

TRB TRANSPORTATION RESEARCH BOARD

TRB Webinar: What's New in the HCM7 and Why It Matters

June 7, 2022

11:30 am – 1:00 pm Eastern

PDH Certification Information

1.5 Professional Development Hours (PDH) – see follow-up email

You must attend the entire webinar.

Questions? Contact Beth Ewoldsen at Bewoldsen@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

Learning Objectives

- Assess new materials and methods contained in HCM7 and understand the differences from prior versions of the manual
- Identify new facilities and systems that can be analyzed using HCM7 methods
- Utilize new and existing multimodal methods in HCM7
- Assess the potential impacts of on roadway capacity

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

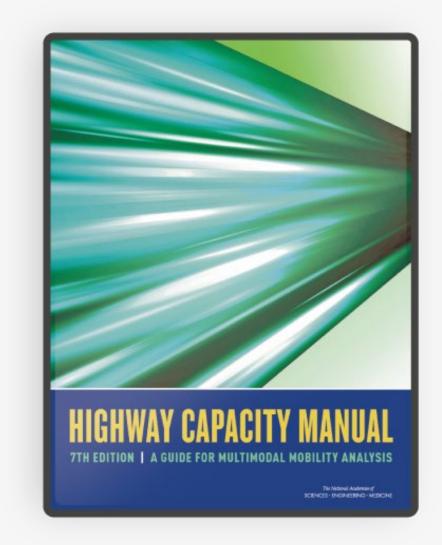
What is new in the

7th Edition of the Highway Capacity Manual

Bastian Schroeder, PhD, PE Kittelson & Associates, Inc.

Tom Creasey, PhD, PECaliper Corporation

Behzad Aghdashi, PhD, PMP McTrans Center, UFTI

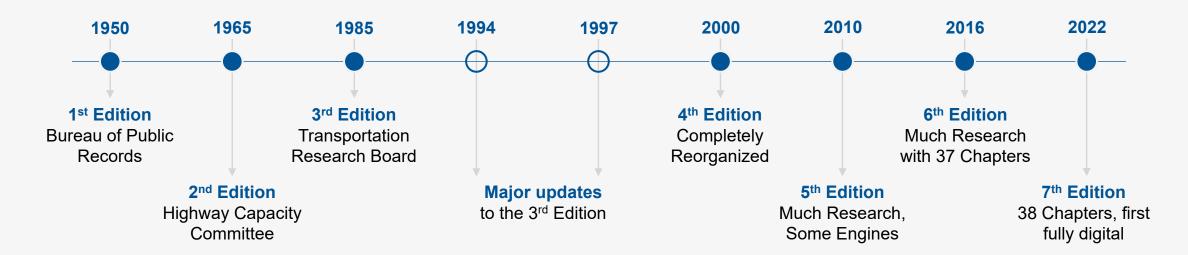

Overview of Changes in HCM 7th Edition

Agenda

- Other NCHRP Projects on the Horizon
- Where do we go from here?

About HCM

- Overseen by TRB¹ Committee on Highway Capacity and Quality of Service (hcqstrb.org)
- Most methods are developed via national-level projects such as NCHRPs².
- Four Volumes:
 - I. Concepts
 - II. Uninterrupted Flow
 - III. Interrupted Flow
 - IV. Applications Guide (Online only)

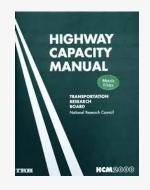


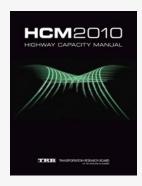
¹TRB: Transportation Research Board

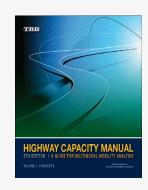
²NCHRP: National Cooperative Highway Research Program

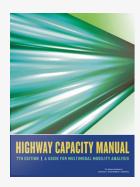
HCM History

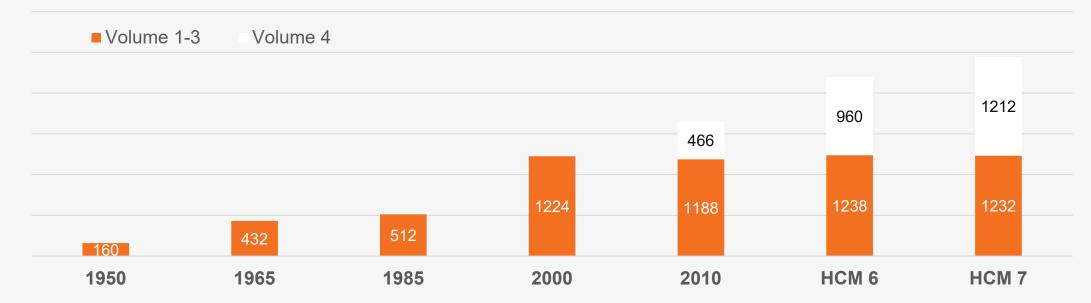
HCM Releases:

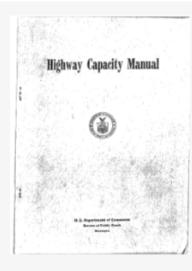



Growth in HCM Content









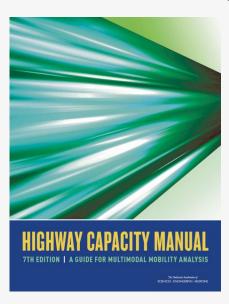
Number of Pages

History of Major Changes and Updates

- 1950: First document to quantify concept of capacity
- 1965: Introduce LOS concept, bus transit chapter
- 1985: Significant new research, pedestrians, bicycles
 - √ 1994 & 1997 updates
- > 2000: Divided into multiple parts, new research
 - ✓ Multi-period analysis for freeway facilities
 - ✓ New and updated methodologies for two-lane highways, multilane highways, freeways, traffic signals, and transit
- 2010: Significant new research, four volumes
 - Multimodal methods integrated in chapters
 - ✓ New methods on ramp terminals, roundabouts, freeway weaving, urban street operations, shared-use paths, and active traffic management
 - ✓ Introduced electronic volume IV
- HCM 6th Edition: Released in 2016
 - ✓ New travel time reliability method
 - ✓ Active travel and demand management (ATDM) and Managed lanes
 - ✓ New methods for work zones, alternative intersections, roundabouts in corridors, and trucks

A practical guide by which the engineer, having determined the essential facts, can design a new highway or revamp an old one with assurance that the resulting capacity will be as calculated.

