TRANSPORTATION RESEARCH BOARD

Centering Seams – Maintaining Centerline Joints in Asphalt Pavements

February 17, 2021 2:00-3:30 PM Eastern

@NASEMTRB #TRBwebinar

PDH Certification Information:

•1.5 Professional Development Hours (PDH) – see follow-up email for instructions

•You must attend the entire webinar to be eligible to receive PDH credits

•Questions? Contact Reggie Gillum at <u>RGillum@nas.edu</u>

#TRBwebinar

The Transportation Research Board has met the standards and requirements of the Registered **Continuing Education Providers** Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Learning Objectives

1. Identify ways to reduce the need for maintenance of centerline joints

2. Discuss innovative practices to improve centerline joint performance and maintenance

#TRBwebinar

Todd Thomas <u>tthomas@asphalt-</u> <u>materials.com</u> *Asphalt Materials, Inc.*

Greg Duncan gduncan@applied pavement.com Applied Pavement Technology, Inc.

John Senger john.senger@illinois. gov Illinois Department of Transportation

Hasan Ozer <u>hasan.ozer@asu.edu</u> Arizona State University

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Material Solutions to Improving Centerline Joint Performance

Todd Thomas, P.E. Technical Director – Specialty Products Asphalt Materials, Inc.

Agenda

Hot-applied treatment – under the joint

Emulsion products – over the joint

Condition of joint vs. rest of the pavement

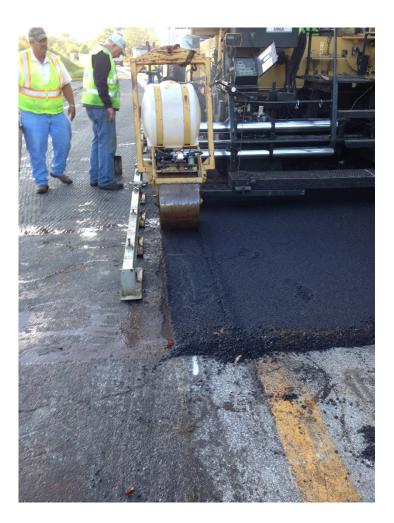
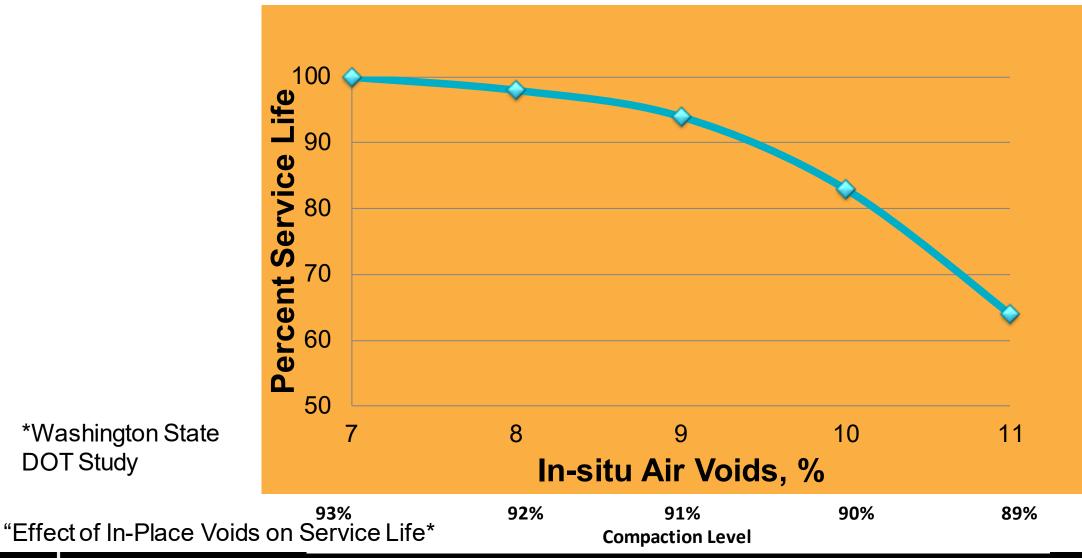

Longitudinal Construction Joints

Photo courtesy of Asphalt Institute

- Longitudinal construction joints
 - Commonly, the first area requiring maintenance on a pavement
- Issues
 - Cannot achieve the same density at the joint / edge as in the mat
 - Permeable void structure near joint
 - Water and air intrusion accelerates damage


Longitudinal Construction Joints

Mechanical methods to improve joint performance

- Joint density requirements (typically target voids at 4" from joint to within 2% of center mat voids)
- Echelon paving (eliminate the joint)
- Cut off lower density unconfined edge
- Mill and inlay (confinement)
- Notched wedge joint (safety)

Why do joints fail early?

