Comprehensive Renewable Resources Strategy for Airports

Thursday, November 7, 2019
2:00-3:30 PM ET
Purpose

Learning Objectives
At the end of this webinar, you will be able to:

• Identify how to prioritize renewable resource projects

• Describe how to connect related projects into an overall strategy with appropriate goals and metrics
Guidebook for
Developing a Comprehensive
Renewable Resources Strategy

Shawn Shaw,
Natural Power

Stephen Barrett
Barrett Energy Resources Group
Shawn Shaw, P.E.
Principal Investigator

- Global Head of Solar and Energy Storage, Natural Power Consultants
- Former Principal of Distributed Energy Resources, The Cadmus Group
- 15 Years of renewable energy consulting and engineering experience from distributed through utility scale projects
- Registered electrical engineer
Stephen Barrett
Deputy Principal Investigator

- Lead Author of the FAA’s Solar Guide
- Principal Investigator for three ACRP Project Reports and three Synthesis Reports
- Lead Author of ICAO’s Renewable Energy and Aviation
- Consultant to airports and renewable energy companies
We wish to acknowledge the contributions of the following individuals who made major contributions to this effort.

Damon Fordham, The Cadmus Group
Geoff Morrison, The Cadmus Group
Courtney Ferraro, The Cadmus Group
Bill Atkinson, The Cadmus Group
Mia Stephens, The Cadmus Group

Phil Devita, HMMH
Jessica Cohen, HMMH
ACRP Report 197 Oversight Panel

Kristoffer Russell, DFW International Airport, Panel Chairman
Kate Andrus, Mead & Hunt
Tracy Borda, PHL International Airport
Nathaniel Kimball, City of New York
William Shoard, Accredited Energy Consulting Services
Melissa B. Smart, The Smart Associates
John MacFarland, FAA Liaison
John Weller, FAA Liaison
Christine Gerencher, TRB Liaison
Marci Greenberger, ACRP Senior Program Officer
ACRP Report 197: Guidebook for Developing a Comprehensive Renewable Resources Strategy

- Provides background information on renewable resources
- Describes steps for developing a strategy consistent with typical airport planning processes
- Includes guidance on how to establish milestones and metrics to measure progress
- Provides tools and templates that can be adapted by users to build an initial airport strategy
- Presents real-world examples of strategies developed with airports as part of the research

Report 197 was published April 2019
Research Problem

- Airports have increasingly been adopting renewable resources such as alternative energy and biodegradable materials in recent years.
- Drivers include decreasing carbon emissions, increasing efficiency, and sourcing products locally.
- However, typical airport planning processes do not specify where renewable resources ought to best be considered.
- This research provides guidance to airports on when renewable resources should be considered and includes tools for developing a comprehensive strategy.
Research Approach

- Summarize background information on renewable resources and typical planning processes
- Specify where planning can integrate consideration of renewable resources
- Prepare draft guidance for airports to follow
- Engage three pilot airports to prepare a comprehensive renewable resource strategy
- Integrate lessons learned from the pilot to improve the final guidance
Results – Renewable Resources

<table>
<thead>
<tr>
<th>Utility Provided</th>
<th>Non-Renewable Resource Used</th>
<th>Renewable Resource Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating and cooling</td>
<td>Fuel oil, natural gas</td>
<td>Biomass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geothermal cooling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ground source heat exchange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anaerobic digestion</td>
</tr>
<tr>
<td>Electricity</td>
<td>Coal, natural gas</td>
<td>On-site solar photovoltaic (PV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small wind</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power purchasing from off-site renewable energy systems</td>
</tr>
<tr>
<td>Plastic cutlery</td>
<td>Petroleum-based plastic</td>
<td>Bioplastic</td>
</tr>
<tr>
<td>Soil remediation</td>
<td>Chemical fertilizer</td>
<td>Compost</td>
</tr>
<tr>
<td>Waste disposal</td>
<td>Paid garbage handling</td>
<td></td>
</tr>
<tr>
<td>Vehicle washing</td>
<td>Pumped municipal water</td>
<td>Gray water reclamation</td>
</tr>
<tr>
<td>Irrigation</td>
<td></td>
<td>Condensation catchment from cooling units</td>
</tr>
<tr>
<td>Ingredients for on-site restaurants</td>
<td>Open-loop food providers</td>
<td>On-site or indoor gardens</td>
</tr>
<tr>
<td>Transportation</td>
<td>Gasoline/diesel fuel</td>
<td>Renewable fuels—biodiesel; renewable diesel</td>
</tr>
</tbody>
</table>
Results – Steps for Developing a Strategy

