TRANSPORTATION RESEARCH BOARD TRB Webinar: Compost It! Environmental Benefits of Compost in Highway Roadsides

June 23, 2021 2:00- 3:30 PM Eastern

@NASEMTRB
#TRBwebinar

PDH Certification Information:

- •1.5 Professional Development Hours (PDH) – see follow-up email for instructions
- •You must attend the entire webinar to be eligible to receive PDH credits

•Questions? Contact Beth Ewoldsen at <u>Bewoldsen@nas.edu</u>

#TRBwebinar

The Transportation Research Board has met the standards and requirements of the Registered **Continuing Education Providers** Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Learning Objectives

 Use compost-based best management practices in highway roadsides

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

	File View Help -	$\square \square \times$
	▼ Webcam	Σ
1	Share My Webcam Webc	ams 🗸
	▼ Audio	5
	Sound Check	?
	 Computer audio 	
111111111111	Phone call	
	S MUTED	
	Microphone (USB Audio Device)	\sim
	∢))	
	Speakers (USB Audio Device)	\sim
_	Talking: Elaine Ferrell	
	▼ Questions	ប
	▼ Questions	ប
	▼ Questions	ប
	▼ Questions	1
	▼ Questions	1
`	▼ Questions	5
		ប
	✓ Questions [Enter a question for staff]	5
		5
		_
	[Enter a question for staff]	Send
		Send
	[Enter a question for staff] Updating Webinar Images	Send
	[Enter a question for staff]	Send
	[Enter a question for staff] Updating Webinar Images	Send

#TRBwebinar

Allen Davis apdavis@umd.edu University of Maryland

David Crohn David.Crohn@ucr.edu University of California, Riverside

Scott Dowlan <u>scott.dowlan@dot.ca.gov</u> California Department of Transportation Jack Broadbent jack.broadbent@dot.ca.gov California Department of Transportation

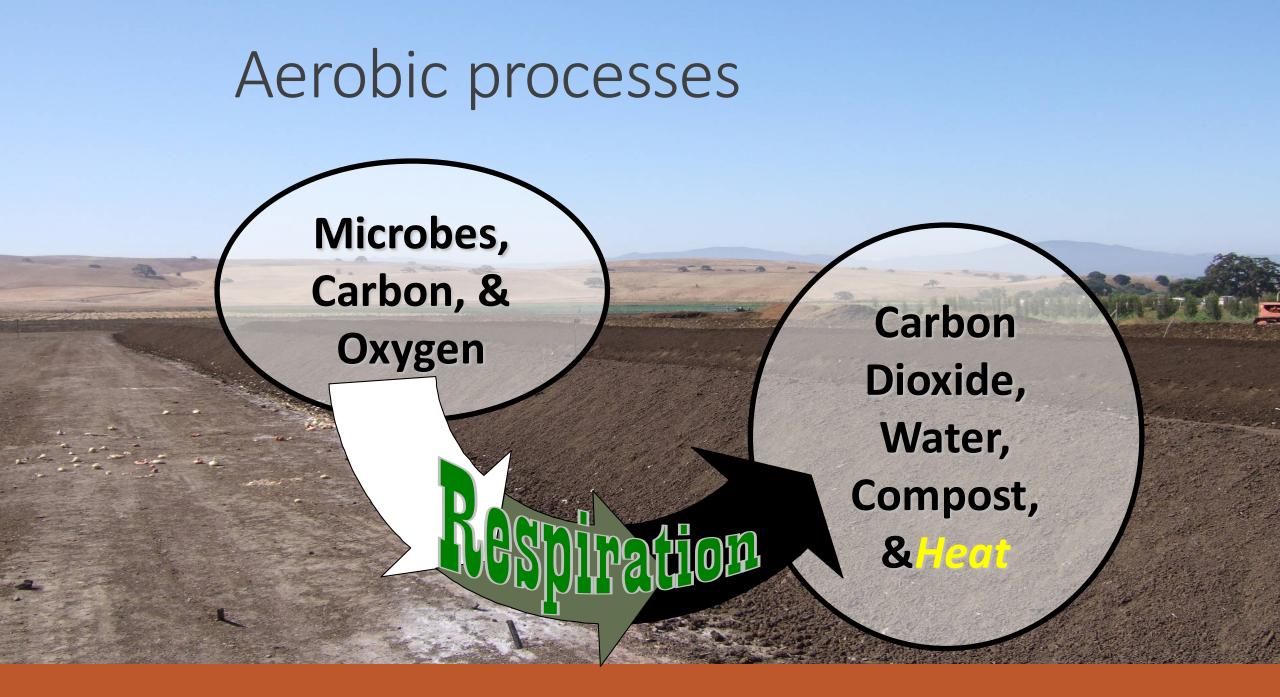
The National Academies of SCIENCES • ENGINEERING • MEDICINE

