33.6</td>
<td>20.3</td>
</tr>
<tr>
<td>BDWSC</td>
<td>5000</td>
<td>350</td>
<td>5.0</td>
<td>55.1</td>
<td>11.0</td>
</tr>
</tbody>
</table>
1ST HIGH PERFORMANCE THIN OVERLAY (HPTO)

- 2008 - Interstate Route I-295 Northbound, MP 8.7 – 14.0
- Before
 - SDI = 3.42 (out of 5)
 - IRI = 90 inches/mile
 - Rutting = 0.498 inch
- Immediately after
 - SDI = 5.0
 - IRI = 89 inches/mile
- 2016
 - SDI = 4.40
 - IRI = 85 inches/mile
 - Rutting = 0.272 inch
HIGH PERFORMANCE THIN OVERLAY (HPTO)

- Rutgers performed analysis of NJDOT Pavement Management data
- HPTO constructed on “Good” pavements will last 13 years minimum
 - Surface Distress Index > 2.4
- HPTO constructed on “Poor” pavements lasts only 5 years
 - Surface Distress Index < 2.4
- Overall 1” HPTO performance equal to or better than milling 2”+ and resurfacing 2”+ with dense graded HMA
1ST BRIDGE DECK WATERPROOF SURFACE COURSE (BDWSC)

• 2008 – State Route 87 over Absecon Inlet (MP 1.1 - 1.5)
 • Before
 • SDI = 4.25
 • IRI = 274 inches/mile
 • After
 • SDI = 5.0
 • IRI = 144 inches/mile
• 2016
 • SDI = 4.995
 • IRI = 139 inches/mile
 • Rutting = 0.1 inch
• Numerous other projects constructed from 2008 to present. No failures.
Bridge Deck Waterproof Surface Course (BDWSC)

Interstate Route 80 over Berkshire Valley Road ACROW Bridge overlay

- Nov. 2009 – Paved 2.5” to 3.5” of HMA 12.5H76 Surface Course
- March 26, 2010 – Opened to WB traffic
- April 8, 2010 – Started patching HMA due to excessive and rapid deterioration – cracking and shoving
- May 5 – 6, 2010 – Removed FAILED HMA
- High deflections and poorly performing asphalt led to rapid failure
BRIDGE DECK WATERPROOF SURFACE COURSE (BDWSC)

Interstate Route 80 over Berkshire Valley Road ACROW Bridge overlay

• Paved BDWSC on May 5-6, 2010
• Opened to WB traffic immediately
• WB Traffic on BDWSC until Dec. 17, 2010
• Opened to EB traffic January 2011
• ACROW temporary bridge taken down at end of 2011
• 1.5 years of service with no distress – Right asphalt mix for the intended purpose!!
1ST BOTTOM RICH BASE COURSE (BRBC) – ROUTE 295 RUBBLIZATION
BOTTOM RICH BASE COURSE (BRBC) – ROUTE 295 RUBBLIZATION
BOTTOM RICH BASE COURSE (BRBC) – ROUTE 295 RUBBLIZATION

Core Data on BRBC
[% Pay Adjustment]
(Requirement: 1 - 8 % air voids)

< 5mm APA Rutting Criteria

APA Rutting (mm)
BOTTOM RICH BASE COURSE (BRBC) – ROUTE 295 RUBBLIZATION

• Before (2010)
 • SDI = 2.06
 • IRI = 221 inches/mile

• After (2011)
 • SDI = 5.0
 • IRI = 65 inches/mile

• Current (2016)
 • SDI = 4.955
 • IRI = 71 inches/mile
 • Rutting = 0.124 inch
1ST BINDER RICH INTERMEDIATE COURSE (BRIC)

- Route 34 Northbound
 - Dense graded asphalt mixes above BRIC too brittle & cannot withstand residual flexing
 - Reflective Cracking occurred but performed slightly better than w/o BRIC

- Many other projects since
 - Stone Matrix Asphalt over BRIC performs best
 - SMA alone performs very well
BINDER RICH INTERMEDIATE COURSE (BRIC)

