TRANSPORTATION RESEARCH BOARD

Rock On - The Impacts of the Mischaracterization of Rock

February 3, 2021

@NASEMTRB #TRBwebinar

PDH Certification Information:

1.5 Professional Development Hour (PDH) – see follow-up email for instructions
You must attend the entire webinar to be eligible to receive PDH credits
Questions? Contact Reggie
Gillum at <u>RGillum@nas.edu</u>

#TRBwebinar

The Transportation Research Board has met the standards and requirements of the Registered **Continuing Education Providers** Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Learning Objectives

- 1. Identify risks related to soil and rock identification
- 2. Identify how to alleviate these risks

#TRBwebinar

Is It Soil or Is It Rock? How Project Outcomes Depend on the Properties and Word Choices

Technical Webinar

Impact of the Mischaracterization of Rock (on Construction Projects)

Wednesday, 3 February 2021, 1:00 to 2:30

Robert Bachus – Geosyntec Consultants

Is It Soil or Is It Rock?

- Rock: Rock is a relatively hard, naturally formed solid mass consisting of various minerals and whose formation is due to any number of physical and chemical processes. The rock mass is generally so large and so hard that relatively great effort (e.g., blasting or heavy crushing forces) is required to break it down into smaller particles.
- Soil: Soil is defined as a conglomeration consisting of a wide range of relatively smaller particles derived from a parent rock through mechanical weathering processes that include air and/or water abrasion, freeze/thaw cycles, temperature changes, plant and animal activity, and chemical weathering processes that include oxidation and carbonation.

Why is it Easy to Mischaracterize? Why this Webinar?

Let's Pick Something Easy to Characterize...

https://tekrighter.wordpress.com/2014/03/13/metabolomics-elephants-and-blind-men/

Is It Soil or Is It Rock.... What is Your Perspective?

- Geologist
- Excavation Contractor
- Foundation Contractor
- Tunneller
- Construction Manager
- Mining/Miner
- Quarry
- Engineer

Who Wants to Know?

Geologist

https://www.americangeosciences.org/education/k5geosource/content/rocks/what-are-igneous-rocks

https://www.thoughtco.com/sedimentary-rock-classification-diagrams-4123127

Rock Description: Limestone, light gray, very fine-grained, thinly bedded, unweathered, strong Rock Type Color Grain Size and Shape Texture

Mineral Composition Weathering/Alteration Strength Strike/Dip

Excavation Contractor

https://www.britannica.com/technology/blasting

https://www.911metallurgist.com/blog/rock-blasting

https://www.youtube.com/watch?v=cKwkr3Ed14g

Tensile Strength Joint spacing Hardness

https://rockworkinc.com/blasting/

Foundation Contractor

https://www.nicholsonconstruction.com/geotechnical-solutions/deep-foundations/drilled-shafts

Tensile Strength Discontinuities Harness Stratigraphy Degradation Water

https://www.morrisshea.com/portfolio-item/drilled-shaft_caisson/

Tunneller

https://www.autostemtechnology.com/autostem-tunneling/

Discontinuities Continuity of Face Strength Hardness Processing

https://www.rocktechnology.sandvik/en/products/mechanical-cutting-equipment/roadheaders-for-tunneling/

http://www.crossrail.co.uk/construction/tunnelling/meet-our-giant-tunnelling-machines/

Mining/Miner

https://en.wikipedia.org/wiki/Mining

Quality/Purity Overburden Stability Handling Water

https://3d-p.com/performance-of-Ite-in-mining-in-2019-what-to-expect/

https://www.newsbtc.com/2016/07/21/bitcoin-miners-inwashington-state-to-pay-more-for-electricity/

Quarry

https://waypoint.sensefly.com/quarry-survey-drone/

Quality Consistency Hardness Stability Water Operations

https://en.wikipedia.org/wiki/Statham%27s_Quarry

https://bhamnow.com/2018/12/03/vulcan-materials-company-food-drive/

Engineer

https://civildigital.com/failure-modes-in-rock-and-soil-slopes-slope-failure/

https://www.researchgate.net/figure/Key-rock-failure-modes-consideredin-slope-stability-analysis-a-planar-translational_fig1_259330495

Hopefully, conscious of all of the factors presented previously

https://www.iamcivilengineer.com/difference-between-end-bearing-piles/

Is It Rock or Is It Soil?