#TRBwebinar

Compost Production and Use

DAVID M. CROHN DEPARTMENT OF ENVIRONMENTAL SCIENCES UNIVERSITY OF CALIFORNIA, RIVERSIDE

Backyard Composting


Thermophilic composting

Composting alternatives

Turned Windrow

Static pile

In-vessel

Why compost?

To produce a stable and safe soil amendment Nutrients • Odors • Phytotoxins

Thermophilic composting

Microbes tend to specialize in the temperatures they prefer.

In California soils and in our bodies mesophiles are most abundant. Pathogens are mesophiles.

Between 110°F and 155°F, thermophiles dominate.

Above about 160°F dieoff begins.

Reliable pathogen kill occurs above 131°F.

Heat greatly accelerates microbial efficiency.

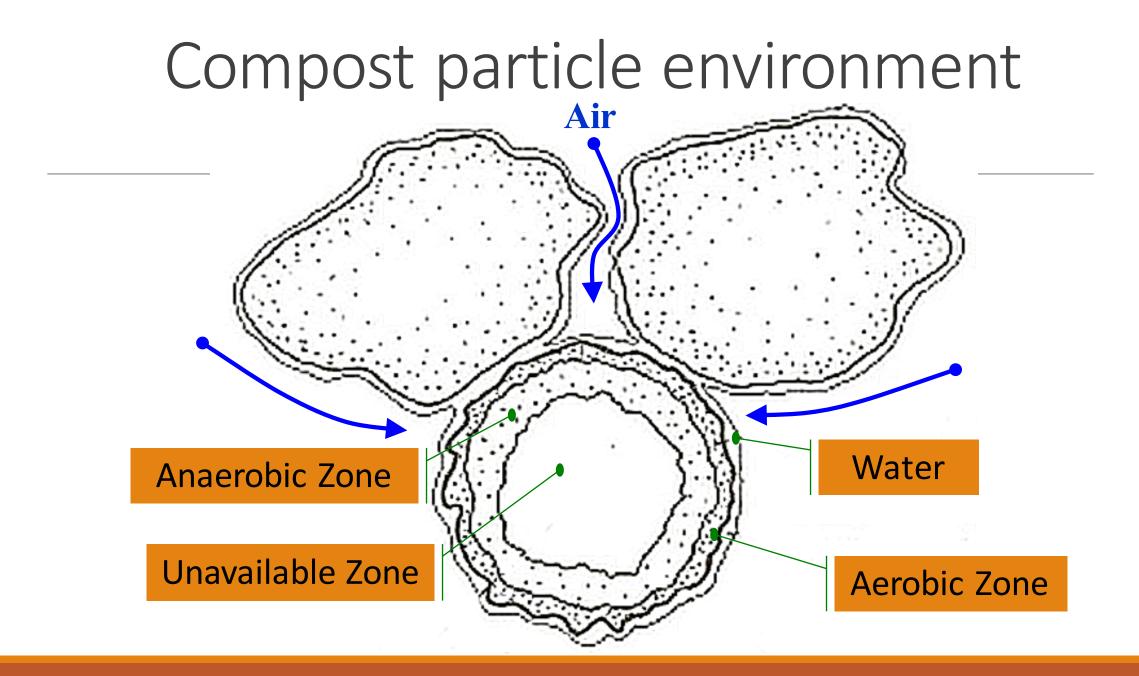
Composting is a biosecurity measure for

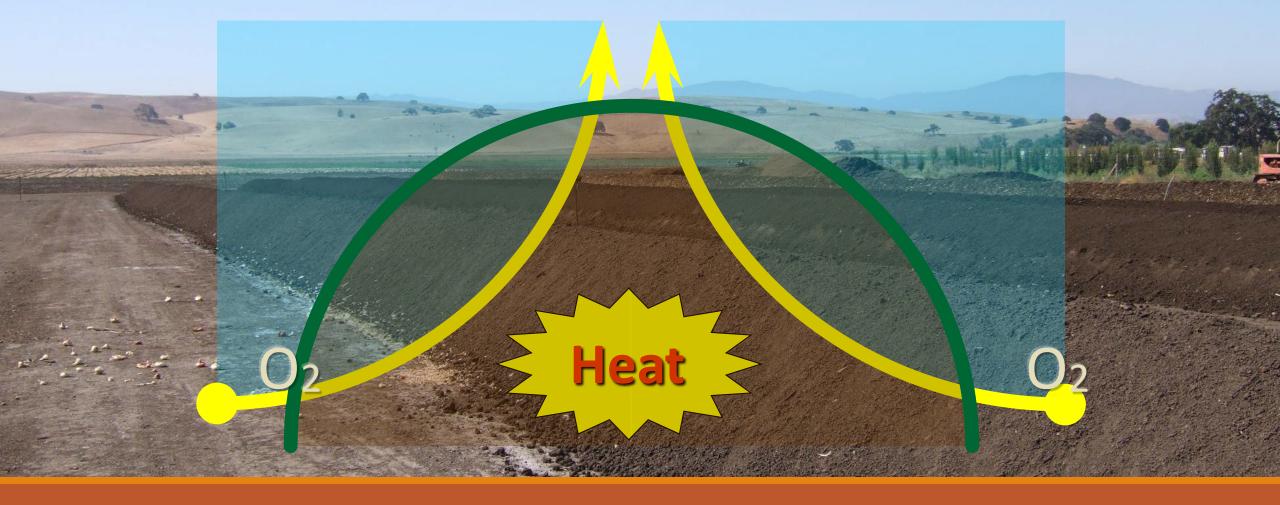
plantsanimals &humans

Carbon is the energy source for microbes