- Rutgers performed analysis of NJDOT Pavement Management data
- BRIC improves projected life, but largely influenced by surface course material
- 2” Stone Matrix Asphalt (SMA) over 1” BRIC provides 10 years more life than dense graded asphalt mixtures
1ST HOT MIX ASPHALT (HMA) HIGH RAP

- 2012 - Interstate Route I-295 Southbound MP 11.3-14.5
 - Before
 - SDI = 1.45 (out of 5)
 - IRI = 103 inches/mile
 - Rutting = 0.381 inch
 - Immediately after
 - SDI = 5.0
 - IRI = 48 inches/mile
 - 2016
 - SDI = 4.70
 - IRI = 50 inches/mile
 - Rutting = 0.106 inch
HOT MIX ASPHALT (HMA) HIGH RAP

<table>
<thead>
<tr>
<th>9.5M76 (SURFACE COURSE)</th>
<th>12.5M64 (INTERMED. COURSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% RAP</td>
<td>35% RAP</td>
</tr>
<tr>
<td>6.0% Total AC</td>
<td>5.8% Total AC</td>
</tr>
<tr>
<td>▪ 27.4% Binder Replacement</td>
<td>▪ 29.7% Binder Replacement</td>
</tr>
<tr>
<td>▪ PG70-22 (74.6-26.99)</td>
<td>▪ PG64-28 (64.8-28.29)</td>
</tr>
<tr>
<td>▪ 25% Fine RAP Fraction Only</td>
<td>▪ 17.5% Fine RAP/ 17.5% Coarse RAP</td>
</tr>
</tbody>
</table>
HOT MIX ASPHALT (HMA) HIGH RAP
HOT MIX ASPHALT (HMA) HIGH RAP

- Red line represents minimum for PG64-22 Intermediate Course (> 100 cycles)
- Black line represents minimum for PG76-22 Surface Course (> 175 cycles)

Overlay Tester Fatigue Life (cycles):
- 12.5mm HRAP, 35% RAP: 409 cycles
- 9.5mm HRAP, 25% RAP: 1691 cycles
• Mixture performance test requirements for all asphalt mixtures
 • Balanced mix design
• Pay adjustment for mixture performance
• Quality control tests for mixture performance in asphalt plant labs
 • Modified Marshall equipment available in most plant labs
 • Rutting - High temperature Indirect Tensile Test (IDT)
 • Cracking – Semi-Circular Bend (SCB) Flexibility Index
• Performance testing before and after accelerated aging
Performance Testing Pay Adjustments for HPTO

<table>
<thead>
<tr>
<th>Test Requirement</th>
<th>Test Result</th>
<th>PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>APA @ 8,000 loading cycles, mm (AASHTO T 340) 5.0 maximum</td>
<td>t ≤ 5.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5.0 < t ≤ 12.0</td>
<td>-50(t-5)/7</td>
</tr>
<tr>
<td></td>
<td>t > 12.0</td>
<td>-100 or Remove & Replace</td>
</tr>
<tr>
<td>Overlay Tester, cycles (NJDOT B-10) 600 minimum</td>
<td>t ≥ 600</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>600 > t ≥ 400</td>
<td>-(600-t)/4</td>
</tr>
<tr>
<td></td>
<td>t < 400</td>
<td>-100 or Remove & Replace</td>
</tr>
</tbody>
</table>
FUTURE

• NJDOT Roadways Improving

• WHY?
 • Funding
 • Smoothness specification
 • Pavement preservation
 • Performance related asphalt mixture specifications
 • Better long term performance
 • Better longitudinal joints
 • Smoother roads
SUMMARY

• Current/Future traffic and extreme climate conditions, require more than Mill 2”, Pave 2” on typical HMA

• Performance data (lab & field) justifies that these mixes are a “Smart Economic Investment”

• Need different tools in the toolbox for different problems

• Have to make sure we use the “Right Mix, On the Right Road, At the Right Time, for the Right Price”

• We must have the conviction
 • “Get what we pay for!”
 • We must demand better performance and we’re willing to pay for it
THANK YOU