TRANSPORTATION RESEARCH BOARD

Analyzing Corridors and Systems with the Highway Capacity Manual

March 25, 2021 2:00-3:30 PM Eastern

@NASEMTRB #TRBwebinar

PDH Certification Information:

•1.5 Professional Development Hours (PDH) – see follow-up email for instructions

•You must attend the entire webinar to be eligible to receive PDH credits

•Questions? Contact Reggie Gillum at <u>RGillum@nas.edu</u>

#TRBwebinar

The Transportation Research Board has met the standards and requirements of the Registered **Continuing Education Providers** Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Learning Objectives

- 1. Quantify the impacts of spillback and travel time.
- 2. Utilize the HCM tools for evaluating congestion at the system level.

Lily Elefteriadou <u>elefter@ce.ufl.edu</u> *University of Florida*

Fabio Sasahara <u>fsasahara@ufl.edu</u> *University of Florida*

Behzad Aghdashi saghdashi@ufl.edu University of Florida Tom Creasey tom@caliper.com Caliper Corporation

The National Academies of SCIENCES • ENGINEERING • MEDICINE

#TRBwebinar

Analyzing Corridors and Systems with the Highway Capacity Manual

Presenters: Lily Elefteriadou, Ph.D Fabio Sasahara, Ph.D. Behzad Aghdashi, Ph.D.

March 25, 2021

Introduction

Background:

Based on NCHRP 15-57 *"Highway Capacity Manual Methodologies for Corridors Involving Freeways and Surface Streets"*

NCHRP Web-Only Document 290, July 2020 http://www.trb.org/main/blurbs/181364.aspx

HCM: New Chapter 38 – Network Analysis

PROCEAM	Web-Only Document 290:
	Highway Capacity Manual Methodologies for Corridors Involving Freeways and Surface Streets
	University of Florida Transportation Institute Gamesville, FL
	Cambridge Systematics Gamesville, FL
	Alex Skalbardonis Consultant Berkely, CA
	Contractor's Final Report for NO-RP Project 15-52 Submitted June 2020
	The National Academics of SCIENCES - ENGINEERING - MEDICINE
	CORRECTED BOARD
	100 YEARS INTERIO

Traditionally, the HCM has:

- Analyzed freeways and arterials separately
- Ignored spillback effects from one facility type to another
- Used different performance measures for different facility types

Now, the new network analysis methods can:

- Evaluate spillback
- Estimate travel time across facilities
- Conduct lane-by-lane analysis for freeways

Performance measurement for network analysis

Current HCM performance measurement framework Freeway Segments Density (pc/mi) Signalized Intersections Unsignalized Intersections Control delay (s) Control delay (s) Unsignalized Intersections Urban streets facilities Speed Experienced travel time (s)

New approach:

Travel Time as a common performance measure

Origin – Destination (O-D) Analysis

Performance estimates obtained for each origin-destination pair

Example: From Origin D to Destination H

Sample network analysis (Gainesville/FL)

From Origin D to Destination H

Part 3 NW 39th Ave. EB.

Estimating travel times along the freeway facility

- Speeds vary among freeway lanes
- Lane selection is a function of the O-D
- Each O-D selects a lane with a certain probability

Lane-by-lane performance along the freeway

● Lane 1 ● Lane 2 ● Lane 3

For freeways, new method estimates speed by lane

Computing the O-D Travel Time:

- Sum of travel times for all traveled segments
- If trip longer than the 15-min analysis period (900 s) \rightarrow consider multi-period

Sagmant	Segment	travel time (s)	Cumulative	A ative time a	Salaatad tuawal
ID	Time Period 1	Time Period 2	travel time (s)	period	time (s)
1	34	28	34	TP 1	34
2	26	29	60	TP1	26
3	73	86	133	TP1	73
4	345	390	478	TP1	345
5	185	195	663	TP1	185
6	310	359	973	TP1	310
7	240	240	1213	TP2	240
8	120	122	1335	TP2	122
9	20	18	1353	TP2	18
10	10 45		1406	TP2	53
	Total t	ravel time (s):	1406		

Freeways Lane-by-Lane Analysis

Estimation of Flow Distribution by Lane

- LFR (Lane Flow Ratio) = % of total segment flow assigned to each lane
- Different inputs for different segment types

	Basic	Merge/Diverge	Weaving
Mainline demand flow rate	\checkmark	\checkmark	\checkmark
% Heavy vehicles	\checkmark	\checkmark	\checkmark
% Grade	\checkmark	\checkmark	\checkmark
Nearby ramps	\checkmark	\checkmark	
Ramp demand flow rate		\checkmark	\checkmark
Volume Ratio (weaving volume / total volume)			\checkmark
Weaving Length (L _s)			\checkmark
Interchange Density (ID)			\checkmark