New Research Resulting in 7th Edition of HCM


Research Project	Project Title	HCM Chapter(s) Updated
NCHRP 17-87	Enhancing Pedestrian Volume Estimation and Developing HCM Pedestrian Methodologies for Safe and Sustainable Communities	Updated Chapters 18, 19, 20, 30, 31 & 32
FHWA Pooled Fund TPF-5(371)	Capacity Adjustment Factors for Connected and Automated Vehicles (CAV) in the Highway Capacity Manual	Updated Chapter 26, 31 & 33
NCHRP 17-65	Improved Analysis of Two-Lane Highway Capacity and Operational Performance	New Chapter 15
FHWA (FHWA-HOP-16-088)	Active Transportation and Demand Management (ATDM) Analytical Methods for Urban Streets	Updated Chapters 17 & 37
NCHRP 15-57	Highway Capacity Manual Methodologies for Corridors Involving Freeways and Surface Streets	New Chapter 38

Various errata changes and interpretations

Ongoing/Active Research Impacting Future Releases of HCM

NCHRP 03-133	Traffic Signal Design and Operations Strategies for Non-Motorized Users
NCHRP 07-26	Update to HCM Merge, Diverge, and Weaving Methods
NCHRP 15-66	Arterial Weaving Methodology
NCHRP 03-130	Guide for Roundabouts
NCHRP 08-135	Reliability and Quality of Service Evaluation Methods for Rural Highways
NCHRP 17-98	Guide for Intersection Control Evaluation

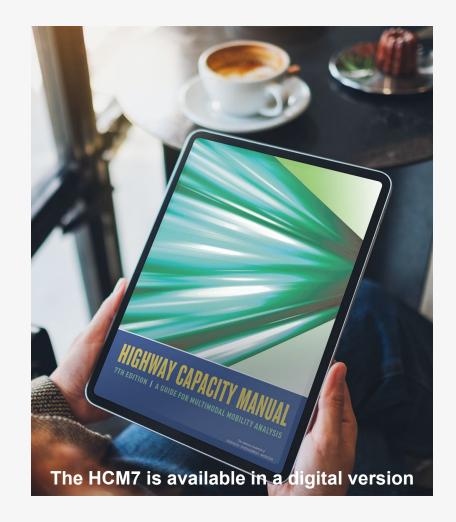
Printed HCM

Volume 1: Concepts

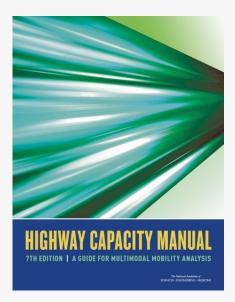
Volume 2: Uninterrupted Flow

Volume 3: Interrupted Flow

Online


HIGHWAY CAPACITY MANUAL
7TH EDITION I A CUIDE FOR NULTIMODAL MOBILITY ANALYSIS
YOUNG E APPLICATION CUIDE
Supplemented Chapters Technical Reference I Revery Applications Cuities Trans & Systems (Ed.) The Consented Forces

VIMAT IS HIGHMON' CAPACITY MANUAL VOLUME 47


The INCID motions throw primed volumes (Systems - System on the purchased from the Transportation Resource Transport
The MICH motions throw primed volumes (Systems - Systems on the resultant). In calculate

- 0 application or primed volumes a system of the resultant in resolution
- 1 department of hardway (Systems, counting position of them of the motivations described in the Valume 1-3 dynagers, scargle positions, and enter resource
- 1 application or position demands from the PICAT can be applied to judicine given savely as and a weekly of tradit operations applications
- 1 interpretations, against conduction to the PICAT can be applied to judicine given savely as and a weekly of tradit operations applications
- 1 interpretations, and consider the Technical Systems and collection of chapter systems, and consider the Technical Systems and collections of Chapter systems, and consideration and Chapter systems, and consideration and Chapter systems, and consideration and Chapter systems, and consideration of the Chapter Systems and collections of Chapter systems, and consideration and Chapter systems, and consideration and chapter systems, and consideration and chapter systems and collections and chapter systems.

Volume 4: Applications Guide

Printed HCM/e-book

Volume 1: Concepts

Volume 2: Uninterrupted Flow

Volume 3: Interrupted Flow

Online/e-book*

THE DITTION I A GUIDE FOR MULTIMODAL MOSILITY ANALYSIS

***CROUGH LA PARK DITTION GUIDE**

***STUDIEL A PARK DITTION GUIDE**

***Studies and Chapters**

***Total Chapters**

Total Chapters

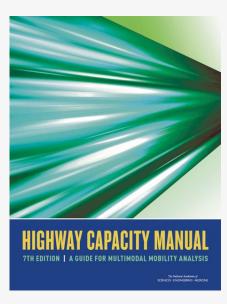
***Total Chapters**

***T

Volume 4: Applications Guide

* Supplemental chapters only

Volume 1: basic grounding in concepts


Volumes 2 and Volume 3: information to apply and interpret results of an operations-level analysis

- Input data requirements
- Calculation steps
- Sensitivity of results to inputs

Volume 4: resources

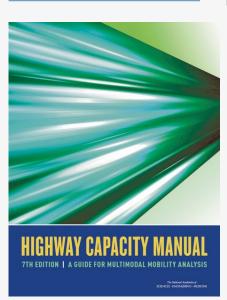
- Example problems
- Details of complex methods
- Planning-level methods

Printed HCM

Volume 1: **Concepts**

Volume 2: **Uninterrupted Flow**

Volume 3: **Interrupted Flow**


Online

Volume 4: **Applications Guide**

- HCM User's Guide
- Applications
- **Modal Characteristics**
- Traffic Operations and Capacity Concepts
- **Quality-of-Service Concepts**
- **HCM** and Alternative Analysis Tools
- Interpreting HCM and Alternative Tool Results
- **HCM Primer**
- Glossary and Symbols

Concepts: Supplemental

37. ATDM: Supplemental

Printed HCM

Volume 1: Concepts

Volume 2: Uninterrupted Flow

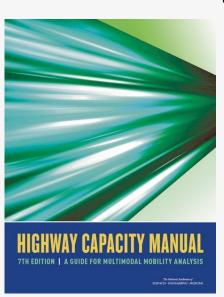
Volume 3: Interrupted Flow

Online

HEDITION I A GUIDE FOR MULTIMODAL MOBILITY ANALYSIS

VOLINE A APPLICATIONS GUIDE

Included Review of Applications Control Register (Rober 1994)


MARCHY MANUAL VOLLMARE 47

MANCHY MANCHY

Volume 4: Applications Guide

- 10. Freeway Facilities Core Methodology
- 11. Freeway Reliability Analysis
- 12. Basic Freeway and Multilane Highway Segments
- 13. Freeway Weaving Segments
- 14. Freeway Merge and Diverge Segments
- 15. Two-Lane Highways

- 25. Freeway Facilities: Supplemental
- 26. Freeway and Highway Segments: Supplemental
- 27. Freeway Weaving: Supplemental
- 28. Freeway Merges and Diverges: Supplemental
- 38. Network Analysis

Printed HCM

Volume 1: Concepts

Volume 2: Uninterrupted Flow

Volume 3: Interrupted Flow

Online

HIGHWAY CAPACITY MANUAL 2TH EDITION I A GUIDE FOR MULTIMODAL MOBILITY ANALYSIS WUNNEL PREMIATOR (III) Suphamental Chapture Technical Informace I formy Application Cylinia (From & Hydrone - Ethnic Discounting From American Chapture - Technical Informace I formy Application Cylinia (From & Hydrone - Ethnic Discounting From American Cylinia) WHAT IS HIGHWAY CAPACITY MANUAL VOLUME 47 Town Child consists there prefer contended they provide the set of the results of the Technical Information (From American Cylinia) **Suphamental chapture 25-58, providing additional drifts in entrodologies described in the Valume 1-3 chapters, example problems, and entrode of the Cylinia (From American Cylinia) **A discounting Conference of the Cylinia Cylinia (From American Cylinia) (From American Cylinia) **A discounting From American Cylinia (From American Cylinia) **A discounting From American Cylinia (From American Cylinia) **A DISCOUNTING College Cylinia (From American Cylinia) **College Cylinia (From American Cylinia) **A DISCOUNTING College Cylinia (From American Cylinia) **College Cylinia (From American Cylinia) **A DISCOUNTING College Cylinia (From American Cylinia) **College Cylinia (From American Cylinia) **College Cylinia (From Cylinia) **College Cylinia (From Cylinia) **College Cylinia (From Cylinia) **College Cylinia (From Cylinia) **College Cylinia **College Cylini