6 Material Solutions to Improving Centerline Joint Performance

DOT Study

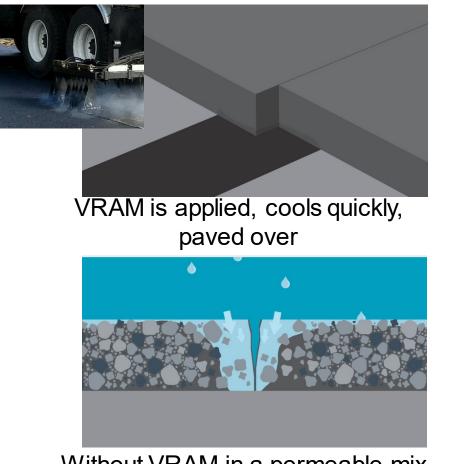
Longitudinal Joint Improvement Plan – Hot Applied

- Early 2000's timeframe
- Illinois DOT recognized need for better joint performance
- Mechanical methods didn't always work consistently
- Failure due to permeability
- Concept fill a portion of the voids with an asphalt product from bottom up

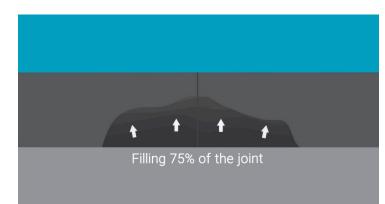
Falling head permeameter

Longitudinal Joint Seal Development

- IDOT worked w/ 2 companies to develop a Longitudinal Joint Sealant (LJS) – needed improved application equipment; needed formula to have limited lateral flow and also to migrate
- Called Void-Reducing Asphalt Membrane (VRAM) by some states



Hot-applied


Rolled material


How it works

Without VRAM in a permeable mix, water over time damages the mix

HMA softens VRAM, melts, migrates 50 to 75% of thickness

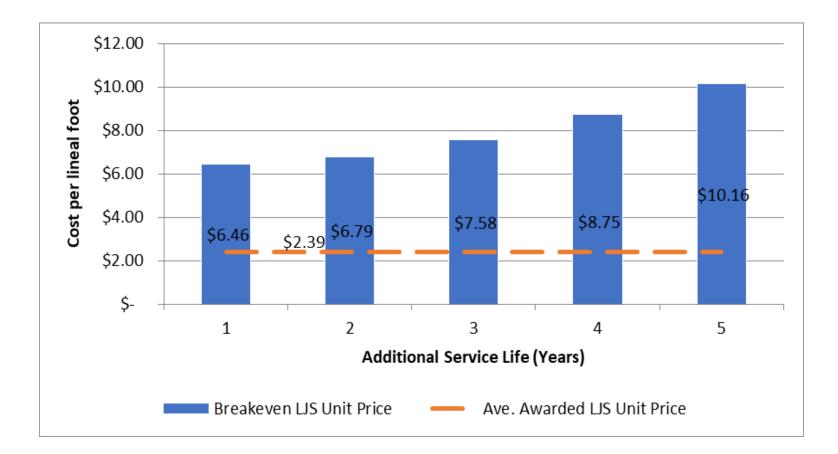
With VRAM, voids in lower portion of mix are sealed, protecting mix

VRAM Field Performance IDOT US-51 after 15 Years – One of three projects cored

VRAM joint transition to control

VRAM section

2017 Evaluation – IDOT Core Testing of Original Projects


- Asphalt content nearly double for LJS cores
- Migration 26 to 66 % of layer height
- Lab permeability testing (vertical flow)
 - Top half:
 - All cores had nearly equal lab perm.
 - Bottom half:
 - Control: 110 to 372 x 10⁻⁵ cm/sec
 - LJS: zero
- I-FIT flexibility index (FI) values (IDOT long-term aged lab FI ≥ 4.0)
 - Controls: 0.2 to 0.8
 - LJS: 1.9 to 23