• Define your vision
• Assemble a team and engage stakeholders
• Assess current renewable resources and set goals as appropriate
• Identify administrative, financial and technical processes, and prioritize actions
• Choose how to evaluate
• Write and implement your renewable resources strategy
Spotlight: Vision Statement

A vision statement serves as an organization’s roadmap, guiding its internal decision-making and defining its goals for the future. An effective vision statement will be clear, concise, inspiring, and stable, yet challenging. It will be applicable in the short-term while offering long-term perspectives for an organization. Thus, an airport’s vision statement is an ideal place to begin when considering both short- and long-term sustainability initiatives.
Results – Make the case for renewable resources

- Mitigate potential impacts of climate change
- Contribute to domestic energy independence
- Diversify energy sources
- Invest in long-term savings associated with renewables
- Increase decentralized power generation
- Stimulate job growth

Renewable Energy Public Policy
Results – EONS

ECONOMIC
- Better utilization of assets
- Reduced development and/or operations and maintenance costs

OPERATIONAL
- Efficient use of resources and facilities
- Minimizes waste

NATURAL
- Conserves and protects resources
- Reduces impacts
- Facilitates environmental approvals and permitting

SOCIAL
- Improved passenger and employee experience
- Enhances quality of life and socioeconomic well-being of the local community
Results – Assess current renewable resource / set goals
Results – Engage stakeholders
Results – The Pillars of a Successful Strategy

- **Administrative**: Integration with ongoing planning processes; review and approval
- **Fiscal**: Ownership, funding, and financing
- **Technical**: Physical compatibility with space, electrical, and other constraints
Pillars - Administrative

<table>
<thead>
<tr>
<th>Renewable Resource Project</th>
<th>Airport Layout Plan</th>
<th>Airport Master Plan</th>
<th>Capital Improvement Plan</th>
<th>Strategic Energy Plan</th>
<th>Sustainability Plan</th>
<th>Airport O&M Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rooftop Solar PV System on an Existing Building</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2. Program to Compost Food Waste with an External Vendor</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3. Large Ground-mounted PV Array on Existing Green Space</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4. Water Source Geothermal Project for Cooling and/or Irrigation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5. Alternative Transportation Fuels for Airport Fleet</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6. Aeroponic Garden Inside Airport to Provide Food to Internal Restaurants</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7. Green rooftops</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8. Airport Wastewater Reclamation Facility for Treatment of City Water</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9. On-Site Apiary Operated by an Outside Non-Profit Organization</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Pillars - Fiscal

<table>
<thead>
<tr>
<th>Technology</th>
<th>Ownership</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV (on-site use)</td>
<td>Airport</td>
<td>FAA AIP, bonds, annual budget</td>
</tr>
<tr>
<td>Solar PV (off-site grid supply)</td>
<td>Third party developer</td>
<td>Tax Credits, PPA</td>
</tr>
<tr>
<td>Solar Thermal</td>
<td>Airport</td>
<td>VALE, annual budget</td>
</tr>
<tr>
<td>Wind</td>
<td>Airport</td>
<td>FAA AIP, annual budget</td>
</tr>
<tr>
<td>Biomass</td>
<td>Airport, Third party</td>
<td>Various</td>
</tr>
<tr>
<td>Ground Source Heat Pump</td>
<td>Airport</td>
<td>VALE, annual budget</td>
</tr>
</tbody>
</table>

Energy used by airport from the grid
Results – Goals and Metrics

Goal Setting

<table>
<thead>
<tr>
<th>Weak Goal</th>
<th>Strong Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use more renewable energy</td>
<td>Increase renewable energy consumption at airport facilities by 25% from the baseline by 2020.</td>
</tr>
<tr>
<td>Decrease carbon footprint/ emissions</td>
<td>Reduce landfill waste from airport facilities by 20% in the next 5 years.</td>
</tr>
<tr>
<td>Reduce energy usage</td>
<td>Transition all indoor fluorescent lighting to 100% energy-efficient lighting by 2050.</td>
</tr>
<tr>
<td>Use less water</td>
<td>Reduce water consumption per passenger by 15% within the next 10 years.</td>
</tr>
</tbody>
</table>

