The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD

TRB WEBINAR PROGRAM

Texture Measurements and Their Correlation with Pavement Functional Performance

Thursday, April 27, 2017 2:00-3:30 PM ET The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Purpose

Discuss how pavement texture measurements correlate with functional performance

Learning Objectives

At the end of this webinar, you will be able to:

- Define pavement texture metrics
- Identify present texture measurements and interpretation techniques
- Understand how to assess future usage of texture to predict noise, friction, and splash and spray

PDH Certificate Information

- This webinar is valued at 1.5 Professional Development Hours (PDH)
- Instructions on retrieving your certificate will be found in your webinar reminder and follow-up emails
- You must register and attend as an individual to receive a PDH certificate
- TRB will report your hours within one week
- Questions? Contact Reggie Gillum at <u>RGillum@nas.edu</u>

All Attendees Are Muted

 File View Help		_ 🗆 🖉 🗙
Questions		5
Questions Log		•
[Enter a question fo	r staff]	× × ×
- Audio		
Audio Mode: () Use Telephone) Use Mic & Spea	ikers
MUTED	4) 0000	00000
Audio Setup		
GoTo Webin	Webinar Test 2 ar ID: 745-284-455	
Gol	• Webinar™	

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

	File View Help	10 10	_ 0 Ø ×			
••	 Questions 		5			
•	Questions Log		•			
	[Enter a question	for staff]	•			
			Send			
	- Audio					
	Audio Mode:	OUse Telep ⊙Use Mic &	hone Speakers			
	MUTED	4)	000000000			
	Audio Setup					
	Go Wel	ToWebinar Tes binar ID: 745-284	st 2 -455			
	GoTo Webinar™					

Can't locate the GoToWebinar Control Panel?

File View Help Questions	_ C 2 ×		_
Questions Log			
[Enter a question for staff]	Send	K	
- Audio			
Audio Mode: OUse Telephon • Use Mic & Sp	e eakers		
MUTED 40000	000000		
GoToWebinar Test 2 Webinar ID: 745-284-455			
GoTo Webinar [™]	4		

Having Trouble Logging On?

Panelists Presentations

http://onlinepubs.trb.org/onlinepubs/webinars/170427.pdf

After the webinar, you will receive a follow-up email containing a link to the recording

Today's Participants

- Robert Rasmussen, *Transtec Group*, <u>Robotto@TheTranstecGroup.com</u>
- Charles Holzschuher, Florida Department of Transportation, <u>charles.holzschuher@dot.state.fl.us</u>
- Magdy Mikhail, Texas Department of Transportation, <u>Magdy.Mikhail@txdot.gov</u>

Get Involved with TRB

- Getting involved is free!
- Join a Standing Committee (<u>http://bit.ly/2jYRrF6</u>)
 AFD90 (Pavement Surface and Vehicle Interaction)
- Become a Friend of a Committee

(http://bit.ly/TRBcommittees)

- Best way to become a member
- Ultimate networking opportunity
- For more information: <u>www.mytrb.org</u>
 - Create your account
 - Update your profile

97th TRB Annual Meeting: January 7-11, 2018

Fundamentals of Pavement Texture: Construction, Measurement, and Interpretation

TRB Webinar on Texture Measurements and Their Correlation with Pavement Functional Performance

Robert Otto Rasmussen, PhD, INCE, PE

Vice President & Chief Engineer, The Transtec Group, Inc. 6111 Balcones Drive, Austin, Texas 78731 USA • +1 (512) 451 6233 Robotto@TheTranstecGroup.com • www.TheTranstecGroup.com

27 April 2017

What is Texture?

Megatexture (L_{ME})

Roughness (IRI)

Macrotexture (MPD)

Microtexture (µ)

Why is Texture Important?

How is Texture Specified?

How does Texture Change?

o years (after construction)

> 20 years (end of life)

10-20 years

How is Texture Measured?

3-dimensional

How is Texture Measured?

3-dimensional

05

How is Texture Measured?

How is Texture Evaluated?

Tire dynamics

Drainage

Aerodynamic

Describing Texture

- Height (Amplitude)
 Spacing
 Spectral
- Functional

Describing Texture

Height (Amplitude)
Spacing
Spectral
Functional

Distance (mm)

Same Average Height, RMS, Kurtosis, but...

Skewness is opposite sign.

Describing Texture – Height

Skewness, Kurtosis, and MPD are sensitive to "extreme" peaks...

...both real or artifacts from the measurement or analysis.