VRAM / LJS Specification Features

- Materials specification (PG testing)
- Application multiple methods
- Construction rate, width, no pick-up, paving over
- An option under rumble strip(e)s (Ohio DOT)
- Paid for in linear feet

VRAM / LJS - Life Cycle Cost Analysis Two Lane Road



- 2021 TRB paper
- Graph starts at year 16
- 3 to 5 years added life expected
- Pays for itself with just one year added life

Hot-applied summary

- Bottom-up solution applied at time of construction
- No permeability in bottom half of layer by partially filling voids
- Various methods of applying
- Extends life by three to five years

Topical Surface Treatments for Centerline Joints

Rapid penetrating asphalt emulsion (RPE)

Emulsified rejuvenator

Surface Treatment of HMA Centerline Joints

- Materials
 - Fog seal emulsions
 - Rejuvenating fog seal emulsions
 - Penetrating asphalt emulsions
- Treatments are spray-applied, post-construction to the surface of the pavement
- Treatments may address permeability or aging of the binder or both
- 1.5 to 2 feet wide spray width

Materials for Treatment of Centerline Joints

- Fog seal emulsions Slow-setting asphalt emulsions (SS or CSS), usually diluted 1:1 and applied at ~ 0.1 gal/yd²
- Rejuvenating fog seal emulsions Similar rate as or less than traditional fog seal emulsions
 - The asphalt component is replaced by either bio-oil or petroleum oil or a combination of asphalt and oil

Materials for Treatment of Centerline Joints

- Rapid Penetrating Emulsions (RPE) Asphalt emulsions designed to penetrate deeper and faster than traditional asphalt emulsions
 - Supplied at 35 40% solids, typically applied at 0.08 to 0.15 gal/yd2
 - Different from slow set emulsions:
 - Ability to pass through No. 500 sieve
 - Improved water resistance test (early rainfall test)

Water won't pass but RPE will

Rejuvenating Fog Seal vs Rapid Penetrating Emulsion (RPE)

to ½"

voids and

-Reduce

permeability

but not

impermeable/

texture

-Oil-based slow-setting emulsion (25-30% solids) $-Rate \le 0.1 \text{ gal/yd2} (0.03)$ gal/SY res.)

-Restore properties of the asphalt binder and reduce permeability

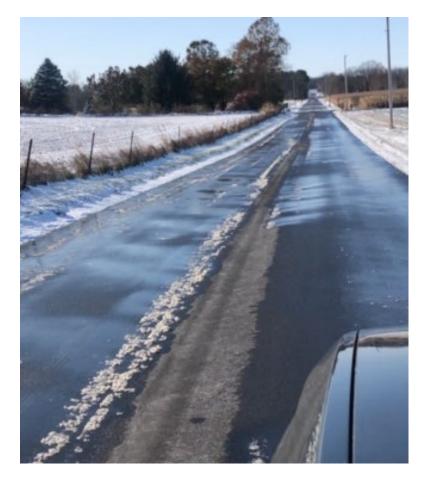
-Recommend PCR > 70

-2 to 4 years added life claimed

-\$1/yd2 to \$3/yd2 applied cost with sanding

-Low viscosity asphalt emulsion (35-40% solids) -Penetrate Rate ~0.15 gal/yd2 (0.06 pavement gal/SY res.) surface ~ 1/4" depending on

-Reduce permeability and maintain texture


-Best if applied within the first 2 years

-Not enough data on added life yet

~ \$0.75/yd2 applied cost, usually not sanded

RPE Centerline Treatment Effect

Reduced permeability allows the treated centerline to dry faster than other parts of the pavement

Hendricks County, IN CR 700S RPE Centerline and Full Width

Spray-applied rejuvenator in MN

Day of application

6 years later

Photos courtesy of Pavement Technology, Inc.

Summary

Feature	VRAM treatment	Topical treatment
Application rate	~1 gal/SY	Rejuvenator ~0.03 gal/SY residual RPE ~ 0.06 gal/SY residual
Permeability	Bottom half impermeable	Reduce permeability but not impermeable
Thickness affected	≥ 50% of overlay height filled	Penetrate top $\frac{1}{4}$ " to $\frac{1}{2}$ "
Combined	Some agencies have combined VRAM/LJS and topical	

The selection depends on the environmental conditions and distress.

Questions?

Todd Thomas

Technical Director – Specialty Products

Asphalt Materials, Inc.