Nitrogen is the critical nutrient for microbes

Water is the habitat where microbes live and grow.


Oxygen

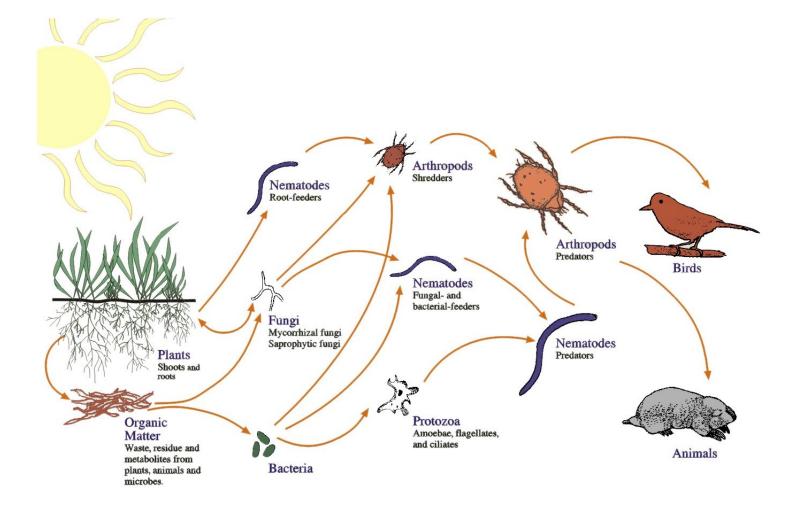

Acts as an electron acceptor

Permits efficient liberation of *energy* from carbon

Energy is used by microbes to grow and reproduce

Turned Windrow

Two Phases of Composting


Active phases (Oxygen is typically supplied)

- Mesophilic phase (10°C 40°C)
 - Biological activity begins
 - Hours to days
- Thermophilic phase (40°C 65°C)
 - Decay really takes off
 - Weeds and pathogens are destroyed
 - Byproducts of incomplete decay remain which are
 - Phytotoxic (*i.e.*, organic acids)
 - Odiferous (i.e., amines)
 - Takes days to weeks

Curing phase

- Oxygen is not supplied
- Byproducts of the active phase are decayed, reducing odors and phytotoxins
- Takes weeks to months
- After curing it is ready to USE!