Volume 4: Applications Guide

- 16. Urban Street Facilities
- 17. Urban Street Reliability and ATDM
- 18. Urban Street Segments
- 19. Signalized Intersections
- 20. Two-Way Stop-Controlled Intersections
- 21. All-Way Stop-Controlled Intersections
- 22. Roundabouts
- 23. Ramp Terminals and Alternative Intersections
- 24. Off-Street Pedestrian and Bicycle Facilities
- 29. Urban Street Facilities: Supplemental
- 30. Urban Street Segments: Supplemental
- 31. Signalized Intersections: Supplemental
- 32. Stop-Controlled Intersections: Supplemental
- 33. Roundabouts: Supplemental
- 34. Interchange Ramp Terminals: Supplemental
- 35. Pedestrians and Bicycles: Supplemental

NCHRP 17-87 **Existing HCM Pedestrian Methods**

Many pedestrian methods (and metrics) already in HCM

- Urban streets
- Signalized intersections
- TWSC intersections and midblock crossings
- Off-street paths (pedestrian-only and multi-use)

What's New: Uncontrolled Crossings (TWSC & Midblock)

HCM6: Current method

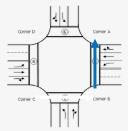
- LOS based on pedestrian delay
- LOS sensitive to:
 - Hourly traffic flow rate
 - Motorist yielding rate

HCM7: New method

- LOS based on percentage (dis)satisfied pedestrians
- LOS sensitive to:
 - Hourly traffic flow rate
 - AADT
 - Motorist yielding rate
 - Specific crossing treatments (marked crosswalk, median island, RRFB)
- Delay is still calculated and is sensitive to the design pedestrian (assumed pedestrian speed)
- Corrections to the HCM6 motorist yielding procedure

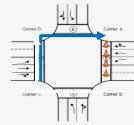
What's New: Signalized Crossing Delay

HCM6: Current method


- Delay estimated for single-leg, single-stage crossings
- Guidance to sum delay results for multiple-leg crossings
- LOS based on "pedestrian LOS score" (uses multiple factors relating to crossing experience)
- Corner and crosswalk circulation area calculated before delay & LOS

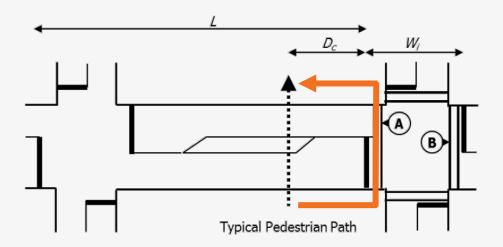
HCM7: New method

- Delay also estimated for multiple-leg and multiple-stage crossings
- Delay calculation recognizes that second stage/leg arrival is not random
- LOS continues to be based on pedestrian LOS score
- Corner and crosswalk circulation area become optional calculation steps



Two-leg crossing

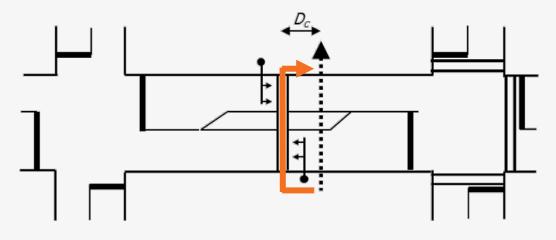
Two-stage crossing with median refuge



Crosswalk closure (three-leg crossing)

Urban Street Pedestrian LOS Method

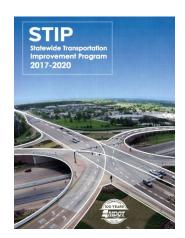
HCM6: Current method

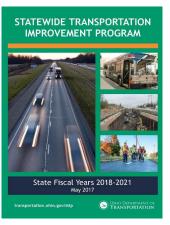

- Segment pedestrian LOS influenced by ease of crossing the street between signalized intersections
- Method has little sensitivity to diversion length

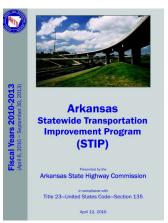
(a) Divert to Nearest Boundary Intersection

HCM7: New method

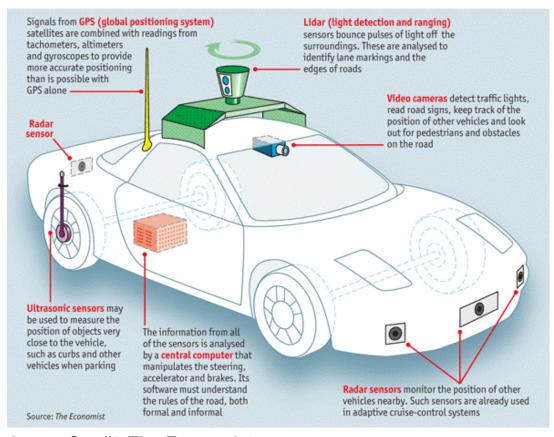
Increased sensitivity to diversion length




(b) Divert to Midsegment Signalized Crosswalk



Supported Agency Decision Making


State Transportation Improvement Program (STIP)

Multi-year capital improvement document which denotes the scheduling and funding of construction projects

Typical planning horizon of 25 years

Funding decisions made for traffic in 2045-2050!

Automated Vehicles (AV) vs Connected and Automated Vehicles (CAV)

