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1. Identify current applications of AI in 
highway asset management

2. Identify emerging sensing and 
analytical technologies

3. Discuss future applications of AI in 
highway asset management



OFFICE OF RESEARCH, 
DEVELOPMENT, 
AND TECHNOLOGY

ARTIFICIAL INTELLIGENCE (AI) 
OPPORTUNITIES IN HIGHWAY 

INFRASTRUCTURE 

TRB Webinar Hoda Azari, Ph.D.
Non-Destructive Evaluation (NDE) Research 

Program Manager  
Office of Infrastructure Research and Development (R&D)

Federal Highway Administration (FHWA)
February 22, 2021

All images source: FHWA.



‹#›‹#› 2

• Allows ever-larger datasets to be 
processed

• Unveiling hidden correlations
• Automated way of extracting 

knowledge/information from data, 
differing from traditional scientific 
approaches

• Automated decision making

KEY STRENGTHS OF AI
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AI POTENTIAL FOR NDE

• Automatically process massive NDE 
data

• Automate identification of hidden 
defects and damages

• Automate condition assessment
• What aspects can be assisted by AI?

NDE  yes/no? Position Inspection
Concept

Data 
CollectionData QualityData Analysis

Interpretation
Data 

Combination/ 
Fusion

Measures
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CHALLENGES

• Along the entire process, expert decisions necessary
• Application of AI requires ground truth data
• Labor intensive to label data
• Identification of the most suitable learning models and 

optimization methods to process NDE data
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• Multimodal data fusion 
• Forecast future NDE condition maps based on NDE map time series 

(tumor growth)
• Reproduce a NDE scan based on those from other modalities 

(reproduce MRI from X-ray)
• Develop Long Term Performance Prediction Models 

CURRENT FOCUS
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CONTACTS

Hoda Azari
Hoda.Azari@dot.gov

Source: FHWA.



1

Click to edit Master subtitle style

Transportation Research Board Webinar
Using Artificial Intelligence to Predict Deterioration of Highway Bridges

February 22, 2021

Artificial Intelligence (AI) in highway asset 
management

Devin K. Harris, Ph.D. – Associate Professor
Tianshu Li – Graduate Research Assistant

Mohamad Alipour Ph.D. – Former Graduate Research Assistant
Department of Engineering Systems and Environment

University of Virginia



2

MOB Lab @ the University of Virginia

Mobile Laboratory for Rapid Evaluation of Transportation Infrastructure (MOB Lab)
• Efficient methods to evaluate the performance of the built environment
• Understanding linkages between condition state and performance
• Minimal disruption of operations or service

Hybrid Composite Bridge Testing (HCB System)
Tianshu Li

Mohamad AlipourAya Yehia

Tina Tang
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Our Motivation

Transportation infrastructure systems represent the lifeblood of our economy, 
yet these systems are aging and are in a general state of disrepair.
• Tragic failures brought the challenges associated with the safety of national 

infrastructure to forefront of public scrutiny.

• Asset management represents a framework that describes systems to manage the 
infrastructure assets we already have in service (i.e. roads, bridges, ancillary 
structures, etc.) and plan for future assets.

I-35, Minnesota (2007) I-5, Washington (2013) M bridge, Missouri (2013)



4

State of Transportation Infrastructure…Bridges

• Our infrastructure suffers from various sources of in-service degradations and these mechanisms 
remain as one of the greatest challenge for managing agencies (DOTs)

• To ensure safe, cost-effective, and reliable structures owners must understand the conditions that 
a structure experiences and the effects of condition on performance.
– For many infrastructure systems, these decisions are often informed by inspections and the human-

based observations derived from the inspection process.
– For Bridges: Biennial inspections are required, which include documentation/verification of critical 

asset information and observation/measurement of condition state according to National Bridge 
Inspection Standards (NBIS)

• General condition ratings
• Element condition ratings
• Load ratings*

• Much of the data is submitted to FHWA for inclusion in National Bridge Inventory (NBI) database
– Principal use of the NBI is to determine the eligibility for and the amount of appropriation for funding the 

infrastructures in the National Bridge Program administered by FHWA
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What do we currently do with this data?

• Condition data is used by state agencies (DOTs) to forecast future condition
– Forecasting approaches rely on historical data to allocate future expenditures
– While modeling is mathematical, much of this forecasting relies on heuristic knowledge

Predicted transition probabilities 
from one condition state to the next
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How Might We Use the Data in New Ways?

