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Learning Objectives

• Make informed decisions about 
implementing new research to issues 
of asphalt binders
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Questions and Answers
• Please type your 

questions into your 
webinar control panel

• We will read your 
questions out loud, and 
answer as many as 
time allows
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What Kills Asphalt?

Don Christensen
Advanced Asphalt Technologies, LLC

July 2021

NCHRP 9-59 Findings



NCHRP 9-59: an improved binder 
fatigue specification

Bill Ahearn, 
Pamela Marks, 
Simon Hesp



What binder properties 
do we need to specify 
to maximize fatigue 
performance?
∆Tc?
Glover-Rowe parameter 
(GRP)?
Extension/ductility?
Elastic recovery?

7/6/2021



NCHRP 9-59: 
Lab Testing
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Fatigue life: fatigue strain 
capacity and fatigue exponent

y = 2.21x
R² = 85 %
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Fatigue Model
Binder rheologic type / R’ value

R’ is R estimated 
using a constant 
glassy modulus 
of 1.0 GPa.

R and R’ are 
related but not 
equal…



∆Tc and R’-Value are closely 
related…

R² = 93%
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DENT extension vs G*
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DENT normalized extension 
(NEXT)

NEXT is the extension estimated at a 
constant initial specimen stiffness of 20 
kN/m
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Factors affecting FSC
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Layered elastic analysis
Based on ALF2 100 mm sections
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What about Glover-Rowe?
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R² = 94%
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Stress-based fatigue model
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What kills asphalt…
High R’ values/low delta Tc values 

produce weak and brittle binders that 
are prone to top-down cracking
Can be caused by a poor-quality binder 

(REOB), age-hardening, or both 
Age-hardening will also increase 

stiffness, making thermal cracking more 
likely
Polymer modification can dramatically 

improve fatigue performance



What kills asphalt…
Damage due to thermal cracking and 

traffic loading likely superposes, making 
it difficult to separate these distress 
modes
Minimum ΔTc, adjusted for modified 

binders—NCHRP 9-60
Are binders with low R’/high delta Tc 

values a problem?
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Asphalt Killers
Thermal Stress, Formulation, 

and Old Age in Binders

Outcomes of NCHRP 9-60

TRANSPORTATION RESEARCH BOARD
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Outline

 Introduction – context

 NCHRP 9-60 proposal on test 
methods and specification

 9-60 proposal genesis: What drives 
changes in binder physical properties –
thermal, rheological, and failure
• Thermal stress
• Binder formulation 
• Aging – oxidative and physical

 Summary



Context - Introduction

• Bitumen chemical complexity
• Variable continuum can have an 

unstable balance
• SuperPave binder specs and 

quality issues outdated for 2021 
binders with high variability
• Polymers, Modifiers, RAP/RAS, 

Recycling Agents, Bio-binders, 
Conversion residues (IMO 2020), 
Plastics...

• Characterization methods lack 
an holistic approach

• Binder quality impacts 
performance

3

NCHRP 
9-60



Surface Damage

+ ON, CA
+ ON, CA

Binder Impacts on Performance 
from Agency Survey

4

Transverse Cracking

Block Cracking

Misc. Surface Cracking

Raveling

+ ON, CA + ON, CA



 PMA field proven performance - Von Quintus, 2005

Rheologically “disproven”? 

Performance and Rheological 
parameters of PMA’s
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Multiphase microstructure (IR microscopy)
• Polymer phase dispersed in an asphaltene rich continuous phase
• Swollen by slightly condensed aromatics and aliphatics
• Influenced by base binder, % polymer, reaction and processing
• Impacts both phase properties – PMA not just “P in A”!

6(Elwardany et al, C&BM 2020)(Mouillet, 2008)

PMA microstructure considerations

12.2%

0.3%6% SBS
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Testing 
• RTFO+PAV20 
• LPG: BBR + ABCD onlyfor critical binders
• 3 PAV pans - sufficient for both BBR & ABCD Tests

Proposed 
specifications 

framework 
• Addition to current 

Climate-based PG
• Universal - blind 

• BBR alone when 
ΔTc > -2°C (Accepted)
ΔTc <-6°C  (Rejected)

• BBR & ABCD for
-6°C<ΔTc <-2°C
ΔTf min = 7°C at -2°C
ΔTf min = 10°C at -6°C

(-2,7)

(-6,10)



 Low PG Ranking after PAV20h-Aging from BBR
 Unmodified, Polymer-modified, ReOB-modified, SDA, PPA-modified, 

Biophalt, Oxidized, Airblown, Visbroken

09-60 Binder Matrix – LTPG ranking
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09-60 Binder Matrix – ∆Tc ranking

9(Elwardany et al., C&BM 2020)
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BBR & ABCD ΔTf Ranking after PAV40h
Unmodified, Polymer-modified, ReOB-modified, SDA, 
PPA-modified, Biophalt, Oxidized, Airblown, Visbroken.