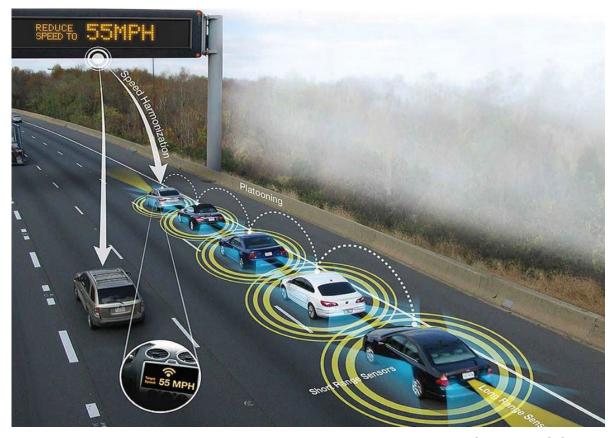


Image Credit: The Economist

Image Credit: PCQuest

Capacity Impact for CAVs

Updates in HCM7

Chapter 26

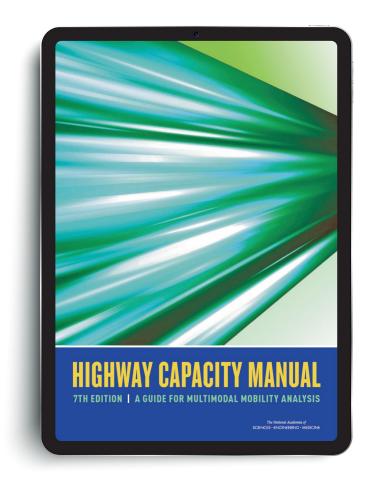
Freeway Facility Supplemental

Chapter 31

Signalized Intersections Supplemental

Chapter 33

Roundabouts Supplemental


Highway Capacity Manual: A Guide for Multimodal Mobility Analysis

CHAPTER 26 FREEWAY AND HIGHWAY SEGMENTS: SUPPLEMENTAL

CONTENTS

CONTENTS	
1. INTRODUCTION	26-1
2. STATE-SPECIFIC HEAVY-VEHICLE DEFAULT VALUES	26-2
3. TRUCK ANALYSIS USING THE MIXED-FLOW MODEL	26-4
Introduction	26-4
Overview of the Methodology	26-4
4. ADJUSTMENTS FOR DRIVER POPULATION EFFECTS	26-14
5. GUIDANCE FOR FREEWAY CAPACITY ESTIMATION	26-15
Freeway Capacity Definitions	26-15
Capacity Measurement Locations	26-16
Capacity Estimation from Field Data	26-18
6. CONNECTED AND AUTOMATED VEHICLES	26-22
Introduction	26-22
Concepts	26-22
Capacity Adjustment Factors	26-25
Service Volume Tables	26-26
7. FREEWAY AND MULTILANE HIGHWAY EXAMPLE PROBLEMS	26-27
Example Problem 1: Four-Lane Freeway LOS	26-27
Example Problem 2: Number of Lanes Required for Target LOS	26-30
Example Problem 3: Six-Lane Freeway LOS and Capacity	26-32
Example Problem 4: LOS on a Five-Lane Highway with a Two-Way Left-Turn Lane	26-35
Example Problem 5: Mixed-Flow Freeway Operations	
Example Problem 6: Severe Weather Effects on a Basic Freeway	20 07
Segment	26-44
Example Problem 7: Basic Managed Lane Segment	

Changes in HCM 7

Capacity Adjustment Factors (CAFs) for CAVs

Given a market penetration rate of CAVs, what percent increase in capacity can be expected?

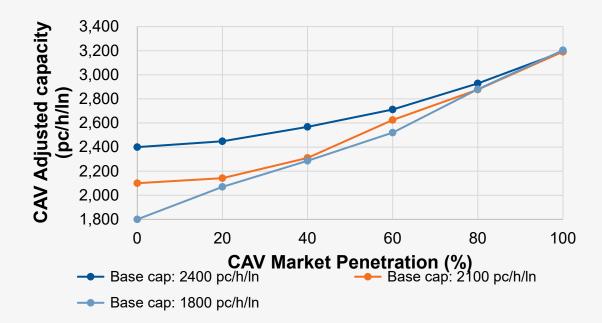
Service Volume Tables for CAVs

Given a market penetration rate of CAVs, what hourly and/or daily service volumes are achievable for planning applications?

Capacity Impact for CAVs

CAV Capacity Adjustment - Freeways

Capacity Adjustment Factor (CAF_{CAV}) with a multiplicative effect


Main user input: % Market Penetration (0 to 100%)

 What percentage of the traffic stream is comprised of CAVs?

Intended for planning-level applications

Does not consider:

- Oversaturated conditions
- CAVs on Managed Lanes
- Truck platooning / connected and autonomous trucks

•	Proportion of CAVs	Adju	acity	
	in Traffic Stream	2,400 pc/h/ln	2,100 pc/h/ln	1,800 pc/h/ln
	0	1.00	1.00	1.00
	20	1.02	1.02	1.15
	40	1.07	1.10	1.27
	60	1.13	1.25	1.40
	80	1.22	1.37	1.60
	100	1.33	1.52	1.78

Capacity adjustments – Basic Segments

CAV Service Volume Tables - Freeways

Area		Proportion of CAVs in Traffic Stream					
Туре	Terrain	0%	20%	40%	60%	80%	100%
Urban	Level	19,900	20,500	21,800	24,600	26,800	29,700
Urban	Rolling	19,000	19,900	21,400	24,500	26,800	29,700
Rural	Level	16,800	17,900	19,300	22,000	24,400	26,800
Rural	Rolling	15,200	17,200	19,100	21,600	24,400	26,800

Notes: CAV = connected and automated vehicle, defined here as a vehicle with an operating cooperative adaptive cruise control system.

Values represent the maximum annual average daily traffic per lane at LOS E.

Urban assumptions: Free-flow speed = 70 mph, 5% trucks, PHF = 0.94, K-factor = 0.09, D-factor = 0.60. Rural assumptions: Free-flow speed = 70 mph, 12% trucks, PHF = 0.94, K-factor = 0.10, D-factor = 0.60.

CAV assumptions: Average intervehicle gap within CAV platoons = 0.71 s based on a distribution (see text), CAV interplatoon gap = 2.0 s, maximum CAV platoon size = 10 pc, human-driven vehicles operate with average gaps calibrated to 2,400 pc/h/ln.

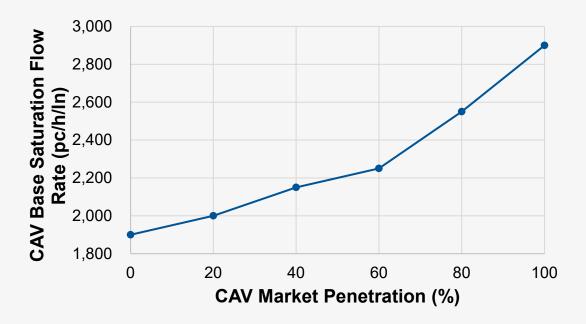
Exhibit 26-18

Daily Maximum Service Volumes for Basic Freeway Segments with CAV Presence (2-way yeh/day/ln)

Capacity Impact for CAVs

CAV Capacity Adjustment: Signalized Intersections

Adjustment to Saturation Flow Rate


Main user input: % Market Penetration (0 to 100%)

 What percentage of the traffic stream is comprised of CAVs?

Addresses protected and permitted phases

Does not consider:

- Interactions with pedestrians and other modes
- Driveways or access points impacting saturation flow rates

Proportion of CAVs in Traffic Stream	Base Saturation Flow Rate (pc/h/ln)
0	1,900
20	2,000
4 0	2,150
60	2,250
80	2,550
100	2,900

Saturation Flow Rate adjustments – Through movements

CAV Service Volume Tables - Signals

Exhibit 31-67 Illustrative Generalized Service Volumes LOS=E Thresholds for Signalized Intersections with CAV presence (yeh/h)

Through Movement	No of Through	Proportion of CACC-Capable Vehicles in Traffic Stream							
g/C Ratio	Lanes	0	20	40	60	80	100		
	1	800	840	910	950	1,070	1,220		
0.40	2	1,550	1,630	1,750	1,840	2,080	2,370		
	3	2,000	2,110	2,260	2,370	2,680	3,050		
	1	910	960	1,030	1,080	1,220	1,390		
0.45	2	1,740	1,830	1,970	2,060	2,340	2,660		
	3	2,250	2,370	2,550	2,660	3,020	3,430		
	1	1,020	1,070	1,150	1,210	1,370	1,560		
0.50	2	1,930	2,030	2,180	2,290	2,590	2,950		
	3	2,500	2,630	2,830	2,960	3,360	3,820		

Notes: LOS E threshold is defined by control delay greater than 80 s/yeh or volume-to-capacity ratio >1.0.