– Images of condition state
– Detailed narratives on condition states

What information can be extracted?
– Expert observations from trained and 

experienced inspectors
– Long history of detailed record 

collection

How can information it be extracted?
– Advances in Artificial Intelligence (AI)

• Visual recognition (imagery)
• Natural Language Processing (text)

rating

Inspection reports are ripe with data (untapped and passive) that goes unused
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Visual recognition for infrastructure assessment

• Visual recognition is a subset of artificial intelligence or computer vision aimed at the 
development of algorithms and representations to allow a machine to recognize objects, 
people, scenes, and activities (perception and interpretation)

Classification

Convolutional Neural Network

Feature Extraction
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Generic, versatile

Highest accuracy

Big data, computation

 Feature engineering

Moderate data need

 Problem-specific

 Structure of image

Heuristic thresholds

 Problem-specific

Thresholding Edges Clustering Filter-Based
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Convolutional Neural Networks (CNN)
• CNN: Receptive fields connected to hidden neurons by shared weights.

• CNNs transform input image into layers of increasingly meaningful representations
• Deep neural networks: multistage information-distillation operation, where information 

goes through successive filters and comes out increasingly purified

Predicted Class: Crack

(a) Image Classification

(b) Object Detection

(c) Semantic Segmentation

How might we interpret image data using CNNs?
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Leveraging Bridge Inspection Report Imagery

Overview Local Defects
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How can we apply AI to this inspection data?

Crack Detection Problem
- Detection across Different Materials

- Pixel-level detection

- Quantification

Corrosion Detection Problem
- Pixel-level detection
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Multi-Defect Detection Problem
-Crowd-sourced urban monitoring

-Inspection image dataset



11

How we have used these models so far…

• Our current models can:
– Detect and measure defects (qualitative and quantitative)
– Provide a map of the changes (geo-location)
– Determine damage pattern change since the last inspection (temporal)

Other Potential 
Applications: 
• Automated inspection
• robotic inspection
• crowd-sourced 

monitoring 
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NLP for infrastructure assessment

• Natural Language Processing (NLP) is a subset of artificial intelligence or linguistics aimed at the 
development of algorithms and representations to allow a machine to analyze natural language, 
extract information and insights, as well as categorize the documents.

Recurrent Neural Network

Model SelectionFeature Engineering
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Problem-specific

 Semantic features

Directional training

Problem-specific

Feature engineering

Ontology building

Syntactic Features
• Part-of-speech tags
• Casing
• Prefix
Semantic Features
• Ontology
Bag-of-Word Features

Dense Embedding

• Word2Vec
• GloVe
• FastText

Can we effectively extract context 
derived from expert observations?

Bi-directional multi-task 
pre-training

Generic, versatile

Highest accuracy

Big data, multi-task

 Parallelizable

Fine-Tuning
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Leveraging Bridge Inspection Report Text

• Condition ratings (score) 

• Condition details of local 
defects, and their 
evolution history, in 
narratives

rating
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How can we apply AI to this inspection data?

Condition Extraction
• Dissect sentence into chunks
• Sequence labeling task

Condition Rating
• Map sentences to general 

condition rating (GCR)
• Text classification task

Bridge Inspection Report (2019)

DECK

SUPERSTRUCTURE

SUBSTRUCTURE

…

…

…
[Wearing Surface] ¼” Wide cracking at 
centerline x full length of deck
[Bottom of Deck] Hairline to 1/32” 
cracking some with efflorescence in deck
[Railing] Corner spall at Abutment A 
upstream side ½” wide x 12” high x ¼” 
deep

DECK

[Wearing 
Surface]

cracking ¼” Wide x full 
length of deck

at centerline

[Bottom of 
Deck]

cracking 
some with 
efflorescence

Hairline to 1/32” in deck

[Railing] Corner spall ½” wide x 12” 
high x ¼” deep

at Abutment A 
upstream side

SUPERSTRUCTURE

SUBSTRUCTURE

Bridge Inspection Report

…

…
[Wearing Surface] ¼” Wide cracking at 
centerline x full length of structure
[Bottom of Deck] Hairline to 1/32” 
cracking some with efflorescence in deck
[Railing] Corner spall at Abutment A 
upstream side ½” wide x 12” high x ¼” 

DECK

GCR: 6

Hierarchical Attention Network

Bi-Directional LSTM-CRF
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How models can be used for asset management…

• Extract local condition information
• Construct a condition inventory to assist analysis

• Generate condition rating given textual description
• Reveal key word/sentence in the mapping from texts to ratings (what drives decision)

Year Damage Location Severity Deterioration?