Estimation of Speeds by Lane

Lane by lane model built over existing HCM speed-flow models:

$$S_i = FFS_i$$
 if $v_i \le BP_i$

$$S_i = FFS_i - \frac{\left(FFS_i - \frac{c_i}{45}\right)(v_i - BP_i)^2}{(c_i - BP_i)^2} \quad \text{if } v_i > BP_i$$

 S_i = speed in lane *i* (mi/h); FFS_i = free-flow speed for lane *i* (mi/h); c_i = capacity of lane *i* (pc/h/ln); v_i = demand flow rate for lane *i* (pc/h/ln); BP_i = breakpoint value for lane *i* (pc/h/ln)

How are capacities and free-flow speed (FFS) provided on a lane-by-lane basis?

FREEWAYS LANE-BY-LANE ANALYSIS

New models developed to estimate lane-by-lane capacity and speed for freeway segments

No additional inputs required from the user

Segment	Number		FFS M	ultiplier		_	Segment	Number		Cap	acity
type	of lanes	L1	L2	L3	L4		type	of lanes	L1	L2	L
	2 lanes	0.965	1.032					2 lanes	0.44	0.56	
Basic	3 lanes	0.934	1.01	1.087			Basic	3 lanes	0.25	0.35	0.4
	4 lanes	0.924	0.989	1.028	1.079			4 lanes	0.19	0.25	0.2
	2 lanes	0.964	1.044					2 lanes	0.42	0.58	
Merge	3 lanes	0.955	1.015	1.045			Merge	3 lanes	0.23	0.36	0.4
	4 lanes	0.935	0.991	1.036	1.091			4 lanes	0.21	0.24	0.2
	2 lanes	0.961	1.035					2 lanes	0.42	0.58	
Diverge	3 lanes	0.943	1.024	1.068			Diverge	3 lanes	0.26	0.34	0.4
	4 lanes	0.933	0.975	1.018	1.074			4 lanes	0.21	0.24	0.2

Free-Flow Speed distribution

Capacity distribution

L3

0.40

0.28

0.41

0.25

0.40

0.27

L4

0.28

0.30

0.28

Queue Spillback Analysis

Adjustments to predicted performance due to spillback

Spillback from on-ramp

Spillback from off-ramp

Occurs when two conditions are met:

- Insufficient capacity at
 - a) freeway merge,
 - b) ramp roadway or
 - c) ramp meter; AND
- Insufficient storage length at the onramp;

Spillback analysis - signalized intersections

- Queues are modeled at the on-ramp for every cycle
- Number of vehicles at the on-ramp cannot exceed the maximum storage
- Reduced capacity is computed based on the maximum throughput

Spillback analysis - signalized intersections

A combined queue polygon is developed for every movement:

QUEUE SPILLBACK ANALYSIS

Spillback analysis considers stop-controlled intersections and roundabouts, based on existing HCM methods

Occurs when two conditions are met:

- Insufficient capacity at
 - a) downstream ramp terminal (intersection) or
 - b) ramp roadway; AND
- Insufficient storage length;

Freeway-to-freeway queue spillback

 Downstream freeway facility operates at LOS F → HCM Freeway Facilities Oversaturated

methodology to estimate on-ramp queue length

• Check on-ramp queue length against available storage at the ramp

Freeway impact is more localized close to exit and spreads upstream

- Extension of Chapter 25 Freeway Facilities Oversaturated methodology
- Capacity Adjustment Factors to model queue spillback impacts

- Node-link structure extended to address ramp roadway and ramp terminal
- Intersection lanes analyzed independently

Implementation in HCS

Implementation in HCS

The proposed methodologies in NCHRP 15-57 are implemented in the Highway Capacity Software (HCS).

Network Analysis in the HCS

Arterial(s) and freeway(s) can be modeled in the HCS independently. Then, the two are connected to construct the network.