CAV = connected and autonomous vehicle, CACC = cooperative adaptive cruise control.

Assumes no interaction with non-motorized road users, no adverse weather impacts, and a facility without driveways or access points impacting saturation flow rates.

Interpolate for other CACC proportions

Assumed values for all entries:

Heavy vehicles: 0% Peak hour factor: 0.92 Lane width: 12 ft Grade: 0%

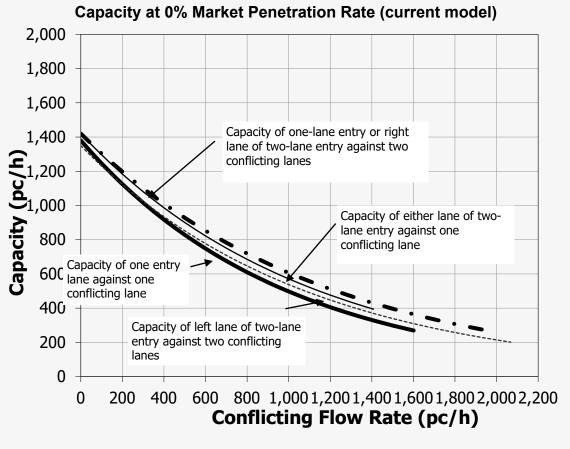
Separate left-turn lane: yes Separate right-turn lane: no

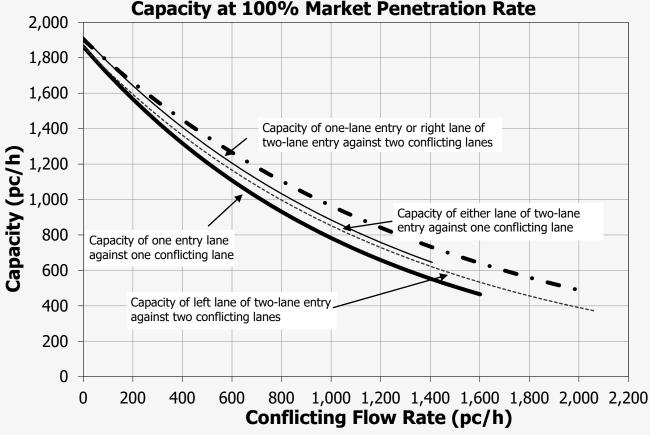
Percentage right turns: 10%

Pretimed control Cycle length: 90 s Lost time: 4 s/phase

Protected left-turn phasing: yes g/C ratio for left-turn movement: 0.10 Parking maneuvers per hour: 0 Buses stopping per hour: 0 Percentage left turns: 10%

CAV Capacity Adjustment - Roundabouts


Adjustment to Follow-up Headway and Critical-Headway


Main user input: % Market Penetration (0 to 100%)

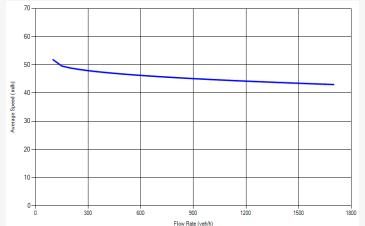
What percentage of the traffic stream is comprised of CAVs?

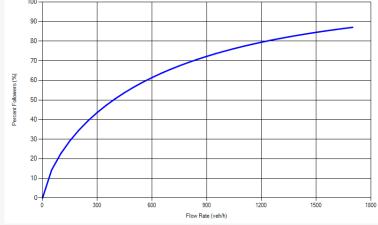
	1-Lane Entry				2-Lane Entry					
					1 Circu	ulating	2 Circu	ulating	2 Circu	ulating
Proportion of	1 Circu	ılating	2 Circu	ılating	La	ne,	Lar	ies,	Lar	ies,
CAVs in	<u>La</u>	<u>ne</u>	<u>Lar</u>	es ^a	Both I	<u>Lanes</u>	<u>Left</u>	<u>Lane</u>	<u>Right</u>	Lane
Traffic Stream	f A	f₿	f A	f B	f A	f́₿	f A	f́₿	f _A	f _B
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
20	1.05	0.99	1.03	0.99	1.05	0.99	1.03	0.99	1.05	0.96
40	1.12	0.97	1.08	0.96	1.12	0.97	1.08	0.96	1.12	0.93
60	1.22	0.94	1.18	0.92	1.22	0.94	1.18	0.92	1.20	0.87
80	1.29	0.90	1.28	0.89	1.29	0.90	1.28	0.89	1.27	0.84
100	1.35	0.85	1.38	0.85	1.35	0.85	1.38	0.85	1.34	0.80

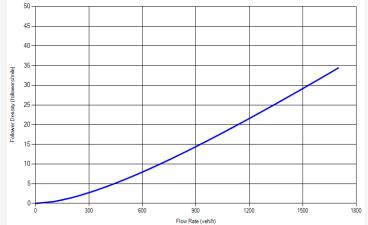
CAV Capacity Adjustment - Roundabout Capacity Curves

Revised Chapter 15: Two-Lane Highways

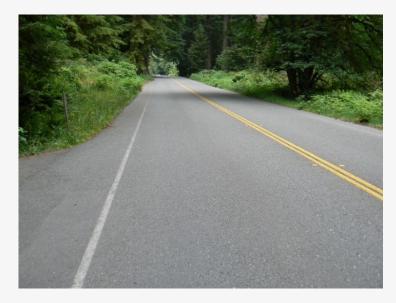
	HCM6 Methodology	HCM7 Methodology
Classification	Class I, Class II, Class III	Two different sets of service measure thresholds based on posted speed limit
Service Measure(s)	Average Travel SpeedPercent Time Spent FollowingPercent of Free-Flow Speed	 Follower Density (followers/mi) A function of Density and Percent Followers


LOS	Class I Highways ATS (mi/h) PTSF (%)		Class II <u>Highways</u> PTSF (%)	Class III <u>Highways</u> PFFS (%)		
A	>55	≤35	≤40	>91.7		
В	>50-55	>35-50	>40-55	>83.3-91.7		
C	>45-50	>50-65	>55-70	>75.0-83.3		
D	>40-45	>65-80	>70-85	>66.7-75.0		
E	≤40	>80	>85	≤66.7		
F	Demand exceeds capacity					


	Follower Density (followers/mi/ln)				
	Higher-Speed Highways	Lower-Speed Highways			
LOS	Posted Speed Limit ≥ 50 mi/h	Posted Speed Limit < 50 mi/h			
A	≤ 2.0	≤ 2.5			
В	> 2.0 - 4.0	> 2.5 – 5.0			
C	> 4.0 - 8.0	> 5.0 - 10.0			
D	> 8.0 – 12.0	> 10.0 - 15.0			
E	> 12.0	> 15.0			
F	Demand exceeds capacity				


Note: For Class I highways, LOS is determined by the worse of ATS-based LOS and PTSF-based LOS.