Describing Texture

Height (Amplitude) Spacing Spectral Functional

Describing Texture – Spacing

Describing Texture

Height (Amplitude) Spacing

- Spectral
- **Generation**

Describing Texture – Spectral

Describing Texture

- Height (Amplitude)SpacingSpectral
- Functional

Relevance

Louder – 111 dBA

9 20000 10 11 12

7 2 2 2 8

2 STALEY 3 400000 4

6

Quieter – 103 dBA

8

8

\$

36560

36540

36320

2600

900 A

Higher Rolling Resistance

Relevance

COAO

Lower Rolling Resistance

Variability and Visualization

Some Closing Thoughts

Texture can be specified for construction or rehab

- Material selection (aggregates), construction methods
- Micromilling, grinding, grooving, shotblast, waterblast ...
- Prescriptive vs. Performance (End Product)
- Measurement methods and metrics
 - 3-D measurements are here; more relevant information
 - Measurement <u>accuracy</u>: 1 mm is most often <u>not</u> enough
 - MPD & IRI not enough to predict functional performance

Challenges

- Measurement of porous or deep textures, glossy surfaces
- Calibration and validation of texture measurements

Standards

ISO TC 43/SC 1/WG 39, ASTM E17, CEN/TC 227

Thank You !

Robert Otto Rasmussen, PhD, INCE, PE*

Vice President & Chief Engineer The Transtec Group, Inc. 6111 Balcones Drive, Austin, Texas 78731 USA +1 (512) 451 6233 Robotto@TheTranstecGroup.com www.TheTranstecGroup.com

* Licensed in AZ,CO,FL,IL,KY,MI,MO,NC,NM,OH,TX,UT,WA

Florida Texture Characteristics Review

State of Florida

 2017 Population: 20 million
 3rd most populous state in the US behind CA & TX

- 94 million annual visitors
- State Highway System (FDOT Maintained)
 - Ensure Safety
 - Adequate FN & Texture
 - Roadway Departures

Florida Texture Overview

- Fexture Equipment
- Friction
- Fexture
- Smoothness
- Noise
- Fexture Projects

Florida Texture Equipment

Monitor Performance and Safety of Roadways

➤ Tools

High Speed (non-contact)

Site Specific

Roadway – Locked Wheel Tester

- Friction ASTM E-274
- Texture Laser (64 kHz) below Tow Vehicle
 High Speed

Locked Wheel Tester (Point Laser)

ASTM E 1845

- Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth
- 3 Second Sample
- Continuous

ASTM E 1845-01: Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth

Mean Segment Depth Segment-1 = (Peak-1 + Peak-2)/2

 $MeanSegmentDepth_{section} = \frac{\sum_{i=1}^{i} MeanSegmentDepth_{Segment-i}}{\frac{1}{2}}$

Circular Track Meter

ASTM E 2157 – Pavement Macrotexture - CTM ASTM E 1845 – Pavement Macrotexture - MPD

Florida Texture Meter

- Built based on ASTM E 1845
- In-House Software
- MPD obtained along a circular path

Walking Texturemeter (TM2)

- Measures pavement texture in accordance with ISO 13473
- Continuous at walking speed
- MPD collected at every 0.08 in. and reported at desired interval (> 3.5 inch)

Mean Profile Depth – ASTM E-1845

FIG. 1 Procedure for Computation of Mean Segment Depth

Florida Texture Catalog

Collect FN and MPD

- New Construction
- Overlay
- Inventory (new)
- Surface Types Include
 - OGFC
 - DGFC
 - Concrete (Mainline & Bridge)
 - HFST

Five Year (2010-2015) Statewide MPD Statistics

Five Year (2010-2015) Statewide MPD Statistics (Cont.)

High Speed vs Site Specific Texture

Rigid Pavement Texture Challenges

- LGD Point Laser
 Underestimates (43%)
- Artificial Orientation
- High Speed Surveys Difficult

Rigid Pavement Texture Challenges (Cont.)

Flexible Pavement Texture Challenges

Sand Patch - OGFC

Roadway Smoothness

- Laser Based Sensor Evaluation for Profilers
- IRI Smoothness Specifications
- Rigid and Flexible
- Texture Effects
 - ✓Age of Pavement
 - ✓% Diff. in IRI
 - ✓ Repeatability

Multi-Laser Profiler

> 3-Sensor Type
 Point
 Wide Spot
 Roline
 > Wheel Path
 > High Speed

Laser Footprint for Pavement Smoothness

Concrete Pavement Smoothness

- All new concrete pavements are longitudinally ground
- LGD surface texture improves drainage and friction
- Artificial texture has challenges for lasers with a small footprint
- 14 locations

Rigid Pavement Summary

Rigid Pavement Summary

Surface Type	Pooled Standard Deviation of Three Repeat Runs (in/mile)			
	Point	Wide Spot	Roline	
LDG > 1 year	2.73	2.68	2.51	
LDG < 1 Year	3.51	1.76	1.17	
All Projects	2.71	2.21	1.89	