Load Freeway Facility Create Freeway Facility

Time Periods List 1 🕤

I-75_NB_Gainesville.xuf

Segment	Segment Type	File	File Name	Node	Approach	On-Ramp Flow Rate (veh/h)	Total Queue Storage (ft)	Approach Queue (veh)	RO
ocginent	log n	la i i	Marine -	-	Approach	on hamp now hate (very hy	total Quede Stoluge (it)		0.00
2	Off-Ramp	Select	Williston.xus	2	SB	-	1000	31.9	0.80
4	On-Ramp	Select	Williston.xus	2	SB	535	1100	0.0	0.00
6	Off-Ramp	Select	Archer.xus	2	NB	-	1000	11.8	0.30
8	On-Ramp	Select	Archer.xus	2	SB	361	2250	0.0	0.00
11	Off-Ramp	Select	Newberry.xus	2	NB	-	1600	14.3	0.22
13	On-Ramp	Select	Newberry.xus	2	SB	441	1850	0.0	0.00
16	Off-Ramp	Select	39th.xus	2	NB	-	1200	14.7	0.31
18	On-Ramp	Select	39th.xus	2	SB	145	2200	0.0	0.00

For ramp segments, select the connecting arterial intersection (or freeway) file

Select the corresponding node (if the arterial network has multiple intersections) and connecting approach

Network Analysis in the HCS

• Travel Times by O-D implemented in Freeways

Facility	Overall Results						
pace Me	ean Speed, mi/h 50.3	3	Density, veh,	/mi/ln	35.9		
verage	Travel Time, min 7.20)	Density, pc/r	ni/In	36.7		
DD Re	sults						
ID	OD	T1	T2	T3	T4	T5	
1	1(Basic) -> 4(OffRamp)	130.58	131.29	132.13	130.67	123.77	
2	1(Basic) -> 6(Weaving)	217.68	219.27	221.78	217.83	214.72	
3	1(Basic) -> 10(OffRamp)	313.28	316.72	322.52	314.17	301.43	
4	1(Basic) -> 11(Basic)	372.73	376.75	384.13	373.56	364.16	
5	2(OnRamp) -> 4(OffRamp)	67.85	68.49	69.25	67.92	61.11	
6	2(OnRamp) -> 6(Weaving)	154.95	156.46	158.90	155.08	152.07	
7	2(OnRamp) -> 10(OffRamp)	250.55	253.91	259.63	251.41	238.78	
8	2(OnRamp) -> 11(Basic)	310.00	313.94	321.25	310.80	301.51	
9	6(Weaving) -> 6(Weaving)	38.54	39.65	74.65	87.35	35.71	
10	6(Weaving) -> 10(OffRamp)	129.28	131.64	134.34	129.03	121.36	
11	6(Weaving) -> 11(Basic)	188.73	191.66	195.96	188.42	184.09	
12	8(OnRamp) -> 10(OffRamp)	36.97	37.81	38.43	36.86	30.05	
13	8(OnRamp) -> 11(Basic)	96.42	97.83	100.05	96.25	92.78	

• Off-ramp spillback check implemented in Freeway Facilities

Spillback Resu	lts	1				1	1
Regimes	5776	0	Lanes (Outside Influence Area	a, In	4	4
Influence Area Lanes	ln	1	Spillba	ck Lanes, In		0	1
Queue Storage Leng	th Ramp Lane (La	a), ft 800	Should	er Length (LE), ft		800	1
Queue Storage Leng	th Lane 1, ft	500	Length	of Additional Queue	(Qsp), ft	0	1
Average Vehicle Len	gth (Lh), ft/veh	25.5	Queue	Storage Ratio (RQ)		0.00	1
Capacity Adjustmen	Factor Spilback	1.000	Probab	ility of Blockage on La	ane 2 (PB)	0.000	1
Adjusted Capacity, p	c/h	8460	Propor	tion of Lane 1 Weavin	g Flow	0.500]
Spillback Lanes Flow	(VSA), pc/h	965	Influen	Influence Area Lanes Flow (VIA), pc/h		2483]
Outer Lanes Flow (V	Duter Lanes Flow (Vo), pc/h 2483	2483	Spillba	pillback Lanes Speed (SSA), mi/h		20.0]
Influence Area Lanes	Speed (SIA), mi/	h 75.0	Outer I	anes Speed (Vo), mi/l	h	75.0]
Average Speed (S), r	ni/h	46.7	Averag	e Density (D), pc/mi/li	n	31.7	
LOS		D					
Lane-by-Lane	Results						
Lane	FFS	Capacity (veh/h)	Flow (veh/h)	BP (veh/h)	Speed mi/h	Travel Time (s)	1
1	54.6	2069	360	1776	54.6	32.97]
2	59.3	2069	2069	1593	47.0	38.30]
3	3 63.2 2069		2069	1441	47.0	38.30	
4	60.0	2069	1209	1565	60.0	30.00	

• User input for Ramp Metering Rate (on-ramp spillback analysis)