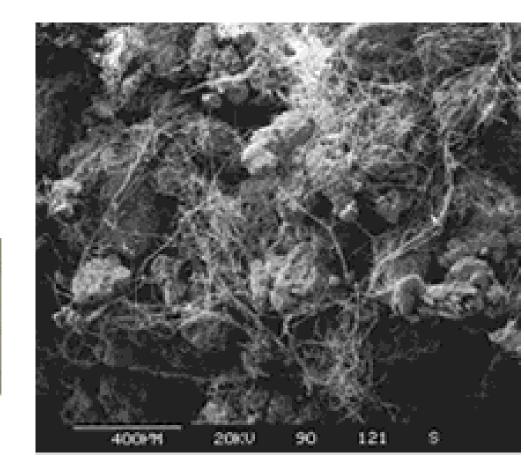
Soil Improvement Using Compost

Soil fauna

Compost in soil

Encourages the formation of soil aggregates

Aggregates are soil clusters held together as a result of compost decomposition


- Fungal hyphae bind particles together
- Bacterial polysaccharides serve as glue

fungi

bacteria

Aggregates

Soils formed from aggregates are said to have "good structure"

Aggregated soils

- Hold water while allowing air to penetrate
- Facilitate drainage and salt removal
- Allow roots to penetrate
- Are more stable, resisting erosion

Improve	Improve tilth
Improve	Improve water holding capacity
Improve	Improve aeration
Improve	Improve infiltration capacity
Adjust	Adjust pH
Promote	Promote microbial activity and diversity

Soil amendments: modify soil properties

Mulches

- <u>Anything</u> that covers the soil to conserve water and control weeds is a mulch.
- Compost used as a mulch is therefore a mulch.
- <u>Uncomposted mulches</u> are more likely to contain weed
 seeds and plant or other pathogens and are less stable.

Mulches: Compost Particle Sizes Matter

Large Particles

- Allows water to reach the root zone
- Suppress weeds
- Decompose slowly for long life

Small Particles

- Holds water that then evaporates
- Can grow weeds
- Decompose more quickly

"Overs" great for mulches

"Fines" best for soil amendments

Mulches: cover the soil

Protect	Protect soils against erosion
Conserve	Conserve water by slowing evaporation
Control	Control weeds
Control	Control certain plant diseases
Decorate	Decorate landscapes