- All Lasers Repeatable
- Large Difference with Point Laser
- Fexture Wear Noted

Section	Comparison	Avg. IRI Difference	95% Confidence Interval or IRI Differences (in/mile)	
		(in/mile)	Lower Limit	Upper Limit
	Point vs. Wide Spot	2.34	2.00	2.67
LDG > 1 year	Point vs. Roline	2.90	2.44	3.37
	Wide Spot vs. Roline	0.56	0.28	0.85
LDG < 1 year	Point vs. Wide Spot	18.08	14.69	21.48
	Point vs. Roline	20.17	17.01	23.34
	Wide Spot vs. Roline	2.09	1.36	2.82
	Point vs. Wide Spot	5.51	4.22	6.80
All Projects	Point vs. Roline	6.38	5.00	7.76
	Wide Spot vs. Roline	0.87	0.59	1.16

Traffic Effects - Texture Wear (Rigid)

Interstate Project Bridge Roadway Monitor Texture Wheel Path Between Wheel Path > ADT

Road

Bridge

Traffic Effects - Texture Wear (Rigid)

Rigid Pavement Texture

Flexible Pavement Summary

- OGFC 50 mph or over divided roadways
 - Drainage
 - Splash/Spray
- DGFC 2 lanes up to 60 mph
- Sections
 - 10 OGFC
 - **10 DGFC**

Flexible Pavement Summary

Flexible Pavement Smoothness

Surface	Pooled Standard Deviation of Three Repeat Runs (in/mile)			
Type	Point	Wide Spot	Roline	
Dense	2.03	2.00	1.90	
Open	3.35	3.22	3.25	
All Projects	2.81	2.72	2.70	

- All Lasers Repeatable
- Minimal IRI Difference
 - Mix Type
 - Laser Type
 - No Texture Wear

Section	Comparison	Avg. IRI Difference (in/mile)	95% Confidence Interval or IRI Differences (in/mile)	
			Lower Limit	Upper Limit
	Point vs. Wide Spot	1.19	0.91	1.48
Dense	Point vs. Roline	-0.43	-0.70	-0.16
	Wide Spot vs. Roline	-1.63	-1.86	-1.40
Open	Point vs. Wide Spot	2.61	2.31	2.92
	Point vs. Roline	4.84	4.32	1.70
	Wide Spot vs. Roline	2.23	5.37	2.76
All Projects	Point vs. Wide Spot	1.98	1.74	2.21
	Point vs. Roline	2.42	1.93	2.92
	Wide Spot vs. Roline	0.45	0.03	0.86

Noise Evaluation - Texture

• How do pavement types and surface texture effect tire-pavement interaction noise?

Noise Trailer

- FDOT Noise Trailer (OBSI)
 - High Speed (60 mph)
 - AASHTO TP 76-15
 - Predict Wayside measurements
 - Quantify Noise (Various Textures):
 - ✓ Flexible (OGFC & DGFC)
 - ✓ Rigid
 - ✓ Rumble/Audible Striping

Human Perception of Decibel Level

Perceptions of Increases in Decibel Level			
Imperceptible Change	1dB		
Barely Perceptible Change	3dB		
Clearly Noticeable Change	5dB		
About Twice as Loud	10dB		
About Four Times as Loud	20dB		

Florida Acoustic Inventory (OBSI)

Rumble Stripes

- Roadway Departure Safety
 Megatexture (0.02 to 2 in.)
- Effects of Depth Noise

Rumble Stripe Challenges

Groove Depth on Rumble Stripe Noise Levels

Comparison of OBSI Noise Level among Job Sites (Site 4)

OBSI, dBA

FDOT Segregation

 Develop Visual Assessment Tool
 Verify Segregation
 Objective
 Pass/Fail

Test Matrix

Segregated Area

Texture Equipment

Confirmation of Segregation

Segregation - Texture

Green Bike Lanes

- DFT/CTM (5 Sites)
- Long Term Performance

Green Colored Bicycle Lane Test Matrix

Test Location	Existing Surface Type	Treatment Type	Field Photos	DFT	СТМ
Site 1	Rigid Pavement, Transverse Grooved	Epoxy Modified Coating		9	9
Site 2	Dense Graded AC	Epoxy Modified Coating		9	9
Site 3	Dense Graded AC	Thermoplastic		18	18
Site 4	Open Graded AC	High Friction Surface Treatment (HFST)		9	9
Site 5	Open Graded AC	Epoxy Modified Coating		9	9

Green Bike Lane Texture Comparison

Questions?