	START GENERAL SEGMENTS	DETAILS RESULTS REPORT			<u>i</u>
	Freeway Grade, %		Ramp Grade, %		^
	Freeway Grade Length, mi	-	Length of First Accel Lane (LA) ft	-	
	Highway of C-D Roadway		Length of First Accel. Lane (LA), it	500	
			Length of Second Accel, Lane (LA2), it		
	Cross-Weaving Effects				
			Demand Data		
	Freeway Demand, veh/h	5001	Merge Demand, veh/h	450	
	Freeway Peak Hour Factor	1.00	Ramp Peak Hour Factor	1.00	
	Freeway Total Trucks, %	2.25	Ramp Total Trucks, %	2.25	
A	Freeway Single-Unit Trucks (SUT), %	*	Ramp Single-Unit Trucks (SUT), %	ж.	()
Back	Freeway Tractor-Trailers (TT), %	*	Ramp Tractor-Trailers (TT), %	~	New
Duck			Adjustment Factors		
	Freeway Driver Population	All Familiar	~ Ramp Driver Population	All Familiar	*
	Freeway Weather Type	Non-Severe Weather	~ Ramp Weather Type	Non-Severe Weather	~
	Freeway Speed Adjustment Factor	1.000	Ramp Speed Adjustment Factor	1.000	
	Freeway Capacity Adjustment Factor	1.000	Ramp Capacity Adjustment Factor	1.000	
	Freeway Demand Adjustment Factor	1.000	Ramp Demand Adjustment Factor	1.110	
	Incident Type	No Incident			
		F	Ramp Metering Effects		
	Ramp Metering?		Ramp Metering Rate, veh/h	4400	
Соругі	ght © 2020 University of Florida. All Rights Reserv	ved.		HCS	■ Freeways Version 7.9.5b (USC)

• Roundabout on-ramp queue spillback analysis

		1114 1 X 4 K 6		On-Ramp A	djustments
			×× + ××	Ramp Length (ft) Ramp Lanes	WestBound 1657 1
			х т г	Ramp Metering Ramp Metering Rate (pc/h)	✓
Conflicting Lanes on Entry	Eastbound	Westbound	Northbound	Southbound	
Conflicting Lanes on Bypass Exit Ramp Movement Type	Off-Ramp ~	On-Ramp v	None ~	None v	

Roundabout ramp terminals – geometry input

• Roundabout on-ramp queue spillback analysis

On-Ramp Computations and Sp	On-Ramp Computations and Spillback Checks											
Approach		EB			WB			NB		SB		
Lane	Left	Left Thru. Right			Thru.	Right	Left	Thru	Right	Left	Thru.	Right
On-Ramp Lanes					1							
Ramp Metering Rate (cvm), pc/h					800							
Ramp Metering Capacity (Cit,pos), pc/h					800							
Throughput per Approach (λ_{per}), pc/h				100	500	634						
Maximum Throughput (λ _{per}), pc/h					1234							
Ramp Storage Length (Lowe), pc					66							
Queue Storage Ratio (Ra)					1.64							
Spillback Occurs					Yes							
Queue due to Ramp Spillback, pc					42							
Spillback per Approach (λ _{por}), pc/h				4	23	142						
Additional Delay due to On-Ramp Spillback (d_{sp}), s/veh					747.95							
Total Average Delay per Approach (d), s/veh				65.05	317.61	1019.01						

Roundabout ramp terminals – queue spillback results

Questions?

Lily Elefteriadou <u>elefter@ce.ufl.edu</u>

UF Transportation Institute UNIVERSITY of FLORIDA

Fabio Sasahara <u>fsasahara@ufl.edu</u>

UF Transportation Institute UNIVERSITY of FLORIDA

Behzad Aghdashi saghdashi@ufl.edu

UF Transportation Institute UNIVERSITY of FLORIDA

Tom Creasey tom@caliper.com

The National Academies of SCIENCES • ENGINEERING • MEDICINE

#TRBwebinar

Get Involved with TRB

Receive emails about upcoming TRB webinars https://bit.ly/TRBemails

Find upcoming conferences http://www.trb.org/Calendar

The National Academies of SCIENCES • ENGINEERING • MEDICINE **#TRBwebinar**

Get Involved with TRB #TRBwebinar

@NASEMTRB @NASEMTRB

Transportation Research Board Getting involved is free!

Be a Friend of a Committee <u>bit.ly/TRBcommittees</u>

- Networking opportunities

- May provide a path to Standing Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp

Update your information www.mytrb.org

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Other TRB events for you

• April 28: TRB Webinar: Strategically Implementing Transportation Security Measures

https://www.nationalacademies.org/trb/events

The National Academies of SCIENCES • ENGINEERING • MEDICINE