Mulches: cover the soil

Fertilizer value: slow release

Compost nutrient content is usually not available immediately

Important in long-term nutrient budgeting

Low C:N ratios are better fertilizers

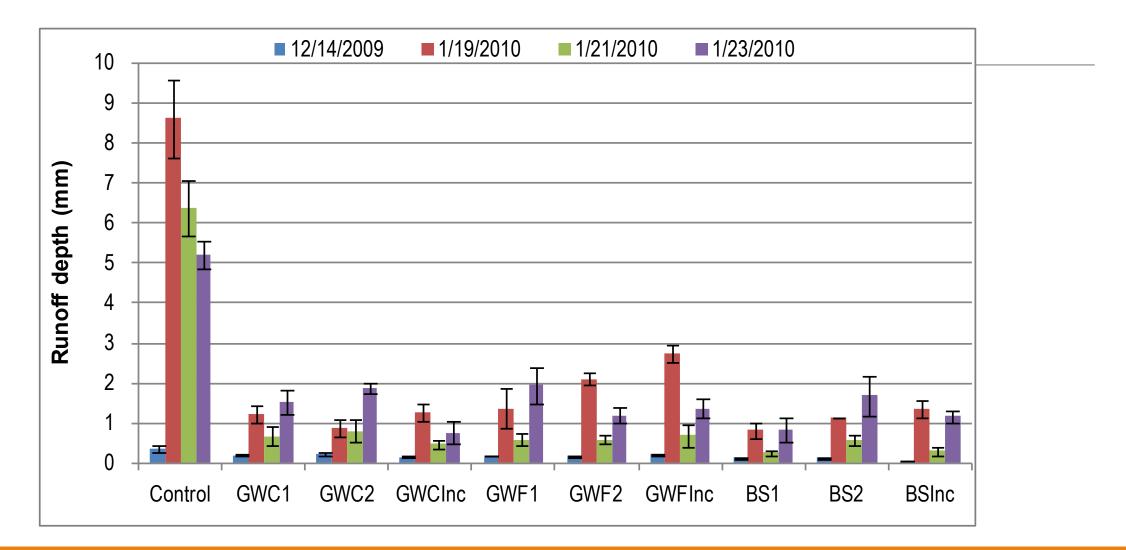
Using Compost to Improve Post-fire Water Quality