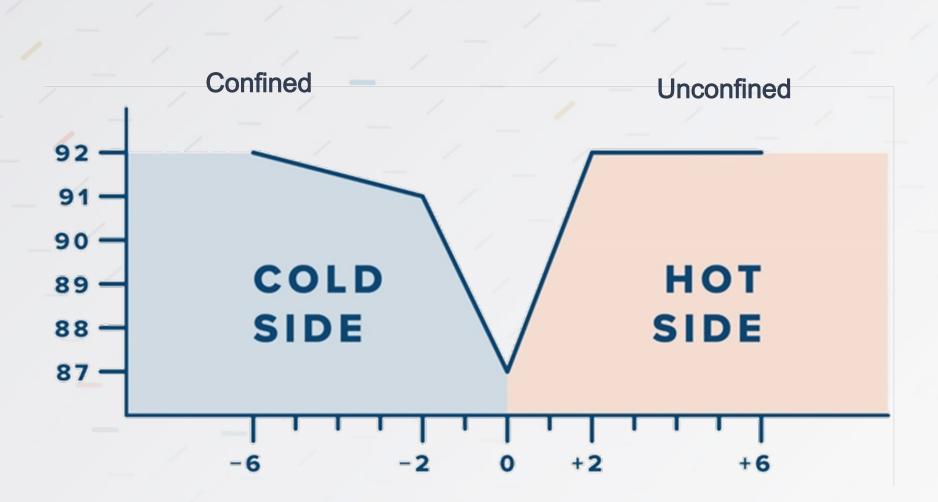
tthomas@asphalt-materials.com

973-610-2260 (cell)

Practical Longitudinal Joint Repair Techniques

Practice: Centering Seams – Maintaining Centerline Joints in Asphalt Pavements

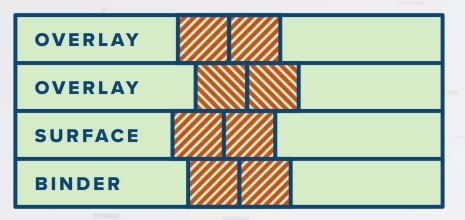
February 17, 2021 Greg Duncan – Senior Engineer Applied Pavement Technology, Inc

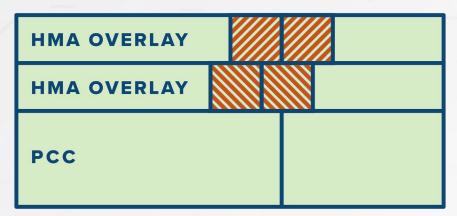

Overview

- The challenge
- Construction and repair practices in other states
- Repair practices in Ohio
 - » Slot paving
 - » Spray injection
 - » Crack sealing
- Repair life expectations