How Project Outcomes Depend on the Properties and Word Choices

- Rock means different thing to different people/organizations
- It would be easy to mischaracterize rock..."good" vs. "bad"???
- The challenge is to understand the context and perspective of the user
- The goal is to properly convey the characterization to each user

Rock Excavation: Current State of Practice and Potential Improvements to Reduce Risk Learning Objectives:

- Identify risk sources related to rock mischaracterization

 Alignment/constructability
 Geologic/geotechnical characterization and design
 Construction means and methods
 Project complexity and communication
- 2. Identify tools for minimizing or mitigating sources of risk

Case History: Roadway widening and improvements in mountain corridor

Project Limits: 15 Miles of Improvements - 5 Rock Cuts

Project Scope

Project # 20258 Key Work Elements

- Reconstruction MP 38.96 (Fourmile Canyon Drive) To MP 40.67
 - Full depth pavement reconstruction
 - Shoulder widening
 - Rock excavation, rock scaling, rock reinforcement & draped wire mesh installation
 - Water control / dewatering
 - Bridge repairs, scour mitigation (Structure D-15-AK, d₅₀=36" rock obtained from embankment repairs at Site 5, MP 39.6, and MP 40.1)
 - Embankment repairs, scour mitigation
 - Pedestrian box culvert extension and wingwalls
 - Stacked rock walls
 - Soil nail wall
 - Trail reconstruction
 - Cross culvert replacement / cleaning
 - Type C and D Inlets
 - Guardrail / barrier replacement
 - Temporary traffic signals 4 areas

Rock Excavation Cross-sections: Alignment and Constructability

Rock Excavation Cross-sections: Site Characterization and Design

Construction: Means and Methods

Construction: Means and Methods

Construction

Boulder Canyon closed up to 3 days

Blasting brought down 8,000 cubic feet of rock on Wednesday

By Charlie Brennan and Kelsey Hammon Staff Writers

A massive rockslide that brought down 20 times more rock than expected during scheduled blasting Wednesday has prompted a two- to possibly threeday closure of Boulder Canyon Drive, according to Colorado Department of Transportation officials.

Initially, CDOT officials on Wednesday afternoon predicted the highway would be closed for at least 24 hours. By evening, they said a multiple-day closure was necessary to clear fallen rock.

Wednesday's scheduled blast sent 8,000 cubic yards of rockfall crashing down the side of the mountain and onto the

Courtesy photo / Colorado Department of Transportation

A rockslide in Boulder Canyon on Wednesday has closed Colo. 119 until further notice.

Construction

Current State of Practice: Risk Sources

Alignment

- Drives initial excavation layout and volumes
- Constructability not always thoroughly considered

Site characterization and design

- Investigation funding, scope, execution
- Plans & specs accuracy, consistency, clarity

Construction means/methods and contract administration

• Balancing expectations, flexibility, authority, and risk ownership between contractor and owner

Project complexity and communication

• Conveying geologic knowledge, risk considerations, and consequences to project staff at all phases and in all disciplines is a challenge

Alignment

- Early involvement of geotechnical staff
 - Clarify project needs vs. geotechnical needs
 - $\,\circ\,$ Set realistic expectations for time and budget
 - \circ Identify/mitigate potential high risk areas before they are baked into the design
- Value engineering workshops

Site characterization and design

- Investigation
- Plans & specs accuracy, consistency, clarity
 - o Inconsistent or conflicting plans and specifications are a common source of problems
 - $\circ\,$ Specify and enforce experience requirements for complex projects
 - $\circ\,$ Photos in plan sets to illustrate areas of concern
 - If plans include risk mitigation elements, be sure specs give project manager clear authority to implement them

Construction means/methods and contract administration

- Pre-bid and pre-construction meetings to convey specific areas of concern to contractors
- Consider performance requirements vs. prescriptive requirements
- Contractor risk vs. owner risk