Revised Chapter 15: Two-Lane Highways

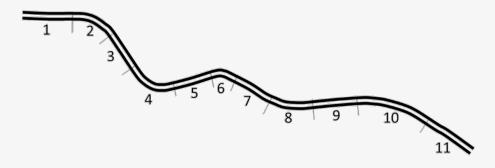

HCM6 Methodology

HCM7 Methodology

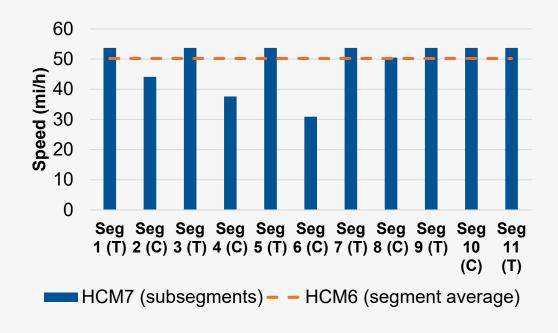
Segmentation

None - % of passing zones and length of passing lanes are provided

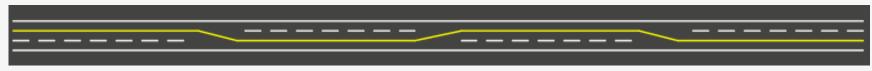
Segment types: Passing Constrained, Passing Zone, Passing lane

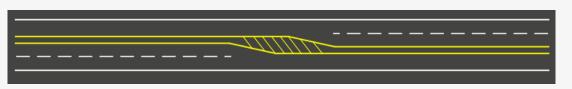

	HCM6 Methodology	HCM7 Methodology					
,	Originally iterative approach due to units	 % HV as a direct input for performance measures Flow rate as veh/h 					

	HCM6 Methodology	HCM7 Methodology
Capacity	• 1,700 pc/h	 Passing zone and passing constrained segments 1700 veh/h Passing lane segment, merge point Lower values due to merging friction Function of %HV and vertical classification


Sensitivity to Horizontal Curvature

Estimated speeds – new method x old method


Speeds can change significantly in curve segments



Subsegment	Туре	Length (ft) ^a	Super- elevation (%)	Radius (ft)	Central Angle (deg)	Horizontal Class ⁵
1	Tangent	280				
2	Horizontal curve	432	3	450	.55	3
3	Tangent	260				
4	Horizontal curve	366.5	2	300	70	4
5	Tangent	250				
6	Horizontal curve	216	5	275	45	5
7	Tangent	275.6				
8	Horizontal curve	458	0	750	35	2
9	Tangent	285				
10	Horizontal curve	767.9	4	1,100	40	1
11	Tangent	369				
Total		3,960				

	HCM6 Methodology	HCM7 Methodology					
Base Free-Flow Speed	No specific guidance for estimating	Can be estimated based on posted speed limit					
2+1 Configuration	Not considered	Initial material for estimating performance					
Facility Scope	 Not considered Essentially single segment analysis, but with additional step for adjusting performance due to upstream passing lane 	 Facility LOS based on length-weighted aggregation of segment follower density values Includes adjustment for downstream segments based on upstream passing lane segment 					

ATDM FOR ARTERIALS

HCM 7 - Chapter 17 & 37 Arterial's ATDM

Augments HCM materials on Active Traffic and Demand

Management (ATDM) that was previously limited to freeways.

Primarily focuses on these three strategies:

- Dynamic Lane Assignments
- Reversible Lanes
- Dynamic Turn Restrictions

Uses the travel time reliability as the basis of analysis which can include the effects of non-recurring sources of congestion.

How an ATDM analysis could look like? Adding a reversible center lane

Single Day Analysis (HCM6)

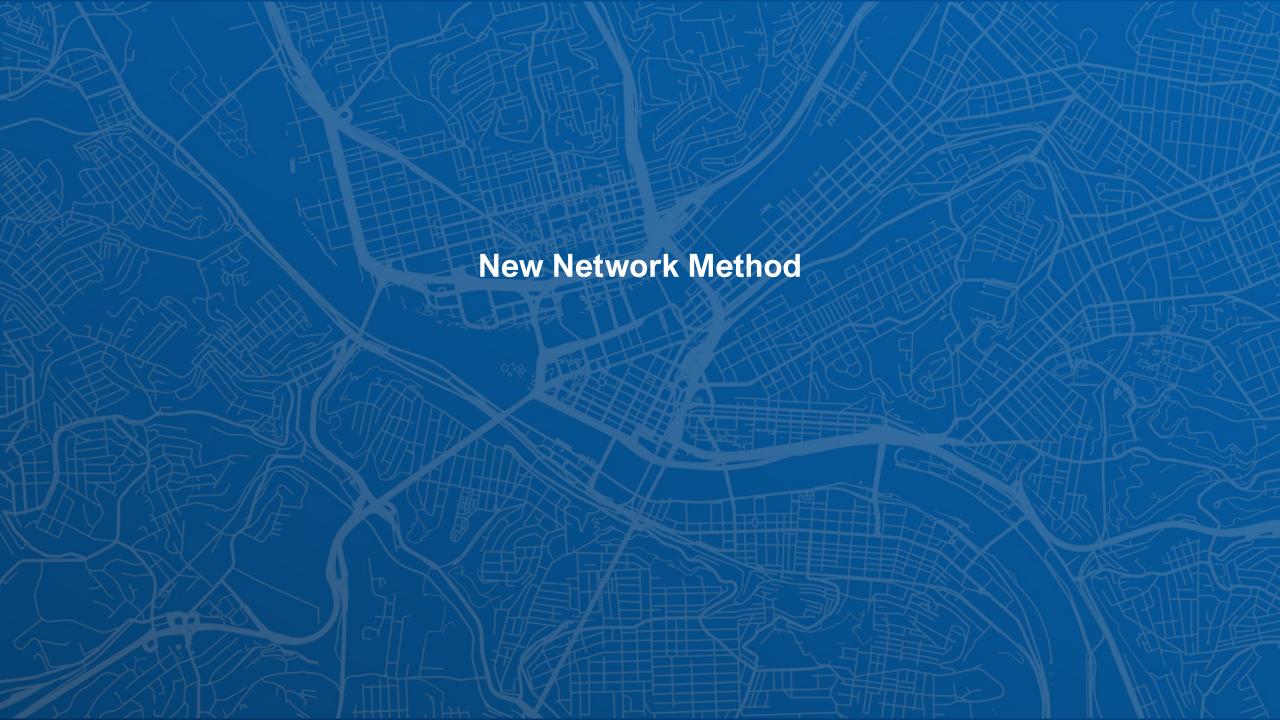
Scope:

Single day/period

Typical Operational Condition

MOE	Before	After
Travel Time (EB)	214 Sec	141 Sec
LOS (EB)	E	С

ATDM Analysis (HCM7)

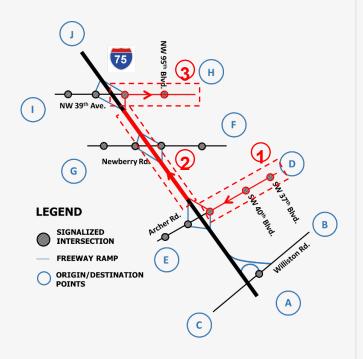

Scope:

Multiple days (up to a year)


Includes recurring & non-recurring congestion

- Traffic demand fluctuation
- Weather Conditions, Incidents, etc.