2014
spalling and delamination bottom of deck downstream side a 47” long x 29” wide x 2 3/4” deep area NO

2017

2014
exposed longitudinal bars bottom of deck downstream side 

4 (rebars) 
YES

2017 5 (rebars) 

2014
exposed transverse bar bottom of deck downstream side 

75% (section loss) 
YES

2017 75% to 100% (section loss) 

Track local defect
changes since last

inspection

Also provides a mechanism for quality control of selected ratings (training)
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Summary of AI Applications for Asset Management

Bridge Inspection reports are ripe with data (untapped and passive) that goes unused
– Long history of detailed record collection that are independent of reporting requirement 

changes
– Images are routinely collected as part of a typical inspection and provide observations of 

condition state
– Inspector also provide detailed narratives of their observations during an inspection which 

contains expert observations
Inspection report data are largely untapped and underutilized, but have the potential to reframe 
how we manage assets

Advances in artificial intelligence create opportunities to effectively leverage these passive
datasets

– Visual recognition (imagery)
– Natural Language Processing (text)

Potential for creating consistent, 
reliable, and scalable asset 

management strategies
Fusion
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Devin K. Harris, Ph.D.
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Emerging Data Analytics & Artificial Intelligence Technologies 
for Bridge Deterioration Prediction

Nora El-Gohary, Ph.D. 
Associate Professor 

Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign 

Image sources: Pinterest & Stephen Chadwick 



Civil Infrastructure Systems Open Knowledge Network 
(CIS-OKN)

– 6 universities (Lead: UIUC; partners: USC, Purdue, CMU, ASU, Stevens)
– State DOTs: CA, IL, FL, CT, IA, SC, UT, IN, AZ
– Transportation centers: ICT, METRANS, TOPS, other 
– Data/AI centers and hubs: Midwest Big Data Hub, NCSA, NJ Innovation Inst., 

Stevens Inst. for AI, other
– Contactors, consultants, and technology providers in the transportation domain: 

Oracle, WSP, Jobsite Tech, RoadBotics, Hexagon, Alta Vista, FCC
– Industry bodies: buildingSMART, NIBS
– Technology industry: Google, Microsoft, Facebook, Amazon, Esri, Cambridge 

Semantics

BIG Data Analytics & Artificial Intelligence (AI) open unprecedented opportunities
– Better predict bridge deterioration 
– Enhance maintenance decision making



Volume, Variety, Velocity 

Big Data for Bridge Deterioration Prediction

Image/map sources: Federal Highway Administration



Image sources: Long-Term Bridge Performance Program



Information Extraction from Inspection Reports and Images

Challenge #1: Dealing with unstructured data

o Semantic, semi-supervised machine learning for information extraction

Image sources: Long-Term Bridge Performance Program & Maeda et al. 2018



NLP is a theoretically-based computerized approach to analyzing, 
representing, and manipulating natural language text

Opportunities: 
- Natural language processing
- Computer Vision
- Machine learning
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Challenge #3: Lack of training data



LL #1: Adaptive and advanced ML models are the  
way to go!

– Adaptation of out-of-domain training data to our domain
– Semi-supervised learning
– Unsupervised learning 
– Transfer learning 



o Unsupervised linking of data extracted from the reports

o Data fusion to fuse the measures

LL #2: Semantic data linking & fusion is the way to  
fully-integrated, multi-source analytics

Challenge #4: Multisource, heterogeneous data



Challenge #5: Unbalanced data

‒ Predicting deterioration
‒ corrosion, cracking, decay, delamination, efflorescence, scaling and spalling, 

scour, settlement
‒ type of deterioration, quantity, severity, onset timing, condition rating, 

propagation in quantity and severity with time
‒ Learning how to better maintain our bridges
‒ Prediction results linked to fused and original data to ascribe quality and 

provenance to the results

Machine Learning

Data Unbalance Problems!



Volume, Variety, Velocity 

Image/map sources: Federal Highway Administration

Challenge #6: Data sharing & knowledge convergence



LL #3: Convergence is a must! 