09-60 Binder Matrix – ∆Tf ranking

10(Elwardany et al., C&BM 2020)



BBR & ABCD ΔTf Ranking after PAV40h
Unmodified, Polymer-modified, ReOB-modified, SDA, 
PPA-modified, Biophalt, Oxidized, Airblown, Special binders.

09-60 Binder Matrix – Combined 
ranking and assumed performance
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REOB
Terpolymer

FAA/AI study - Block cracking



Evidence for Unrestraint Specimens
Acoustic Emissions Results (Behnia et al., 2018)

 FEA & Mix-BBR(Sliver) Results (Elwardany et al., AAPT 2019)

 Hypothesis: Two Thermally-Induced Damage Mechanisms

Thermal Stress
Mechanism(s) for Damage

13

Mix Restraint (External) Mastic Restraint (Internal)

Mastic Fine 
Aggregate

Asphalt Mixture

Mastic tensile stresses

Viscoelastic
No External Restraint 
-10°C/hr cooling rate

Failure



Factors affecting ABCD - Tcr
Coeff of Thermal Contraction controls volumetric change rate
Binder LVE properties G* and δ
 Ability to relax stresses
Thermal stress developed under given cooling conditions

Binder Strength
Parameters function of glass transition temperature Tg

Tg : transition region and not a single temperature
 Complex binders usually have a wider Tg region

ABCD Failure Test 
to capture Stress build-up

14(Elwardany et al.; C&BM 2020)



Tg influence on BBR Tc 
and ABCD Tcr

• Tg (H) and Tc(S) correlation: better for unmodified, 
impacted by aging level - Confirms other works (Lesueur, Olard, Bahia)

• Tg and Tcr: lower correlations, shows PMA features
15



NCHRP 9-60 Binder Mapping

16

• PAV20 aged binders
• PMA’s and Non PMA’s

m-controlled

S-controlled



Correlations between ∆Tc and CII after PAV40h
 Unmodified, Polymer-modified, ReOB-modified, SDA, 
PPA-modified, Biophalt, Oxidized, Airblown, Special binders
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(Elwardany et al., 
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Tg and Maltenes

• SAR-AD maltene subfractions effect on DSC Tg(H)
• Continuous trend evolution from Saturates (negative 

slope) to highly Aromatics and Resins (positive slope)
• No trend with asphaltenes: no direct effect on Tg 18

Glass Transition (Tg), Modulated 
DSC

SAR-AD Maltene Subfractions



Tg(H) and Tc(S) and Maltenes

19

• Relationship between Tg(H) or Tc(S) with MII
• New composition balance index: Maltene Instability 

Index MII: (Sat+Aro1)/(Aro2+Aro3+Res)



∆Tc and wax

• Crystallizable fraction (CF from DSC) add the final 
touch to the mapping
• Waxy crudes stand out in mapping
• … and ∆Tc

20

Crystallizable Fraction, 
Unmodulated DSC

SAR-AD asphalts vs DSC CFPositive ∆Tc

High wax (CF)



Relaxation and Molecular Weight 
Distribution

• ∆Tc from BBR vs. binder polydispersity from GPC
• ∆Tc is more complex than either Tc, and relates on 

GPC/SEC polydispersity index or molecular 
associations – captures PMA’s singular features 21
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Summary
• Thermal stress mechanisms

• Internal and external - Macro and micro scales
• Influence of the glass transition

• Formulation
• Crude oil origin and refinery process
• Chemical composition
• Balance – maltenes, asphaltenes and waxes (CF)
• Additives / polymers interactions with the base

• Aging, both chemical (oxidative) and physical
• Testing

• Importance of glass transition and equi-stiffness temperature 
on defining testing conditions – Ref. temperature needed

• Power and limitations of rheological parameters
• Usefulness of failure, particularly for PMA’s
• Combination proposed for future specifications

22



Summary

23

Wax from 
asphalts REOB Air 

blowing
Thermal

Conversion 
visbreaking

Polymers
Physical 
blends

Crosslinked SBS 
or reacted 

Terpolymers
CII Neutral       Neutral
PI (GPC)       
Oxidation Neutral     Neutral or  Neutral or 
PH     Neutral Neutral or  Neutral or 
PG Low      

Tc(S) Neutral   Neutral  

Tc(m)      Neutral
∆Tc      Neutral
Tcr (ABCD) Neutral     
∆Tf      (SBS) 

Failure
Modulus
(DTT)

 Neutral  

 EVA, SBR 
(stress)
 SBS 
(strain)

 Terpo (stress)
 XL SBS (stress 

+ strain)

DRAFT



Summary

What kills asphalt? 
Poor formulation and poor 

testing…

Neither one is simple, but 
progress is possible!