Metrics

<table>
<thead>
<tr>
<th>Key Performance Indicator</th>
<th>Performance Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>kBtu* per square foot of building</td>
<td>Reduce GHG emissions and/or energy intensity</td>
</tr>
<tr>
<td>Annual gallons of water per passenger</td>
<td>Water conservation</td>
</tr>
<tr>
<td>Percentage of organic material composted</td>
<td>Reduce waste generation</td>
</tr>
<tr>
<td>Energy, petroleum, or emissions per mile of travel or per seat-mile</td>
<td>Reduce energy, petroleum, or emissions</td>
</tr>
</tbody>
</table>
Putting Research Into Action - Checklists

Prioritize Renewable Resources

- Solar Space Heating
- Solar Hot Water
- Roof-mounted Solar PV
- Ground-mounted Solar PV
- Canopy-mounted Solar PV
- Wind Turbine
- Waste Management

Evaluate Relative to Technology Checklist

<table>
<thead>
<tr>
<th>Canopy/Carport-Mounted PV Assessment Checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line #</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

- High Priority: Line 5 (PV Generation) offsets 20% or more of airport energy usage and Lines 6-8 are all “Yes.”
- Medium Priority: Line 5 (PV Generation) offsets 6% to 19% of airport energy usage and some of Lines 6-8 are “Yes.”
- Low Priority: Line 5 (PV Generation) offsets less than 5% of airport energy consumption or significant siting restrictions exist.
Table of Contents

Table of Contents ... 2
Introduction ... 3
Vision Statement & Goals .. 4
 Vision Statement .. 4
 Goals .. 4
Baseline & Airport Systems ... 5
 Electricity Consumption and Cost ... 5
 Water Consumption and Cost .. 5
 Waste Generated and Disposal Cost .. 5
 Airline Related Waste .. 5
Process for Identifying Opportunities ... 6
 Agenda item at Monthly Tenant Meetings ... 6
 Stakeholders, Roles, and Responsibilities .. 6
 Approval Process for Renewable Resource Projects ... 6
 Relationship to Other Documents ... 6
 Updating the Strategy .. 6
 Planned Projects and Initiatives ... 7
<table>
<thead>
<tr>
<th>Task</th>
<th>Timeline</th>
<th>Deliverables</th>
</tr>
</thead>
</table>
| Task 1 Project Administration | 0-16 Weeks | • Memo style project plan
| | | • Weekly conference calls with meeting notes |
| Task 2 Data Review, Assessment and Analysis | 0-4 Weeks | • Summary memorandum |
| Task 3 Develop Renewable Resources Strategy Outline | 0-4 Weeks | • Brief outline of Renewable Resources Strategy |
| Task 4 Hold Stakeholder Workshop | 4-8 Weeks | • Workshop agenda
| | | • Workshop presentation materials
| | | • Post-workshop discussion notes |
| Task 5 Draft Renewable Resources Strategy | 8-12 Weeks | • Draft Renewable Resources Strategy |
| Task 6 Final Renewable Resources Strategy | 12-16 Weeks | • Final Renewable Resources Strategy
| | | • Electronic folder containing relevant background materials |
| Task 7 Technical Assistance | 0-16 Weeks | • As determined on an assignment basis |
Vision Statement

CHO is committed to the principles of environmental stewardship. CHO will strive to preserve our natural resources, operate efficiently, promote the airport as a steward of the environment, enhance our passenger experience and serve as a vital asset for Charlottesville, Albemarle County and Central Virginia.

Goals

Through the implementation of this strategy, CHO seeks to achieve the following goals:

1. Upgrade Facilities for Better Efficiency.
2. Reduce Weather-adjusted Utility Costs 20% below 2016 levels by Year 2025 and by 10% by 2020.
3. Serve as a Model of “Green” Success and Efficiency for the County and the Region.
Planned Projects and Initiatives