– 6 universities (Lead: UIUC; partners: USC, Purdue, CMU, ASU, Stevens)
– State DOTs: CA, IL, FL, CT, IA, SC, UT, IN, AZ
– Transportation centers: ICT, METRANS, TOPS, other 
– Data/AI centers and hubs: Midwest Big Data Hub, NCSA, NJ Innovation Inst., 

Stevens Inst. for AI, other
– Contactors, consultants, and technology providers in the transportation domain: 

Oracle, WSP, Jobsite Tech, RoadBotics, Hexagon, Alta Vista, FCC
– Industry bodies: buildingSMART, NIBS
– Technology industry: Google, Microsoft, Facebook, Amazon, Esri, Cambridge 

Semantics
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Motivation
• High resolution of long-term 

monitoring data with today’s 
sensing technology

• Integration of data collected by 
traditional means with emerging 
sensing systems

• Smartphones as data sources? 
What if the general public had 
access to portable, high-quality 
sensors and contributed to SHM 
every day?

• Soon SHM will meet the Big Data
standards and need to deal with 
storing and processing such large 
datasets

[Source: Cisco IBSG April 2011]

2003 2010           2015 2020

World Population 6.3 Billion 6.8 Billion 7.2 Billion 7.6 Billion

Connected Devices 500 Million 12.5 Billion 25 Billion 50 Billion

More connected 
devices than people

3
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▪ Directly related to stress, fatigue and 
failure

▪ Strain gauges:
▪ High installation cost
▪ Power issues
▪ Hard to capture strain field

▪ DIC, fiber optic sensors:
▪ Installation and calibration
▪ Expensive

Measuring Strain vs Acceleration
▪ Modal analysis, system identification
▪ Wireless sensor networks:

▪ Cheap
▪ Works with battery
▪ Easy installation

▪ Mobile sensors:
▪ No installation cost
▪ Crowd-sourcing 

potential
▪ Dense geographic 

coverage

Can we collect acceleration data from WSN or 
mobile sensing to obtain strain information?
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Deep Neural Networks (DNN)
• DNNs form a model using deep graph organized in multiple linear layers and 

non-linear transformations
• The output of the neuron is found by a weighted sum of inputs composed with a 

non-linear mapping, e.g., tanh, relu etc.

True value Prediction

Input 
Layer

Hidden Layers

Output Layer

Sigmoid
Tanh
ReLU
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X

Proposed Framework

Training the 
architecture

Training

Accel. & strain 
data from 

selected locations

Only Accel. data 
from desired

locations
Use saved model 

parameters

Predict strain time-
series

Testing

Obtain rain-flow 
histograms
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Long Short-Term Memory (LSTM)

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

https://analyticsindiamag.com/sequence-to-sequence-modeling-using-lstm-for-language-translation/

• State-of-the-art performance in time series 
prediction, language translation and 
speech recognition

• LSTMs (Gers et al., 2000) can capture 
dynamics of the sequence

• Current decisions are affected by the 
previous states
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• SHM-specific challenges:
• The difficulty of training long 

sequences
• The initialization of network parameters

• Language model - initial state = 0 

• in SHM - continuous stream of data

8

Long Short-Term Memory (LSTM)

σ σ σϕ

ϕ

h(t-1)

f(t) i(t) g(t) o(t)

c(t-1)

h(t)

c(t)

x(t)

h(t)
Cell State

y(t)

Hidden State

Output

Input

New way of training LSTMs!
⮚ Randomized mini-batches
⮚ Step-wise learning

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.



LEHIGH UNIVERSITY 9

Setup and Instrumentation

Bottom View

A1, S1

A3, S3

A4, S4

Bottom View

Distributed 
loads

End overturning 
brackets

Support beams

Pin bearings

A2, S2

Horizontally 
curved girder
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Procedure

Type Loading 
Scheme

No of Loading 
Case

Type I Stepping at P1/ P2/ P4 54
Type II Stepping at P1 and P4 20
Type III Hammer + Stepping at P1/ P4 16
Type IV P1, P2, P3 and P4 12

LC BRG.

5’ 5’ 5’ 5’ 5’5’
9” 9”

30’    to     BEARINGSCL CLLC BRG.