MOE	Before	After
EB - Mean TTI	1.41	1.38
EB - 80 th TTI	2.7	1.9
EB - 90 th TTI	3.5	2.1
EB - LOTTR (80th/50th TTI)	1.9	1.3


New HCM Chapter 38 on Network Analysis

- Evaluate spillback between arterials and freeways
- Estimate travel time across facilities
- Conduct lane-by-lane analysis for freeways

Analyzing Corridors with Freeways and Streets

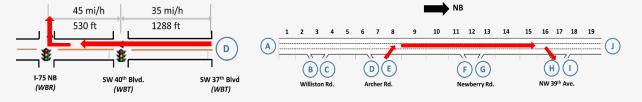
How to analyze a trip from D to H?

HCM Current methods – analyze three different facilities:

Facility 1 (Urban Street):

Facility 2 (Freeway):

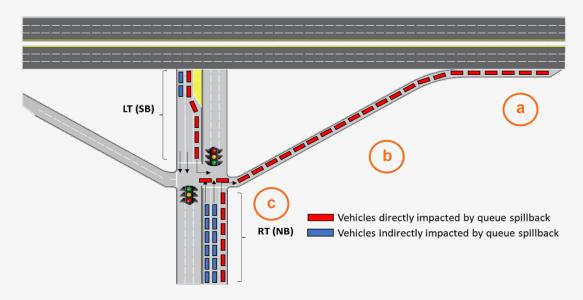
Facility 3 (Urban Street):


NW 95th Blvd

(EBT)

45 mi/h

510 ft


I-75 NB

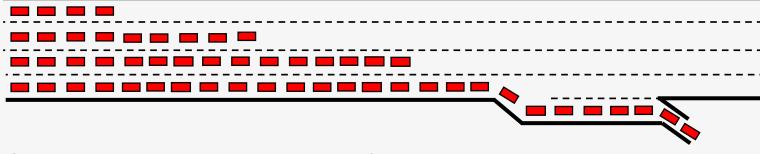
HCM New methods – integrates analyses and overcomes limitations:

- Travel time as common performance measure
- Congestion propagation at interchanges (queue spillback)
- Lane selection at freeway depending on O-D
- Travel time at freeway ramps

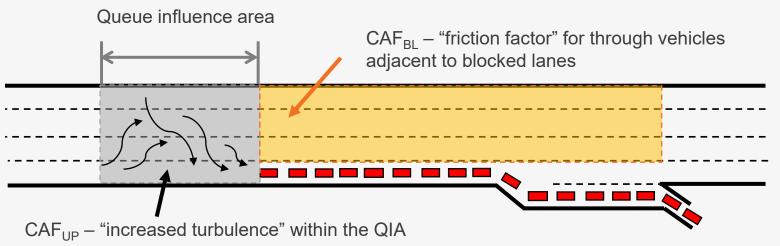
Queue Spillback Analysis – Freeway On-ramps

User Inputs

- Available queue storage at the on-ramp (ft)
- Ramp metering rate, if applicable (veh/h)
- Intersection and Freeway inputs per current HCM

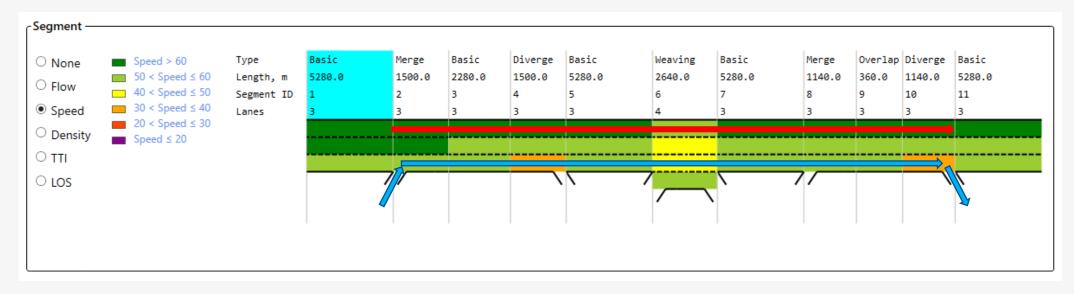

On-Ramp Queue Spillback

Occurs when:


- Insufficient capacity at:
 - 1. freeway merge
 - 2. ramp meter or
 - 3. ramp roadway
- Insufficient storage length at the on-ramp

Queue Spillback Analysis – Freeway Off-ramps

Freeway impact is more localized close to exit and spreads further upstream:

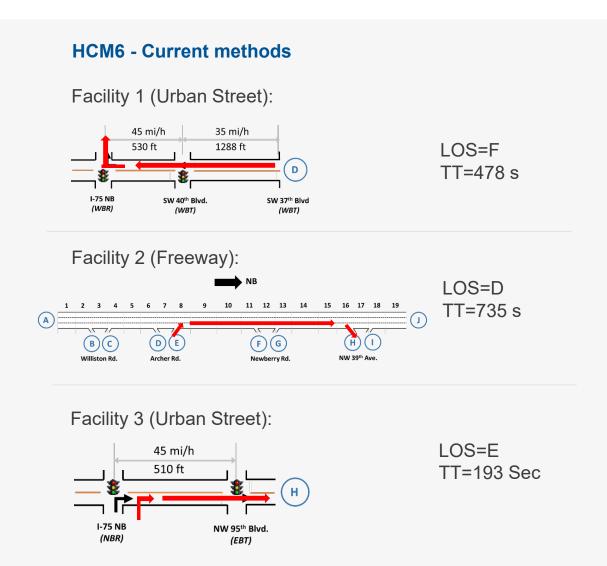

Freeway Lane-by-Lane Performance

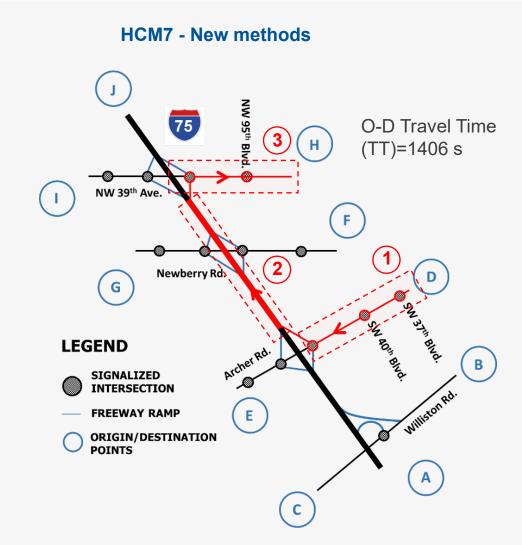
Instrumental to analyze O-D based travel times – affects lane choice