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Project</th>
<th>Description</th>
<th>Task Lead</th>
</tr>
</thead>
</table>
| 1Q2018 | Recycling Program | Official launch of public-facing recycling program and engagement with all tenants, including:
• Public facing education materials
• Training for tenants and airport staff
• Placement of all necessary bins/containers | Director of Operations |
| 1Q2018 | Terminal LED Retrofit Phase 1| Phase 1 nearing completion; 98% terminal lighting replaced with LED | Maintenance Superintendent |
| 2Q2018 | Gas Utility Engagement | • Outreach to Natural Gas provider to extend service to airport terminal. BCA underway with Natural Gas Provider
• Calculate GHG emissions reductions for switching to natural gas | Director of Ops & Maintenance Superintendent |
| 2Q2018 | Parking Lot LED Retrofit | • Retrofit of parking lot lighting to LED included in parking lot expansion project design.
• Feasibility of solar power arrays for parking lot canopy lighting. | Director of Operations |
| 3Q2018 | Energy Consumption | • Establish baseline of kilowatt consumption prior to terminal LED retrofit. Establish baseline for parking lot electricity consumption.
• Develop and retain a “sustainability” intern to track energy consumption
• Prepare outreach piece/website article on lighting retrofit and recycling program | Director of Ops & Airport Intern |
| 4Q2018 | Boiler Replacement | • Bids released for replacement of heat oil boiler system to natural gas
• Calculate GHG emissions savings expected | Director of Ops & Maintenance Superintendent |
Pilot Study – Dayton Airport

Our Mission
Similar to our Sustainability Mission, we strive to conserve our natural resources, operate efficiently, promote Airport employees’ well-being, enhance our passenger experience and serve as a vital asset for Southwest Ohio and beyond.

Our Visions
Energy Optimization: We want to maximize energy efficiency and the use of renewable energy sources through system optimization, innovative design methodology and economic feasibility.

Resiliency: We will implement measures that prepare the Airport to mitigate the effects of climate change and support regional climate change mitigation plans and activities.

Environmental Steward: As a corporate and community leader minimize the Airport’s consumption of natural resources and its impact on the surrounding environment.

Sustainable Investment: We contribute to regional economic growth through sustainable investments of our land, capital, and human resources.
Planned Projects and Initiatives

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Project</th>
<th>Description</th>
<th>Task Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Restaurant Recycling with HMS Host</td>
<td>Set up a simple recycling station at the Fast Food Type Restaurants and include a Liquid Collection Station.</td>
<td>Airport Environmental</td>
</tr>
<tr>
<td>2019</td>
<td>Explore Feasibility of Bio-Jet fuel</td>
<td>Coordinate with FBO fuel supplier and PSA Airlines to investigate the feasibility of using bio Jet Fuel in a dedicated aircraft.</td>
<td>Airport Environmental</td>
</tr>
<tr>
<td>2019</td>
<td>Explore the feasibility of stocking a bio diesel blend</td>
<td>Coordinate with local fuel supplier on the feasibility of stocking Bio-Diesel Blend for Field Maintenance Vehicles.</td>
<td>Airport Operations</td>
</tr>
<tr>
<td>2019</td>
<td>Re-evaluate solar/storage microgrid</td>
<td>Continue to re-evaluate the opportunities to develop battery storage and a solar array on the airport.</td>
<td>Airport Engineering</td>
</tr>
<tr>
<td>2018</td>
<td>Verify Existing Conditions</td>
<td>Continue to develop and monitor opportunities to include renewable resources as a strategy to manage our energy, waste streams and building materials.</td>
<td>Airport Environmental</td>
</tr>
</tbody>
</table>
Pilot Study – Portland International Airport

Vision Statement

Keywords: net zero, demand, resiliency, investments, airlines, tenants, share, leadership

We will:

1. become a net-zero energy airport by generating more energy than we use, and the energy we generate will be renewable energy;

2. source all new future PDX power demand from energy efficiency and renewable energy sources;

3. use on-site renewable energy generation and energy storage to support PDX resiliency goals;

4. design, time and locate our investments in renewable energy to be as cost-effective as possible given other Port goals;

5. actively encourage airlines and the military that use PDX to use sustainable (renewable) aviation fuels in aircraft that operate at PDX;

6. require the use of renewable energy in tenant and partner facilities at PDX;

7. seek to share our generation / resiliency capacity with our community and neighbors; and we will

8. be recognized by our region and industry as a leader in the application of renewable energy.
Net Zero
PDX-controlled airport operations will achieve carbon neutrality by 2035