DAVID CROHN UNIVERSITY OF CALIFORNIA, RIVERSIDE

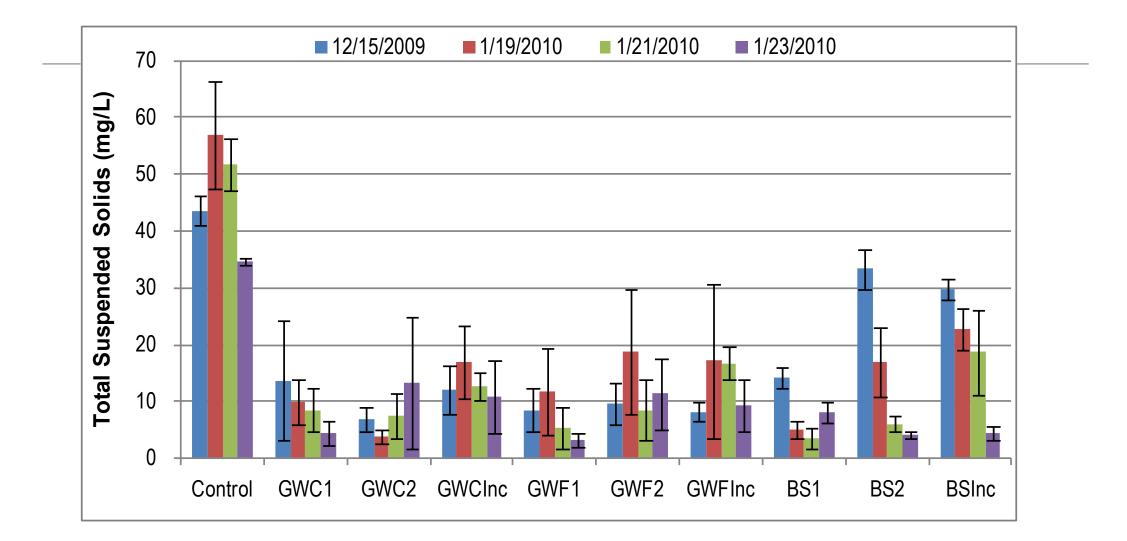
Adjacent slopes in Temecula, CA

K-Rail fail

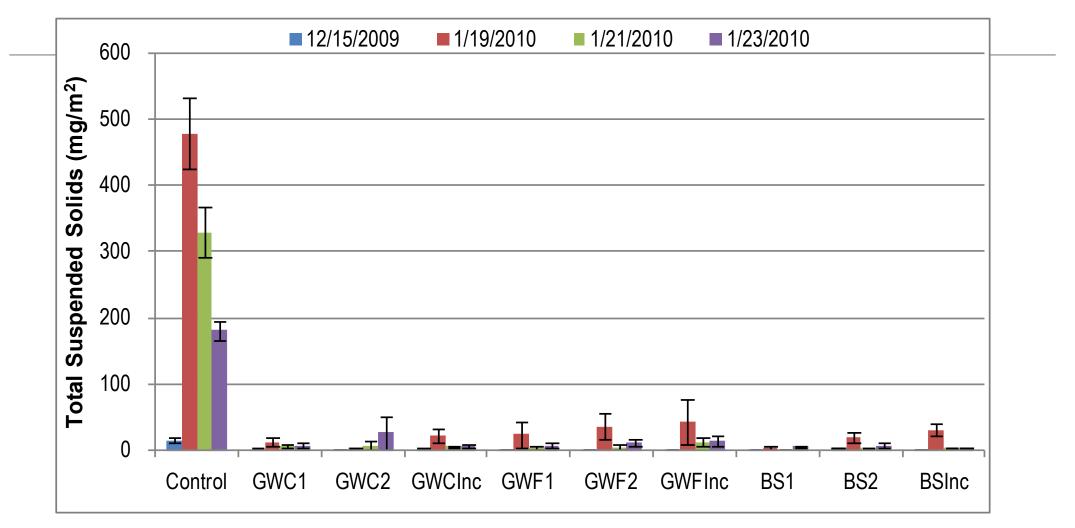
Compost controls erosion better than structures


Controlled burn Nov. 2009

Installed Slope followed by Winter Rains


TREATMENTS: Biosolids Compost fines, Greenwaste Compost (fines & overs) APPLIED: 1" deep, 2" deep, 2" deep incorporated, Control

Total Runoff Depths (mm)


Total Suspended Solids

Total Suspended Solids

Post-Fire Conclusions

Compost blankets reduced

- Runoff by 86%
- Total dissolved solids (TDS) by 88%
- Total suspended solids (TSS) by 96%
- Total solids (TS) by 97%
- Total dissolve phosphorus (TDP) by 72%
- Orthophosphate (OP) 77%
- Suspended phosphorus (SP)
 98%
- Nitrate (73%)

Surface mulching and incorporation performed similarly

Applying 2" offered no benefits over 1", and increased some pollutant losses

Results similar for greenwaste compost "overs" (>3/8") and "fines" (<3/8")

Summary

Composting stabilizes organics so thatPlant and human diseases are eliminatedWeeds are reduced

Composts inspire microbes to improve soil structures so that

- Soils both hold and transmit water
- Nutrients are retained
- Plants do better

Compost mulches can control the erosion that follows fires or road construction/maintence

Environmental Benefits of Compost for Erosion Control

Caltrans Landscape Architecture Department

1. Build healthy soils

- 1. Build healthy soils
- 2. Establishes vegetation

- 1. Build healthy soils
- 2. Establishes vegetation
- 3. Protects water quality

1. Organic matter helps to accelerate the natural systems and build healthy soils.

- 1. Organic matter helps to accelerate the natural systems and build healthy soils.
- 2. Provides optimum vegetation growth.

- 1. Organic matter helps to accelerate the natural systems and build healthy soils.
- 2. Provides optimum vegetation growth.
- 3. Protects the soil surface from splash erosion.

- 1. Organic matter helps to accelerate the natural systems and build healthy.
- 2. Provides optimum vegetation growth.
- 3. Protects the soil surface from splash erosion.
- 4. High-water holding capacity slows down and disperses the energy of sheet flow.

- 1. Organic matter helps to accelerate the natural systems and build healthy soils.
- 2. Provides optimum vegetation growth.
- 3. Protects the soil surface from splash erosion.
- 4. High-water holding capacity slows down and disperses the energy of sheet flow.
- 5. Natural bio-filtration characteristics.