Project complexity and communication

- Conveying geologic knowledge, risk considerations, and consequences to project staff through all phases and in all disciplines is a challenge
 - $\,\circ\,$ Make sure geotech isn't an afterthought until problems arise
- Risk identification and ownership discussion with decision makers
- Specify check-in points and parties for critical geotechnical issues
 - \circ Assume no one has read the geotechnical report
 - Design to construction management hand-off for owner/agency
 - Include both prime and sub-contractors at check-ins
- Risk mitigation tools are important and helpful but only if project personnel are aware of and know how to use them

Center for Accelerating Innovation

<u>Advanced Geotechnical Methods in Exploration</u> (A-GaME)

Bring your A-GaME – Reduce Uncertainty, Risk and Mischaracterization of Rock

The A-GaME's Mission

Mitigate risks to project schedule and budget, and improve reliability by optimizing geotechnical site characterization using proven, effective exploration methods and practices.

Center for Accelerating Innovation

Advanced Geotechnical Methods in Exploration

CPT - Cone Penetration Test SCPT - Seismic Cone Penetration Test **ER - Electrical Resistivity IP - Induced Polarization SP - Self Potential** MWD - Measurement While Drilling Seismic: Refraction Seismic: Reflection Seismic: FWI - Full Waveform Inversion Seismic: SASW - Spectral Analysis of Surface Waves Seismic: Tomography Seismic: Downhole Seismic: Crosshole Shear

TDEM - Time-Domain Electromagnetic FDEM - Frequency-Domain Electromagnetic **VLFEM - Very Low Frequency Electromagnetic OTV - Optical Televiewers ATV - Acoustic Televiewers GPR** - Ground Penetrating Radar MicroGravity PMT - Pressuremeter Test DMT - Flat Plate Dilatometer Test Rock Discontinuities from Photogrammetry Pore-water pressure from Field Piezometers Suspension Logging Vane Shear Test (VST) Downhole Full Waveform Sonic Logging

Electrical Resistivity and Induced Polarization

Measurement While Drilling (MWD)

Γ	LOG OF BORING	g No	D.	TC-	209					
CLIENT: Jacobs Engineering Group, Inc San Antonio, Texas PROJECT: US 281 No Project, S						h/Loop 16 Antonio,	604 Inte Texas	erchange		
BORING LOCATION: NORTHING: 13771636 EASTING: 2138599						SDC				
				SA	MPLES		TEST	s		
e log	DESCRIPTION	FEET	WBOL		NS/FT SUMLITY IATION	ERY (%)	RES / FOOT	FINED (ESSIVE GTH, KSI	E STRAIN, %	PDPM TC209
Gaph	Approx. Surface Elevation: 974.6 feet	HLIGH	ISCS S	TYPE	A BLO	EOOV	RACTU	UNCON	AILUR	0 5 10 15 20 25 30
	CLAYEY GRAVEL: brown and tan, dense to very dense, angular limestone fragments 5.0 969.6 LIMESTONE: moderately to severely	5	GC	SS SS SS CORE	N=34 N=61 N=50/1* RQD-23%	Reo-88%	5	2.5	0.40	
	weathered, tan, hard, highly fractured, reddish brown lean clay along fracture surfaces	10-11		CORE	RQD-33%	REC-83%	6 3 4 1	5.5 14.4 3.6	0.57 0.72 0.58	10
	- vuggy between 5 and / reet - calcite deposits along fracture surfaces between 7 and 12 feet - moderately weathered below 12 feet	15		CORE	RQD-0%	Reo 13%	4	5.0 7.2	0.43	
	- severely weathered and vuggy below 15 feet	20-11		CORE	RQD=27%	Rec=93%	1 2 1 >10 9	8.4 7.6 7.5 6.1 8.0 4.9	0.61 0.55 0.39 0.46 0.51	20
	-8 inches of reddish clay layer at 24.5 feet	25		CORE	RQD-64%	NEC-68%	2 2 5 5 2	8.0 5.9 6.5 8.2	0.63 0.34 0.49 0.54	25 Automatical Aut
	30.0 944.6 LIMESTONE: moderately weathered.	30		CORE	RQD-38%	Rec= 100%	1 1 1 2	7.8 7.7 6.4 6.5 6.8	0.46 0.46 0.39 0.46 0.46	30
	tan, hard, yellow-brown lean clay along fracture surfaces, vuggy	35					4 5 1	42	0.39	35
	-reddish brown clay along tracture surfaces			0012			4 >10 2 6	8.8	0.80	
	 moderately to severely weathered, calcite along fracture surfaces below 40 feet 			CORE		NEC-03%	>10 >10 1			
	- void between 43.5 and 44 feet - moderately weathered below 45 feet 50.0 924.6	50		CONE		NB0=12%	5 5 2	6.2	0.67	
STRA BOUN TRAN GRAD	Boring Terminated at about 50 feet. NTFICATION LINES REPRESENT APPROXIMATE NONRES BETWEEN SOL TYPES. IN SITU. THE SOTTON BETWEEN STRATA MAY BE MORE DUAL.	drilling f	from 9 ubsur	5 to 50 f face wai	eet. Boring was ter observation.	s backfiled wit	h bentonite	after		
	WATER LEVEL OBSERVATIONS				DATE	DRILLED		Page 1 o	f1	Course: Torrooo
¥	<u>;</u> 7 6				8/	7/2010	- B(oring	NO.	Source: Terracon
I <u></u> ≁	FREE WATER WAS NOT OBSERVED DURING OUR				PROJEC 90	90105074		TC-209		