Source: APTech

Density Profile Across the LJ

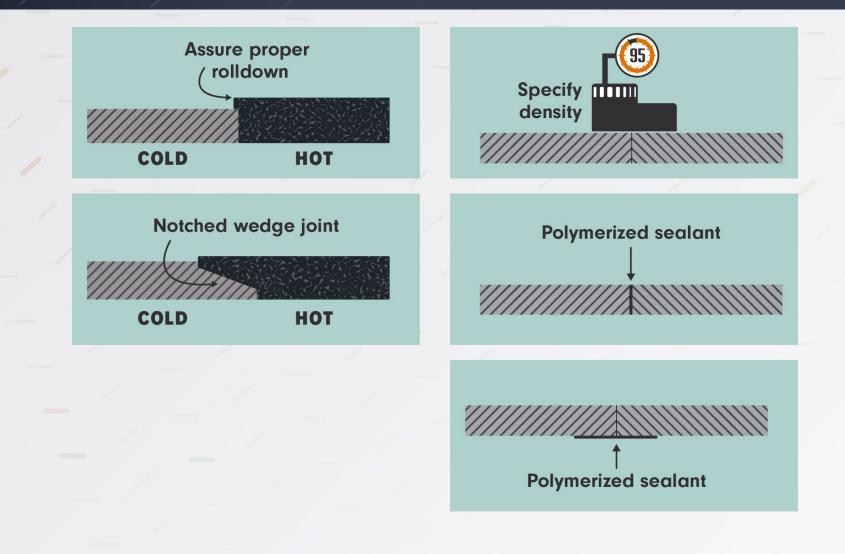

Source: APTech based on Cooper

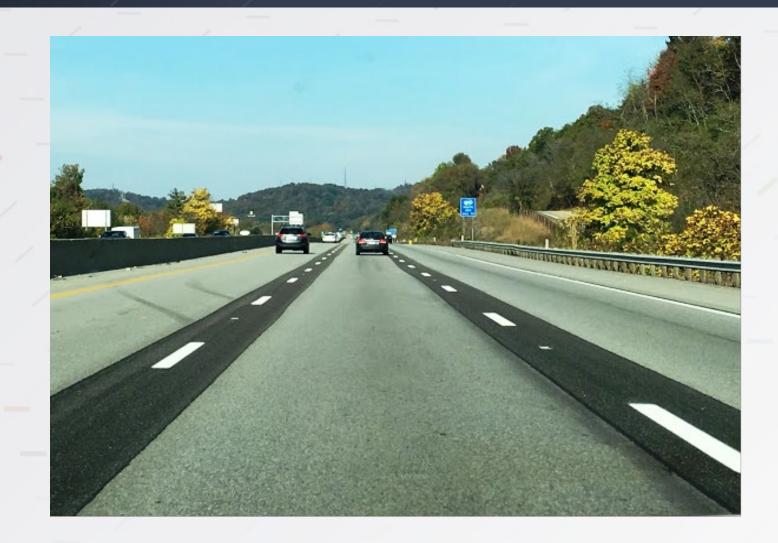

Longitudinal Joints: The Challenge

STACKED JOINTS

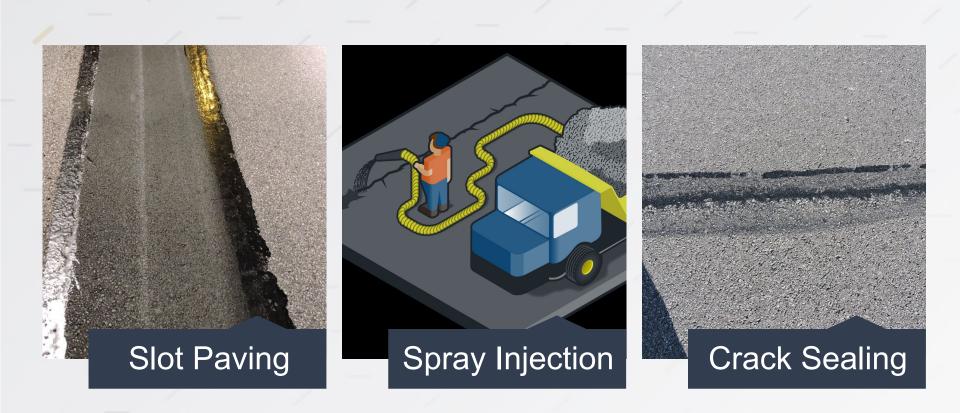
FLEXIBLE

COMPOSITE




AREAS OF LOW PAVEMENT DENSITY

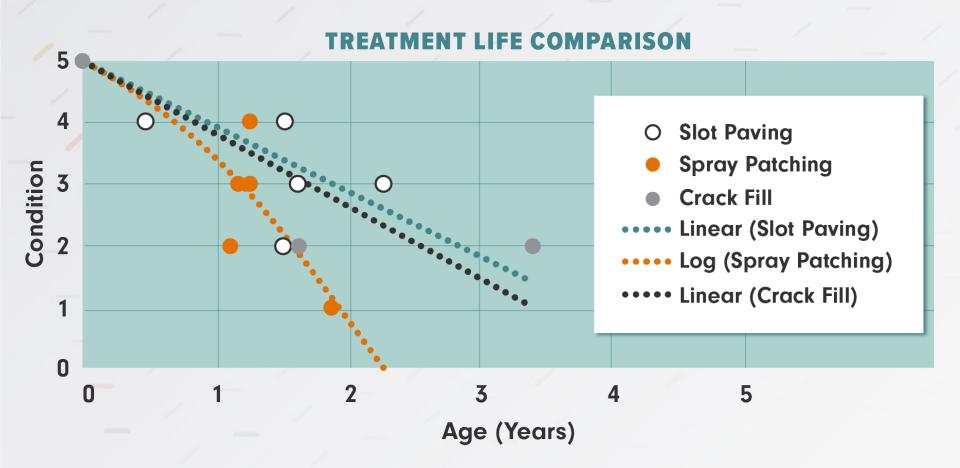
Best Construction Practices


Source: APTech

Micro surfacing

Source: Illinois,WVDOT

ODOT Repair Techniques


Spray Injection

Distress Evaluated

- Created a repair scoring scale for the repair condition
- Compared the conditions to repair age
- Projected where repair failure would occur