Erosion Control Applications

Existing Site Condition

Compost Berms (Linear Sediment Barriers)

Compost Berms (Linear Sediment Barriers)

Compost Socks (Linear Sediment Barriers)

Erosion Control Performance Comparisons (Bonded Fiber Matrix and Fiber Rolls)

Erosion Control Performance Comparisons (Compost Blanket vs. BFM and Fiber Rolls)

Erosion Control Performance Comparisons (BFM with and without Compost)

Compost Blanket (Concentrated Flows)

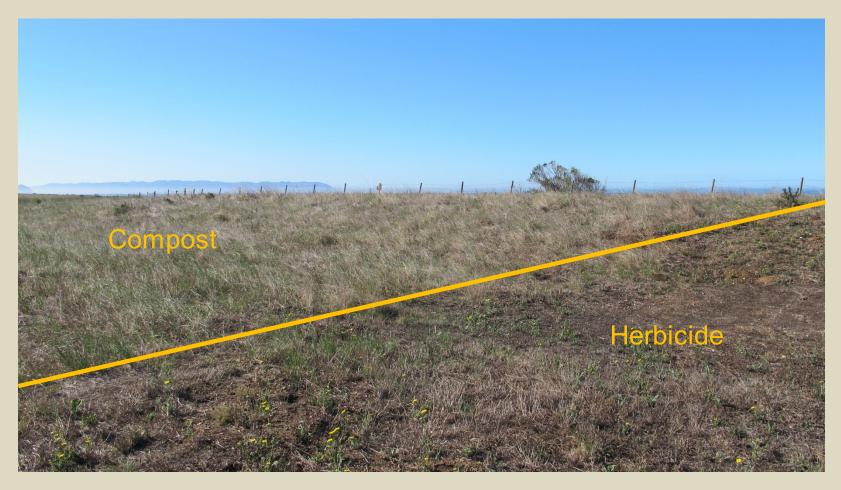
Compost Blanket (Steep Slope and Windy Applications)

Compost Blanket (Steep Slope and Windy Applications)

Before

After Compost Incorporation

Two Years Later



Invasive Weed Suppression (Compost vs. Herbicide)

Herbicide

Invasive Weed Suppression (Compost vs. Herbicide)

Biofiltration (Compost Incorporation)

Carbon Sequestration

USDA United States Department of Agriculture Natural Resources Conservation Service

Colorado State

Carbon and greenhouse gas evaluation for NRCS conservation practice planning

Download Results

Approximate Carbon Sequestration and Greenhouse Gas Emission Reductions and Payments Associated with Selected Conservation Practices*

(Metric Tonnes CO₂ equivalent per year) [Info]

NRCS Conservation Practices (Click Practice Name for Documentation)	Enter Unit Value (acres or feet)	Carbon Dioxide	Nitrous Oxide	Methane	Total CO ₂ - Equivalent	Estimated HSP payment dollars for the Project Term
[Info]San Luis Obispo, CA Compost Application (CPS 808) - Compost (C/N > 11) Application to Grazed Grassland - Compost from certified composting facility [delete]	933 Acre(s)	4180	-92	6	4090	\$1,119,600.0
Total		4180.00	-92.00	6.00	4094.00	\$1,119,600.00

"Values were not estimated due to limited data on reductions of greenhouse gas emissions from this practice

***Final payment may be different than estimated payment, pending application review and approval

http://comet-planner-cdfahsp.com/

Particle Size Specification

Property	Test method ^a	Requirement		
Particle size: Fine Compost	TMECC 02.02-B Sample sieving for aggregate Size classification % dry weight basis	Min	Мах	
For soil amendment and	Pass 2"-inch sieve	98%		
incorporation.	Pass 3/8-inch sieve	95%		
	Maximum particle length: 3 inches			
Particle size: Medium Compost	TMECC 02.02-B sample sieving for aggregate Size classification % dry weight basis	Min	Max	
For soil protection and native				
	Pass 2-inch sieve	90%		
plant establishment.	Pass 3/8-inch sieve (minimum 50% retained)	50%	75%	
	Maximum particle length: 6 inches			
Particle size:	TMECC 02.02-B sample sieving for aggregate Size	Min	Max	
Coarse Compost	classification % dry weight basis			
For filter sock and berm applications.	Pass 2-inch sieve	90%		
	Pass 3/8-inch sieve (minimum 70% retained)		30%	
	Maximum particle length: 6 inches			

Physical Contaminants

Property	Test method ^a	Requirement
Physical contaminants	TMECC 02.02-C Man-made inert removal and classification: Plastic, glass, and metal % > 4 mm fraction	combined total: < 0.5%
Physical contaminants	TMECC 02.02-C Man-made inert removal and classification: Sharps (sewing needles, straight pins and hypodermic needles) % > 4mm fraction	none detected