P1 P2 P3 P4

21” 21” 21” 21”

Excitement by using hammer Excitement by stepping
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Type I

Type II

Type III

Type IV

10-min time history Zoomed time history Rainflow counting histograms

RMSE = 0.48 µƐ

RMSE = 0.47 µƐ

RMSE = 2.13 µƐ

RMSE = 0.55 µƐ
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Training: Randomized Mini-Batches

N-2                             N-1      N

Sample 1

Sample 2

Sample M

…

321

Part A Part B

Part C

t=i   …   t=i+K  …   t=i+L … t=i+L+K 
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Part C

Part A

Part B

DNN 2

Form three 
subsequences

DNN 1

Step A
Step B
Step C

13

Training: Step-wise Learning
Part CPart A Part B

t=i+K t=i+Lt=i+L+1 t=i+L+K t=i
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Proposed Architecture

14

LSTM
(size = 128)(hi+L+1 , ci+L+1)

LSTM
(size = 128)

LSTM
(size = 128)(hi+L+2 , ci+L+2) (hi+L+3, ci+L+3)

…
(hi+L+K , ci+L+K)

DNN 2

FC1
(size = 50)

FC2
(size = 512)

FC3
(size = 256)

Acceleration 
subsequences

[N,50,1]

FC4
(size = 128)

FC5
(size = 128)

DNN 1

LSTM output 
[N,1,128]

LSTM states
{[N,1,128], [N,1,128]}

FC6
(size = 128)

FC6
(size = 128)

FC6
(size = 128)

LSTM output 
[N,1,128]

LSTM output 
[N,1,128]

xi+L+1 , xi+L+2 ,             … xi+L+K



LEHIGH UNIVERSITY 15

Type I Type II Ty. III Ty. IV

Case
Trained 
Sensor 

Pair

Est. 
Strain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C1 A1-S1 0.83 0.92 0.90 0.90 0.89 0.95 0.90 0.90 0.88 0.87 0.91 0.89 0.90 0.68 0.90

0.85 0.90 0.93 0.91 0.89 0.96 0.85 0.89 0.91 0.87 0.90 0.87 0.92 0.68 0.91

0.82 0.90 0.89 0.86 0.86 0.94 0.85 0.84 0.85 0.82 0.83 0.83 0.87 0.64 0.89

C2 A2-S2 0.80 0.89 0.87 0.83 0.84 0.93 0.87 0.85 0.82 0.83 0.84 0.86 0.87 0.62 0.86

0.85 0.92 0.94 0.92 0.90 0.96 0.88 0.89 0.91 0.88 0.90 0.88 0.93 0.68 0.89

0.79 0.90 0.88 0.86 0.84 0.93 0.86 0.79 0.84 0.79 0.79 0.80 0.87 0.56 0.73

C3 A3-S3 0.79 0.86 0.87 0.80 0.83 0.92 0.82 0.84 0.80 0.80 0.81 0.84 0.86 0.58 0.90

0.82 0.90 0.90 0.88 0.89 0.94 0.89 0.89 0.87 0.88 0.89 0.88 0.90 0.66 0.91

0.81 0.88 0.87 0.83 0.84 0.93 0.82 0.82 0.83 0.79 0.79 0.80 0.87 0.61 0.91

C4 A4-S4 0.82 0.89 0.88 0.83 0.85 0.92 0.86 0.87 0.82 0.84 0.87 0.87 0.87 0.67 0.89

0.83 0.92 0.90 0.90 0.89 0.94 0.90 0.89 0.88 0.87 0.90 0.88 0.90 0.68 0.89

0.85 0.92 0.93 0.91 0.90 0.96 0.85 0.89 0.91 0.87 0.88 0.86 0.93 0.69 0.91

1.0-0.9

0.9-0.8

0.8-0.7

0.7-0.6

0.6-0.5

<0.5

TRAC Results

Norm. strain (target) 
Norm. strain (prediction)
Norm. acceleration
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Key Outcomes
• Accurate estimation of strain time series is possible with acceleration acquired 

from inexpensive sensing system
• The proposed network exploits the temporal modeling of LSTM and nonlinear 

mapping of FC layers to be able discover temporal dependencies and complex 
relationships between input and output sequences

• This study also introduces a novel step-wise training methodology to deal with the 
computational cost of sequential learning and long time histories obtained as a 
nature of fatigue life assessment

16

J3. Gulgec, N. S., Takac M., Pakzad S.N. (2019). “Structural Sensing with Deep Learning: Strain Estimation from Acceleration Data for Fatigue Assessment". Journal of 
Computer-Aided Civil and Infrastructure Engineering. In review.
C7. Gulgec, N. S.,Takac M., Pakzad S.N. (2018). “Innovative Sensing by Using Deep Learning Framework". In Dynamics of Civil Structures, Volume 2 (pp. 293-300). 
Springer, Cham.
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Using Crowdsourced Data
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Thank you
Any questions?
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