Repair Deterioration

Repair Life Expectations

Repair	Treatment Life, Years	Cost per mile, \$	Cost per mile per year, \$
Slot Paving	4.3	\$104,464	\$24,294
Spray Injection	2.2	\$12,764	\$5,802
Crack Sealing	4.5	\$3,363	\$747

Recommendations

- Because crack sealing is the most economical treatment, it should be applied as soon as 0.25-inch opening occurs.
 - Spray Injection
 - » 2.2-year life expectation
 - » Significantly cheaper than slot paving
 - » Implement specification

Recommendations

Slot Paving

- » Slot paving for severe LJ distress with next treatment scheduled more than 4 years in the future
- » Add density specifications
- » Use 3-ft standard width and a uniform thickness
- Select sections for the repair that are continuous and coincide with one night's production

Recommendations

Treatment	Joint Width (in)			
	0.125to 1	1 to 3	>3	
Crack Filling		- / -		
Spray Injection		-	*	
Slot Paving			√ **	
		*ifless than 4 years remaining **ifexpected life >4 years		

Thank you!

For more information:

Greg Duncan gduncan@appliedpavement.com 615.517.2178

ODOT Research Report http://cdm16007.contentdm.oclc.org/cdm/ref/collection/p 267401ccp2/id/15768

MAINTAINING ILLINOIS' CENTERLINE JOINTS

John Senger Engineer of Pavement Technology Illinois Department of Transportation

Does this look familiar?

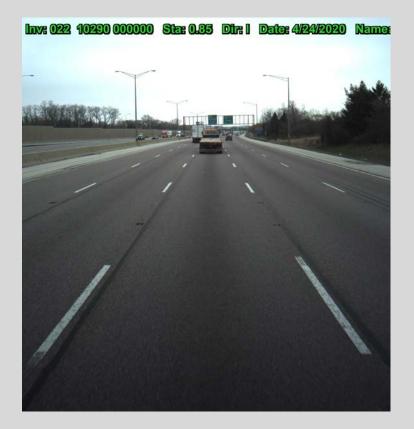
"We cannot solve our problems with the same thinking we used when we created them" – Albert Einstein

First one to the party....

Quick lesson on CRS

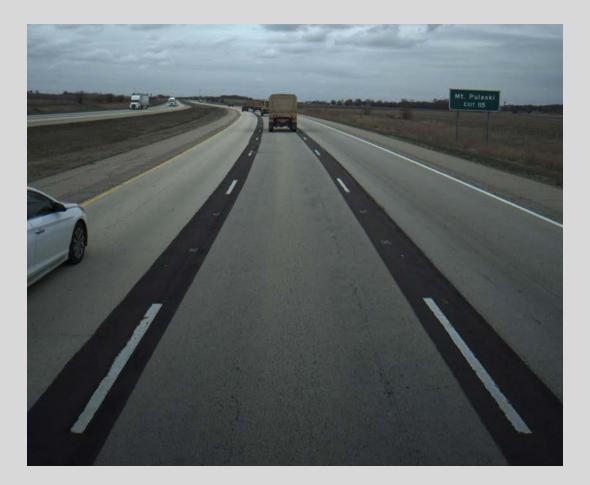
- CRS = Condition Rating Survey
- Scale from 9.0 to 1.0
- 9.0 = Brand new pavement
- 1.0 = Impassable roadway
- 9.0 7.6 Excellent
- 7.5 6.1 Good
- 6.0 4.6 Fair
- 4.5 1.0 Poor
- Composite Index comprising of the 5 prominent distresses, IRI, Rutting and/or Faulting

Centerline Joint Deterioration


- S1 Tight Cracking with little or no spalling
- S2 Cracking with low to medium spalling
- S3 Infrequent occurrence: Cracks are open with medium to severe spalling
- S4 –Frequent occurrence: Cracks are open with medium to severe spalling