24



25Contact: jplanche@uwyo.edu
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Findings and Recommendations 
From

NCHRP Project 9-61

Short- and Long-Term Binder 
Aging Methods to Accurately 

Reflect Aging in Asphalt Mixtures

Ramon Bonaquist, P.E.
Advanced Asphalt Technologies, LLC



NCHRP Project 9-61

• Completed December 2020
– NCHRP Report 967

• Research Team
– Advanced Asphalt 

Technologies, LLC
• Ramon Bonaquist  - PI

– Western Research Institute
• Jeramie Adams - Co-PI

– Consultants
• Dave Anderson
• Gayle King
• Erick Sharp



Today’s Outline
• Objectives
• Short-Term Conditioning

– Approach
– Findings
– Recommendations

• Long-Term Conditioning
– Approach
– Findings
– Recommendations



Objectives

• Evaluate laboratory conditioning 
procedures
– AASHTO T 240, AASHTO R 28 and alternatives

• Recommend improvements
– New procedure
– Modifications to existing procedures

• Calibrate the improved procedures to 
accurately simulate aging
– Mixture production, transport, and placement 
– Service life of the pavement 



Short-Term Conditioning

• Concerns with AASHTO T 240
– Uniformity of the film and how well it is renewed 

is viscosity dependent
– Some modified binders tend to crawl out of the 

bottle

• Alternatives Evaluated
– AASHTO T 240
– AASHTO T 240 with preheated containers
– Modifications to AASHTO T 240 made in the 

U.K. Ageing Profile Test
– Static Thin Film Test (12.5 g binder in PAV pan)



Short-Term Evaluation

• Compare binder conditioning procedures to 
binder recovered from short-term oven 
conditioned mixtures
– NCHRP 9-52 recommendations
– Designed as a paired difference experiment
– HMA and WMA temperatures
– Eight Binders

Neat PG 52-34 SBS PG 64-34
Terpolymer PG 64-34 SBS PG 76-28
Neat PG 64-22 PG 64-22 with 3 % SBR Latex
SBS PG 76-22 SBS 82-22



Binder Loss Survey

• Maine DOT
• 33 Agencies responded

– 10,500 annual tests

• Binder loss occurred in about 4 % of samples
– 15 Agencies list only modified binders as susceptible
– 7 Agencies list only neat binders as susceptible
– 2 Agencies list both modified and neat binders as susceptible



Major Short-Term Conditioning Findings

• For HMA Conditions
– No significant difference in aging index for any of the short-term 

binder conditioning procedures and short-term oven aging of 
mixtures

– No viscosity effect identified for AASHTO T 240 or any of the 
alternatives

– Binder leakage in AASHTO T 240 occurs in about 4 % of 
samples

• For WMA Conditions
– Mixing screw procedures are needed when the viscosity of the 

binder at the conditioning temperature exceeds about 0.55 Pa·s



Short-Term Conditioning Recommendations

• Keep AASTHO T 240
– Further investigate procedure/training to reduce instances of 

binder loss

• Consider Static Thin Film If 12.5 g PAV Adopted
– Eliminates binder transfer between short- and long-term 

conditioning 
– Condition binder using a small positive pressure to eliminate 

elevation effect
• Project 20-07/Task 400, Effect of Elevation on Rolling Thin Film Oven 

Aging of Asphalt Binder



Long-Term Conditioning

• Concerns with AASHTO R 28
– Conditioning is not severe enough
– Service life that is simulated is not well defined

• Alternatives Evaluated
– PAV film thickness
– PAV temperature
– PAV conditioning time



What is Target Age for Long-Term?
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Long-Term Evaluation

• Response Surface Experiment
– Varied temperature, film thickness, and 

conditioning time
– Compare lab conditioned recovered binder from 

ARC AZ and MN sites
– Master curve parameters and FTIR data

• Calibration Experiment
– 26 Pavement Sections from LTPP
– Cores and Original Binder
– Age: 8 to 19 yrs
– Wide range of climates



Major Long-Term Response Surface 
Findings

• Smooth evolution of aging in 
PAV

• PAV reproduces field aging
• Higher temperature, thinner 

films, and/or longer 
conditioning times needed 
to simulate near surface 
aging

• 40 hr, 50 mm thickness and 
20 hr, 12.5 mm thickness 
approximately equal



Long-Term Calibration Experiment
• Calibration Experiment

– 12.5 g Mass
– 20 hr Conditioning Time
– Varied PAV Conditioning Temperature To Match Recovered 