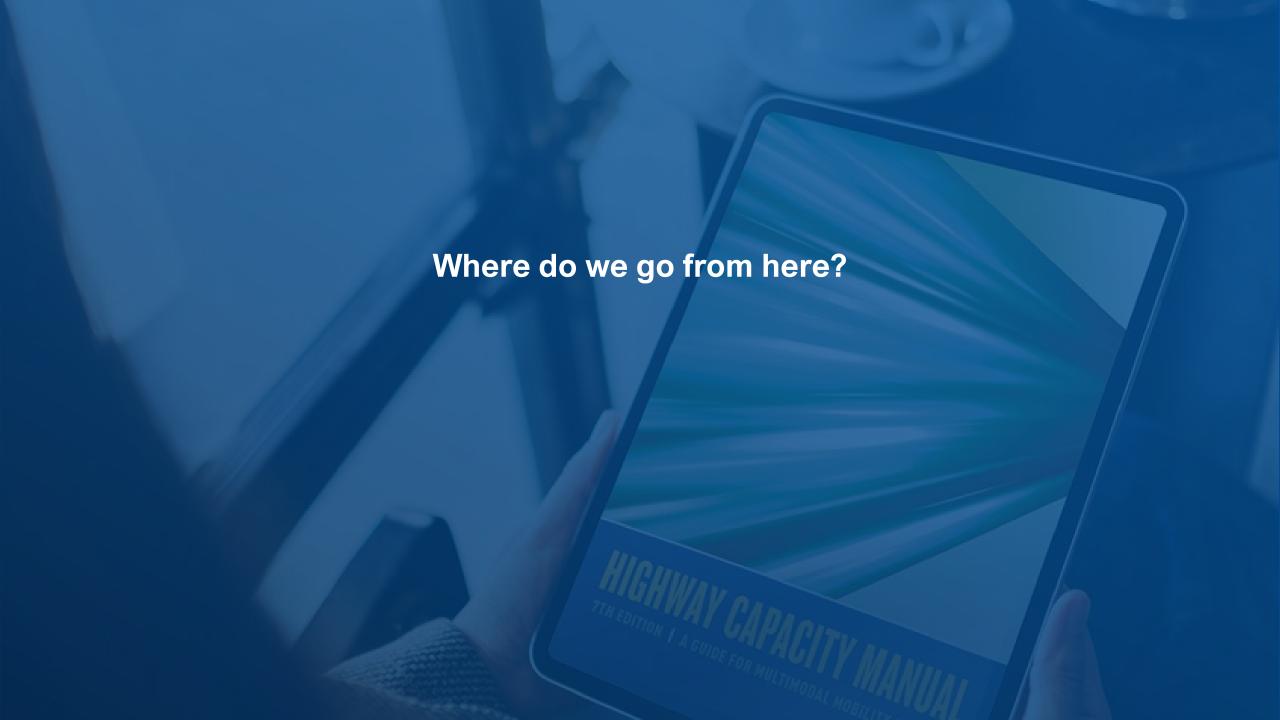
Estimation of capacity and speeds for individual lanes

Flow distribution for individual lanes as function of:

Segment and ramp flow rate; % grade; nearby ramps; number of lanes




How do travel times between these two O-D pairs differ?


Addressing Long Routes (TT>15mins)

	HCM6 Current methods								HCM7 Network methods				
<u>Fac</u> Type	ility Name	Segment ID		Segment Travel time (s) Analysis Analysis Period 1 Period 2		Analysis	Cumulative travel time (s)	Segment Tra Analysis Period 1		avel time (s) Analysis Period 2		Cumulative travel time (s)	
Urban	Archer	SW 37th - SW 40th		34		28	34		34		28		34
Street	Rd. WB	SW 40th - I-75 WB	l	26	V	29	60		26		29		60
		On-ramp		73		86	133		73		86		133
		8		245		341	378		245		341		378
		9		185		189	563		185	7	189		563
		10		60		65	623		60		65		623
		11		122		116	745		122		116		745
Freeway	I-75 NB	12		130		137	875		130		137		875
		13		55		52	930		55		57		930
		14		185		178	1115		185		178		1108
		15		70	J	68	1185		70		68		1176
		16		50		46	1235		50		46	Z	1222
		Off-ramp		26		29	1261		26		29		1251
Urban Street	NW 39th Ave. EB	I-75 NB - NW 95th	(45	Ť	55	1316		45		55		1306
		Total tra	ivel	time (5):		1217						1306

Numerical Example

Now that the 7th Edition of HCM is here, what's next?

- Digital version
- Revamped committee structure
- How do we keep the HCM relevant?
- What changes do we make?


Focus on Applications

- Have some methods become too complex to apply in practice?
- How is HCM being used and by whom?
- Limited success of companion applications guides
 - HCM Applications Guidebook (NCHRP Project 3-64, 2006)
 - Planning and Preliminary Engineering Applications Guide to the HCM (NCHRP Report 825, 2016)
- More real-world, case study examples needed plus outreach focused on application

Incorporating "Big Data" into HCM Analyses

- Free-flow speed and congested speed are parameters of several HCM methods for which "big data" are available.
- O-D demand volumes are needed for some methods
- Role of big data in reliability analyses
- Question: How do we take advantage of available big data and in what ways?

Back-to-Basics Approach

- Forget about competing with simulation
- Back-of-the-napkin approach still has a place
- Increase focus on foundational information like that in Volume 1
- Re-visit some of the fundamental concepts like capacity, delay, Level of Service
- Task force has begun examining this issue

Today's presenters

Bastian Schroeder bschroeder@kittelson.com

Behzad Aghdashi <u>saghdashi@ufl.edu</u> *University of Florida, McTrans Center*

Tom Creasey tom@caliper.com

NATIONAL Sciences Engineering Medicine

Update Events for you

July 14

TRB Webinar: New Facilities and Systems Methods in HCM7

August 3

TRB Webinar: Incorporating a Complex Transportation System in the New HCM7

https://www.nationalacademies.org/trb/events

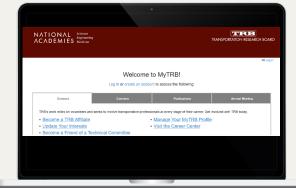
Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the *TRB Weekly* newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry

Spread the word and subscribe! https://bit.ly/ResubscribeTRBWeekly


Making our work accessible

 Join or Become a Friend of a Standing Technical Committee

Network and pursue a path to Standing Committee membership bit.ly/TRBstandingcommittee

- Work with a CRP https://bit.ly/TRB-crp
- Keep us updated with your information www.mytrb.org

Listen to TRB's podcast

Listen on our website or subscribe wherever you listen to podcasts https://www.nationalacademies.org/ podcasts/trb

Podcasts

Podcasts

Casts

RSS feed

Stay in touch

Receive emails about upcoming webinars: https://mailchi.mp/nas.edu/trbwebinars

Find upcoming conferences: https://www.nationalacademies.org/trb/events