Seismic Refraction – Top of Bedrock

7

Optical and Acoustic Televiewers (OTV/ATV)

Source: Rob Garfield, Hager-Richter

Issues & Observations from States

Issues with -

- Mischaracterized rock for drilled shaft construction – impacting equipment selection and construction schedule
- Certain types of soil and rock are difficult to characterize
- Unanticipated rock encountered during foundation construction
- Scourability of rock, depth to "unscourable" rock

Source: FHWA

Issues & Observations from States

Observations -

- Modest changes to subsurface investigation practices can produce significant reductions to problems
- Geophysical methods have helped characterize rock over large areas where traditionally not explored like for sound-walls and secondary structures
- Televiewers have demonstrated great value for rock characterization for foundation design and construction
- Generate office-study and recon report & program stop-point. Lay-out risks and anticipated conditions for project requirements. Make case for enhanced investigations where warranted.

Take-Aways from TRB Workshop Discussion

Change the standard of practice to allow innovation:

- Move away from prescriptive practice
- Allow phased investigations
- Allow observational approach where appropriate
- Allow time and effort for appropriate methods and lab testing
- GIS in preliminary phase
- Build site model before the project
- Aggregate existing information before doing anything

Take-Aways from TRB Workshop Discussion

- Provide access to existing information
- Communicate with others on project
- Assure professionals get contacted to re-evaluate project location and plans
- Set expectations; phased investigations should be planned when project is complex
- Prevent misstep where phased or additional investigation is not allowed when plans change

Source: ALDOT

Questions

Benjamin S. Rivers, FHWA Resource Center <u>benjamin.rivers@dot.gov</u> 404-562-3926

Today's Panelists

- Bob Bachus, Geosyntec Consultants
- Bob Group, Colorado Department of Transportation
- Ben Rivers, *Federal Highway Administration*
- Moderated by Sharid Amiri, California Department of Transportation

#TRBWebinar

TRANSPORTATION RESEARCH BOARD

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Get Involved with TRB

Receive emails about upcoming TRB webinars https://bit.ly/TRBemails #TRBwebinar

Find upcoming conferences http://www.trb.org/Calendar

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Get Involved with TRB #TRBwebinar

@NASEMTRB @NASEMTRB

Getting involved is free!

Transportation Research Board

> Be a Friend of a Committee <u>bit.ly/TRBcommittees</u> – Networking opportunities May provide a path to Standing Committee membership

May provide a path to Standing Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp

Update your information www.mytrb.org

The National Academies of SCIENCES • ENGINEERING • MEDICINE