Binder Properties
– Statistical Model to Account for

• Temperature
• Age
• Air Voids
• Binder Temperature Aging Sensitivity
• Depth



PAV Conditioning Temperature Model
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12.5 g, 20 hr PAV Temperatures to Simulate 10 
years of In-Service Aging in Top 1 Inch 

Average 98 % 
Reliability High 

and Low 
Pavement 

Temperature

Calculated PAV 
Temperature

⁰C

Recommended
Temperature

⁰C

% of 
LTPPBind 3.1 

Stations
PG Grade Based on Environment

-61 84.4
85 1 PG 40-52; PG 46-52; PG 40-46

-31 86.6
01 88.9

90 4
PG 52-52; PG 46-46; PG 40-40 
PG 46-40; PG 52-46; PG 40-343 91.1

6 93.4
95 20

PG 58-46; PG 52-40; PG 46-34;      PG 
40-28 PG  58-40; PG 52-34;     PG 46-28; 
PG 40-229 95.7

12 97.9

100 41

PG 64-40; PG 58-34; PG 52-28; 
PG 46-22; PG 40-16 PG 64-34; 
PG 58-28: PG 52-22; PG 46-16; 
PG 40-10 PG 64-28; PG 58-22; 
PG 52-16; PG 46-10

15 100.2

18 102.5

21 104.8
105 20

PG 70-28; PG 64-22; PG 58-16; 
PG 52-10 PG 70-22; PG 64-16; 
PG 58-1024 107.1

27 109.3
110 13 PG 70-16; PG 64-10; PG 70-10

30 111.6
331 115.0 115 1 PG 76-10

1 Outside range of data used in calibration



Major Long-Term Conditioning Findings

• Feasible to simulate approximately 10 years of 
near surface, in-service aging using the PAV
– 12.5 g conditioned for 20 hours
– 50 g conditioned for 40 hours
– Temperatures between 85 and 115 C depending on climate
– Pressure of 2.1 MPa

• Residue from 12.5 g PAV conditioning is 
significantly more aged than standard PAV 
residue
– Need to adjust performance grading criteria



Major Long-Term Conditioning Findings 
(Continued)
• 12.5 g PAV conditioning requires greater attention 

to detail
– Thicker pans to reduce warpage
– Tighter tolerance on levelness 



Long-Term Conditioning 
Recommendations
• Current Performance Grading

– No change

• Conditioning for Adoption of ΔTc Criterion
– Single 20 hr PAV run
– Use 2 50 g pans for low temperature/intermediate grading
– Use 8 12.5 g for ΔTc evaluation using 40 hour ΔTc criterion

• Conditioning for Revised Performance Grading
– Static thin film conditioning for short-term conditioning
– 12.5 g PAV for long-term



Questions/Discussion

Ramon Bonaquist 
Advanced Asphalt Technologies, LLC
703-999-8365
aatt@erols.com



#TRBwebinar

Ramon Bonaquist
aatt@erols.com
Advanced Asphalt 
Technologies, LLC

David J. 
Mensching
david.mensching@
dot.gov
U.S. Department of 
Transportation

Jean-Pascal 
Planche
jplanche@uwyo.edu

Donald W. 
Christensen
dwcaat@hotmail.com
Advanced Asphalt 
Technologies, LLC

mailto:aatt@erols.com
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Other TRB events for you
• July 16: Review of Federal Highway 

Administration Infrastructure R&D - Expert Task 
Group on Pavements 

• August 10: National Conference on Transportation 
Asset Management 

• August 25: Best Practices for Unsurfaced Road 
Evaluation and Rating

https://www.nationalacademies.org/trb/events

#TRBWebinar

https://www.nationalacademies.org/trb/events


TRB’s New Podcast!
• Have you heard that we have a new 

podcast, TRB’s Transportation Explorers?
• Listen on our website or subscribe 

wherever you listen to podcasts!

#TRBExplorers

https://www.nap.edu/trb/podcasts/


Get Involved with TRB

#TRBwebinar

Receive emails about upcoming TRB webinars
https://bit.ly/TRBemails

Find upcoming conferences
http://www.trb.org/Calendar

https://bit.ly/TRBemails
http://www.trb.org/Calendar


Get Involved with TRB

Be a Friend of a Committee bit.ly/TRBcommittees
– Networking opportunities

– May provide a path to Standing Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp

Update your information www.mytrb.org

#TRBwebinar

Getting involved is free!

http://bit.ly/TRBcommittees
http://bit.ly/TRBstandingcommittee
https://bit.ly/TRB-crp
http://www.mytrb.org/
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