STA Certification

Z-Best Products
Alex Sharpe
980 State Highway 25
Gilroy
CA 95020

Product Identification Compost 1-2014 Z-Best Organic Compost

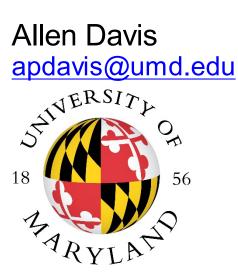
Date Sampled/Received: 13 Jan. 14 / 13 Jan. 14

COMPOST TECHNICAL DATA SHEET

LABORATORY: Soil Control Lab	; 42 Hangar Way; Watsonville, CA 9507	⁷⁶ tel: 831.724.5422	fax: 831.724.3188	
Compost Parameters	Reported as (units of measure)	Test Results	Test Results	
Plant Nutrients:	%, weight basis	%, wet weight basis	%, dry weight basis	
Nitrogen	Total N	0.86	1.5	
Phosphorus	P2O5	0.30	0.55	
Potassium	K ₂ O	0.69	1.2	
Calcium	Ca	1.3	2.3	
Magnesium	Mg	0.42 0.74		
Moisture Content	%, wet weight basis	43.7		
Organic Matter Content	%, dry weight basis	52.0		
pH	units	8.18		
Soluble Salts (electrical conductivity EC 3)	dS/m (mmhos/cm)	3.9		
Particle Size or Sieve Size	% under 9.5 mm, dw basis	100.0		
Stability Indicator (respirometry	e)	•	Stability Rating:	
CO ₂ Evolution	mg CO ₂ -C/g OM/day	2.9	Stable	
	mg CO ₂ -C/g TS/day	1.5	Stable	
Maturity Indicator (bioassay)				
Percent Emergence	average % of control	100.0		
Relative Seedling Vigor	average % of control	100.0		
Select Pathogens	PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.32(a)	Pass	Fecal coliform	
		Pass	Salmonella	
Trace Metals	PASS/FAIL: per US EPA Class A		As, Cd, Cr, Cu, Pb, H	
	standard, 40 CFR § 503.13, Tables 1 and 3.	Pass	Mo,Ni,Se,Zn	

Participants in the US Composting Council's Seal of Testing Assurance Program have shown the commitment to test their compost products on a prescribed basis and provide this data, along with compost end use instructions, as a means to better serve the needs of their compost customers.

Laboratory Group:	Jan.14 C	Laboratory Number: 4010316-2/2
Analyst: Assaf Sadeh	along Solel	www.compostlab.com


US Composting Council's Seal of Testing Assurance Program

Environmental Benefits of Compost on Highway Roadsides

Caltrans Landscape Architecture Department

David Crohn David.Crohn@ucr.edu University of California, Riverside

Scott Dowlan <u>scott.dowlan@dot.ca.gov</u>

The National Academies of SCIENCES • ENGINEERING • MEDICINE **#TRBwebinar**

Get Involved with TRB

Receive emails about upcoming TRB webinars https://bit.ly/TRBemails

Find upcoming conferences http://www.trb.org/Calendar

The National Academies of SCIENCES • ENGINEERING • MEDICINE **#TRBwebinar**

Get Involved with TRB #TRBwebinar

@NASEMTRB @NASEMTRB

Transportation Research Board Getting involved is free!

Be a Friend of a Committee <u>bit.ly/TRBcommittees</u>

- Networking opportunities

- May provide a path to Standing Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp

Update your information www.mytrb.org

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Other TRB events for you

- July workshops: How We Move Matters: Exploring the Connections between New Transportation and Mobility Options and Environmental Health
- July 20: TRB Webinar: Are We All in the Same Boat? Involving Communities in Coastal Resilience
- July 27-28: Geospatial Data Acquisition Technologies in Design and Construction Summer Committee Meeting 2021

https://www.nationalacademies.org/trb/events

The National Academies of SCIENCES • ENGINEERING • MEDICINE