Electrification (TCORE or PDX-Controlled?)
- eGSE
- Domestic Hot Water (75% by 2023), (100% by 2028)
- Heating (25-50% by 2023), (100% by 2028)
- Cooking by Concessions (10% by 2023), (100% by 2028)

Energy Efficiency
- Reduce Port-wide energy consumption (kWh) by 20% from 2011 baseline by 2020
- Achieve energy efficiency target of 45 w/m2 by 2035

Renewable Energy
- 100% power sources for PDX-controlled facilities from renewables by 2035
Renewable Resource Assessment for PDX

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Location</th>
<th>Availability</th>
<th>Compatibility</th>
<th>Accessible</th>
<th>Environmental</th>
<th>Cost Effective</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>On-site/Off-site</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Geothermal</td>
<td>Off-Site</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ground Source Heating</td>
<td>On-Site</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Hydro (utility)</td>
<td>Off-Site</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Hydro (low impact)</td>
<td>On-Site</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ocean</td>
<td>Off-Site</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Solar PV</td>
<td>Off-Site</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Wind (utility)</td>
<td>Off-Site</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Wind (building)</td>
<td>On-Site</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Sustainable Fuels</td>
<td>On-Site</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Availability: Is there resource available at PDX or region?
Compatibility: Is technology for generation compatible with PDX?
Accessible: Can the energy from the resource be accessed by PDX?
Environmental: Are the environmental risks associated with generating the energy low?
Cost Effective: Is generating energy from the resource cost-effective?
Overall: Cumulative assessment of the potential for developing the resource.

High: Resource scores highest in this category
Medium: Resource scores in the middle for this category
Low: Resource scores lowest in this category
Framework for Resource Allocation

- Years 1-5, continued focus on energy efficiency, ramp up on renewables
- Years 6-10, relative parity between energy efficiency and renewables
- Years 11-20, changing focus on renewables as cost effectiveness of energy efficiency diminishes
- Selection of energy investments to be determined based on cost-effectiveness (~80%), and resiliency/innovation (~20%)
Today’s Speakers

• Kris Russell, *Dallas Fort-Worth Airport*, KRussell@dfwairport.com

• Shawn Shaw, *Natural Power*, shawns@NaturalPower.com

• Stephen Barrett, *Barrett Energy Resources Group, LLC*, Steve@barrettenergygroup.com
ACRP is an Industry–Driven Program

- Managed by TRB and sponsored by the Federal Aviation Administration (FAA).
- Seeks out the latest issues facing the airport industry.
- Conducts research to find solutions.
- Publishes and disseminates research results through free publications and webinars.
Other Ways to Participate

Become an Ambassador. Ambassadors represent ACRP at events and conferences across the country!

Sponsor or become an ACRP Champion. The champion program is designed to help early- to mid-career, young professionals grow and excel within the airport industry.

Visit ACRP’s Impacts on Practice webpage to submit leads on how ACRP’s research is being applied at any airport.

Visit us online: www.trb.org/ACRP
Additional ACRP Publications Available on Today’s Topic

Report 117: Airport Escalators and Moving Walkways—Cost-Savings and Energy Reduction Technologies

Report 119: Prototype Airport Sustainability Rating System—Characteristics, Viability, and Implementation Options

Report 124: Airport Parking Garage Lighting Solutions

Report 141: Renewable Energy as an Airport Revenue Source

Synthesis 21: Airport Energy Efficiency and Cost Reduction

Synthesis 24: Strategies and Financing Opportunities for Airport Environmental Programs

Synthesis 66: Lessons Learned from Airport Sustainability Plans

Synthesis 69: Airport Sustainability Practices—Drivers and Outcomes for Small Commercial and General Aviation Airports

Visit us online: www.trb.org/ACRP
Upcoming ACRP Webinars

November 7
Comprehensive Renewable Resources Strategy for Airports

November 20
Using GIS for Land Use Compatibility Planning Near Airports

December 10
Give the ‘All Clear’—Hazard Zoning at GA Airports
TRB turns 100 on November 11, 2020

100 YEARS
2020

Help TRB:
- Promote the value of transportation research;
- Recognize, honor, and celebrate the TRB community; and
- Highlight 100 years of accomplishments.

Learn more at www.TRB.org/Centennial

MOVING IDEAS: ADVANCING SOCIETY—100 YEARS OF TRANSPORTATION RESEARCH

The National Academies of SCIENCES • ENGINEERING • MEDICINE