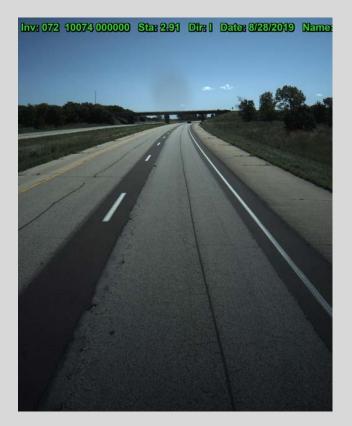
S1 and S2

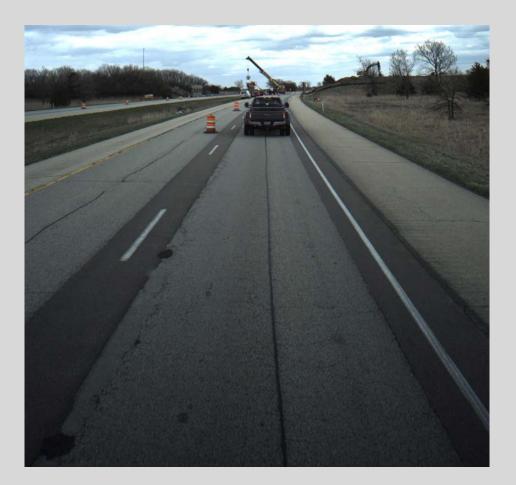
Treatments for S1 and S2



Before and After CL Micro

CL Micro – 4 years later

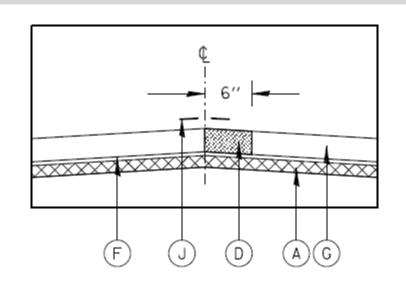

S3 and S4



Treatment for S3 and S4

2' Mill and Fill at Long. Joint

Longitudinal Joint Seal (LJS)



LJS Video

Joint Trimming

NOTE:

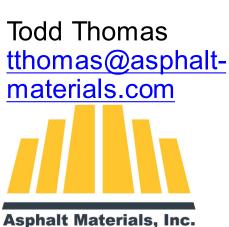
SEE CONSTRUCTION SEQUENCE FOR MILLING AND PAVING SPECIAL PROVISION

Joint Trimming

Joint Trimming

Current Research Project

- Bureau of Research has contracted with AP Tech to help with a research project into these various treatments
- Objective is to evaluate cost effectiveness of different strategies by evaluating performance, benefit, and cost of different strategies.
- Sections built with both LJS and Joint Trimming.
- Our designers need many tools in their toolboxes.
- Existing reports
- PRR #168 Evaluation of Longitudinal Joint Sealant in Illinois
- PRR #169 Experimental Joint Sealants for Hot Mix Asphalt Pavements and Overlays


Contact Information

"The only way to do great work is to love what you do. If you haven't found it yet, keep looking. Don't settle. As with all matters of the heart, you'll know when you find it." – Steve Jobs

John Senger Engineer of Pavement Technology Illinois Department of Transportation 217-782-8582 John.Senger@illinois.gov

Greg Duncan gduncan@applied pavement.com

applied pavement

John Senger john.senger@illinois. gov Illinois Department of Transportation

Hasan Ozer <u>hasan.ozer@asu.edu</u>

Arizona State University

The National Academies of SCIENCES • ENGINEERING • MEDICINE

#TRBwebinar

Get Involved with TRB

Receive emails about upcoming TRB webinars https://bit.ly/TRBemails

Find upcoming conferences http://www.trb.org/Calendar

The National Academies of SCIENCES • ENGINEERING • MEDICINE **#TRBwebinar**

Get Involved with TRB #TRBwebinar

@NASEMTRB @NASEMTRB

Transportation Research Board Getting involved is free!

Be a Friend of a Committee <u>bit.ly/TRBcommittees</u>

- Networking opportunities

- May provide a path to Standing Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp

Update your information www.mytrb.org

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Other TRB events for you

- *March 3*: TRB Webinar: Chemical Treatments on Low-Volume Roads
- *March 31*: TRB Webinar: Evaluating Tack Coat Materials' Durability in Asphalt Pavements

https://www.nationalacademies.org/trb/events

The National Academies of SCIENCES • ENGINEERING • MEDICINE

